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1. INTRODUCTION AND MOTIVATION

First of all, let us recall that a set of random variables (rv’s) (X1, X2, . . . , XN )
is said to be associated if for every pair of functions g1(.) and g2(.) from R

N to
R, which are non decreasing component-wise, cov(g1(X), g2(X)) ≥ 0, whenever
the covariance is defined, where X = (X1, X2, . . . , XN ). An infinite sequence
{XN , N ≥ 1} of rv’s is said to be associated if every finite subset is associated.
This definition was introduced by Esary et al. ([9]), mainly for the sake of applica-
tions. For instance, association occurs often in certain reliability theory problems,
as well as in some important models employed in statistical mechanics. It is of
interest to note that association and mixing define two distinct but not disjoint
classes of processes (see, e.g. Doukhan and Louhichi ([7]), for examples of se-
quences that are associated but not mixing, associated and mixing, and mixing
but not associated ones).

Let us now recall that a strong mixing condition refers more to σ-algebra
than to rv’s. On the one hand, a main inconvenience of mixing conditions is
the difficulty of checking them. On the other hand, an important property of
associated random rv’s is that zero correlation implies independence. Also, large
classes of examples of associated processes are deduced from the fact that any
independent sequence is associated and that monotonic functions of independent
sequences remain associated. So, the main advantage of the concept of association
compared to mixing is that the conditions of limit theorems are easier to verify
since, a covariance is much easier to compute than a mixing coefficient.

As examples of associated rv’s, we recall that most often in reliability stud-
ies, the rv’s which are generally lifetimes of components, are not independent but
are associated. In fact, as an example, there are structures in which the compo-
nents share the load so that failure of one component results in increased load on
each of the remaining components. Thus, failure of one component will adversely
effect the performance of all the minimal path structures containing it. In such a
model, the random variables of interest are not independent but are associated.
In addition, let {Xi, i ≥ 1} be independent and identically distributed (iid) rv’s
and Y be independent of {Xi, i ≥ 1}. Then {Zi = Xi + Y, i ≥ 1} are associated.
Thus, if independent components of a system are subject to the same stress, then
their lifetimes are associated. A variety of relevant examples and ample biblio-
graphical references can be found in (Bulinski and Shashkin ([3])). In that book,
the reader can find a number of new results and examples related to associated
random sequences and random fields. For completeness on the subject in the
complete data case we refer the reader to the monographs by Oliveira ([17]) and
Prakasa Rao ([20]).

Survival analysis is the part of statistics, in which the variable of interest
(lifetime) may often be interpreted as the time elapsed between two events and
then, one may not be able to observe completely the variable under study. Such
variables typically appear in a medical or an engineering life test studies. Among
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the different forms in which incomplete data appear, censoring and truncation are
two common ones.

Left truncation in studies of developmental processes is not just of theoret-
ical interest: It can cause substantial bias if ignored. An important example of
such a model arises in the analysis of survival data of patients infected by the
AIDS virus from contaminated blood transfusions (Chen et al. ([6])). Other ex-
amples in which a large fraction of potential observations are left truncated are
rate of spontaneous abortion (Meister and Schaefer ([16])) and age at menopause
transition stages (Harlow et al. ([12])).

Let {XN , N ≥ 1} be a sequence of strictly stationary associated rv’s of
interest defined on a probability space (Ω,F ,P) with an unknown probability
density function (pdf) f = dF . Let {TN , N ≥ 1} be a sequence of stationary
associated rv’s of truncation with an unknown Lipschitz distribution function (df)
G. In this paper we follow the same sampling scheme as that of (Woodroofe ([25]))
whose observable sample of size n is a subset of N pairs {(X1, T1), . . . , (XN , YN )},
where N is deterministic but unknown while n is random. As it was pointed out
by the reviewer, one may consider another approach in which the sample size n
is a non-random known value, and the observations are drawn from an infinite
sequence of random vectors. In fact, such an approach was used by (He and
Yang ([13])). However, our main motivation in following the first approach is
computational since, in our simulation studies we use the ratio n

N to estimate
different values of the parameter α.

Under random left truncation scheme, only those pairs (Xi, Ti) satisfying
Xi ≥ Ti are observed. In the sequel we assume that {XN , N ≥ 1} is indepen-
dent from {TN , N ≥ 1} and (X1, T1),. . .,(Xn, Tn) denotes the sequence which one
actually observes within a sample (Xi, Ti);1 ≤ i ≤ N . Obviously the observed
sequence remains associated since any subset of associated rv’s are associated (see
Esary et al. ([9]), Property P1)). As a consequence of truncation, the sample
size n =

∑N
i=1 1{Xi≥Ti} is random, and from the strong law of large numbers,

n/N → α := P(Xi ≥ Ti), almost surely (a.s.), as N → ∞. Without further men-
tion, we shall assume that α > 0 because, otherwise, no data will be available.

Throughout this study, all probability statements are to be interpreted as
conditional probability statements, that is P(·) = P(·|X ≥ T ). Likewise E and
E will denote the expectation operators related to P and P, respectively. Then
conditionally on n, estimation results are stated considering n → ∞ which hold
true with respect to the probability P since n ≤ N .

In what follows, the star notation (⋆) relates to any characteristic of the
actually observed data (conditionally on n). So, following Stute ([21]), the df’s of
X and T become

F ⋆(x) := α−1

∫ x

−∞
G(z)dF (z) and G⋆(x) := α−1

∫ ∞

−∞
G(x ∧ z)dF (z),

where t∧z := min(x, z). Then, for any df W, let us define aW = inf {u : W (u) > 0}
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and bW = sup {u : W (u) < 1}, as the endpoints of the W support. As pointed
out in Woodroofe ([25]), the df’s F and G can be completely estimated only if
aG ≤ aF , bG ≤ bF and

∫∞
aF

(G)−1dF < ∞.

Let C(·) be a function defined by

C(x) := P(T ≤ x ≤ X)

= G⋆(x)− F ⋆(x)

= α−1G(x) [1− F (x)] , aG < x < bF .(1.1)

It is easily seen that F ⋆, G⋆ and C are readily estimable through

F ⋆
n(x) = n−1

n
∑

i=1

1{Xi≤x}, G
⋆
n(t) = n−1

n
∑

i=1

1{Ti≤t} and Cn(x) = G⋆
n(x)− F ⋆

n(x).

The well-known estimates of F and G proposed by Lynden-Bell ([15]) are

Fn(x) = 1−
∏

Xi≤x

[

nCn(Xi)− 1

nCn(Xi)

]

and Gn(t) =
∏

Ti>t

[

nCn(Ti)− 1

nCn(Ti)

]

,(1.2)

respectively, assuming no ties among the rv’s. Note that Stute and Wang ([22])
showed how to break ties without destroying the product limit structure. There-
fore, throughout we shall assume without loss of generality that there are no ties.
For technical reasons, we need to introduce a pseudo-kernel estimate of f , which
will be of a great importance later, defined by

(1.3) f̃n(x) :=
α

nhn

n
∑

i=1

1

G(Xi)
K

(

x−Xi

hn

)

,

where K is a smooth probability kernel and hn =: h is a sequence of bandwidths
tending to 0 at appropriate rates. For an interesting overview of nonparametric
curve estimation, we refer the reader to Cao et al. ([5]) and the references therein.

Note that in a real data situation or in simulation studies we shall, however,
not dwell on (1.3) since G is unknown. And, as the original sample size N is
unknown (although deterministic), the classical estimator α̂n = n/N for the rate
of no truncation α cannot be used, and then, another estimator derived from (1.1)
is required, namely

αn :=
Gn(x)[1− Fn(x)]

Cn(x)
,

for any x such that Cn(x) > 0. This estimator was proposed and studied in the
iid case in (He and Yang ([14]) Theorem 2.2, p. 1014). These authors proved
that αn does not depend upon the argument x and its value can then be obtained
for any x such that Cn(x) 6= 0. Furthermore, they showed (Corollary 2.5) that
αn → α, a.s., as n → ∞. Then, by plug-in method we can construct a feasible
kernel estimate of f . Thus

(1.4) f̂n(x) :=
αn

nh

n
∑

i=1

1

Gn(Xi)
K

(

x−Xi

h

)

.
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From now on, the sum in the latter formula is taken over the i′s such that
Gn(Xi) 6= 0. Recall that asymptotic results for (1.4), in both iid and strong
mixing condition cases have been stated in (Ould Saïd and Tatachak ([18], [19]),
Benrabah et al. ([2])).

It is well known that the cumulative hazard function Λ(y) = − log(1−F (x)),
for any x such that F (x) < 1, and its corresponding hazard rate function λ(x) :=
Λ′(x) = f(x)/(1 − F (x)), are important in several fields of applied statistics
(medicine, reliability,. . .) for the assessment of risks in survival studies. Recall that
the nonparametric hazard rate estimation was introduced in statistical literature
by Watson and Leadbetter ([24]). Now, using (1.2) and (1.4), an estimate for
λ(x) for an n−sample, at risk of being truncated from the left, is defined by

(1.5) λ̂n(x) =
f̂n(x)

1− Fn(x)
.

As far as we know, in truncation and dependence setting, the only existing
result dealing with hazard rate estimation is that of Sun and Zhou ([23]) stated
under strong mixing condition, while in the complete associated data case (no
truncation), Bagai and Prakasa Rao ([1]) stated strong uniform consistencies (with
no rates) for kernel-type density and failure rate estimates. Hence, in this paper,
we intend to extend the existing results to truncated and associated data.

The paper is organized as follows : In Section 2, an asymptotic analysis
is presented together with the list of the assumptions under which the main re-
sults are stated. To support the main results, a simulation study illustrates the
behaviour of the estimators as shown in Section 3. Proofs and some auxiliary
results with their proofs are relegated to Section 4.

2. ASYMPTOTIC ANALYSIS

In the sequel, D := [a, b] such that aG ≤ aF < a < b < bF will denote a
compact set and the letter c is used indiscriminately as a generic positive constant.
To state our asymptotic analysis, the following conditions are assumed.

A1.
∫ dF (z)

G2(z)
< +∞,

A2. The covariance term satisfies: ρ(s) := supj:|ℓ−j|≥s cov(Xj , Xℓ) for all ℓ ≥ 1
and s > 0, where ρ(s) ≤ γ0e

−γs for some positive constants γ0 and γ,

A3. K is a Lipschitz continuous pdf, compactly supported and
∫

uK(u)du = 0,

A4. f is twice continuously differentiable on D such that sup
x∈D

∣

∣

∣
f (2)(x)

∣

∣

∣
< +∞,



Hazard rate estimation under association and left-truncation 7

A5. The joint pdf f⋆
1,j(., .) of (X1, X1+j) satisfies: sup

j>1
sup
u,v∈D

∣

∣f⋆
1,j(u, v)

∣

∣ ≤ c,

A6. h satisfies: h → 0 and nh1+δ → +∞ along with n, for any 0 < δ < 1.

Remark 2.1. Assumptions A1-A2 satisfy conditions H1-H3 in (Gues-
soum et al. ([11])). Furthermore, Assumption A1 was used in (Stute ([21])) and
Assumption A2 quantifies a progressive tendency to asymptotic independence of
"past" and "future". This latter condition was used in (Doukhan and Neumann
([8])) in order to state an exponential inequality which is needed to prove Proposi-
tion 2.1 hereinafter. Assumptions A3-A4 are frequently used in studying uniform
consistency of estimates. Assumption A5 is often assumed in kernel estimation
studies under dependence structure and allows to bound the covariance term.
Finally, Assumption A6 is standard in nonparametric density estimation.

Proposition 2.1. Under assumptions A1-A6, for large enough n we have

sup
x∈D

∣

∣

∣
f̃n(x)−E(f̃n(x))

∣

∣

∣
= O

(
√

log n

nh

)

a.s.

Theorem 2.1. If assumptions A1-A6 hold true, then for large enough n
we have,

sup
x∈D

∣

∣

∣
f̂n(x)− f(x)

∣

∣

∣
= O

{
√

logn

nh
+

(

log log n

n

)θ

+ h2

}

a.s.,

where 0 < θ < γ/(2γ + β + 9) for any real β > 0 and γ is that in A2.

Theorem 2.2. Under assumptions A1-A6, for large enough n we have,

sup
x∈D

∣

∣

∣λ̂n(x)− λ(x)
∣

∣

∣ = O

{
√

log n

nh
+

(

log log n

n

)θ

+ h2

}

a.s.

Remark 2.2. The rates in Theorem 2.1 and Theorem 2.2 are still slower
than those stated for complete data in the iid and mixing cases (see Estévez and
Quintela ([10])), or under left truncation model (see Ould Saïd and Tatachak
([18],[19]), Sun and Zhou ([23])). Our rates depend upon the parameter θ which
controls the covariance’s decaying under association dependence as stated in (Cai
and Roussas ([4])), whereas the iterated logarithm form is related to the truncation
effect. Note that by setting γ = 3(r − 2)/2; r > 2, we recognize the θ appearing
in (Guessoum et al. ([11]), Theorem 3.1). Finally, we point out that for γ large
enough, our rates approach the classical optimal ones as θ grows to its upper
bound (θ = 1/2).
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3. SOME SIMULATION RESULTS

To examine the behaviour over finite samples of the estimators given in
statements (1.4) and (1.5), respectively, we have conducted a numerical study via
simulation. The log-normal distribution has been selected because of the shape of
its hazard function which is flatter around of its maximum. In the computation
of the estimators, we used the bi-weight kernel (K(x) = (1 − |x|2)21|x|≤1) which
verifies our conditions in stating our main results. We also used optimal global and
local bandwidths, that minimized the global mean square error (GMSE) and the
simple mean square error (MSE) criteria, respectively. These bandwidths were
selected in the grid of values H = {hk = 10−1 + 5(k − 1)10−2; k = 1, 2, ..., 19.}.

3.1. Models and procedure

• step 1. The sequence {(Xk, Tk), k = 1, . . . , n} is generated as follows:
For i = 1, 2, . . . , N , we first generate Zi = (Wi−1 + Wi−2/2), where {Wr, r =
−1, 0, . . . , N − 1} are iid rv’s drawn from N (0, 1) and put Xi = exp(Zi), i =
1, . . . , N . Hence, the sequence {Xk, k = 1, 2, . . . , N} is associated and follows a
log(N (0,

√

1/2)) distribution. At each iteration the Xi’s are compared to the Ti’s
generated from exp(µ) in order to keep only the pairs (Xi, Ti) satisfying Xi ≥ Ti.
The parameter µ is adjusted to get P(X ≥ T ) ≈ α. Hence, a truncation sequence
{(Xi, Ti), i = 1, . . . , n} is generated and the estimator λn(·) is computed using
the bi-weight kernel and bandwidths h ∈ H .
• step 2. We repeat B simulation runs as described in step 1 for every fixed
combination of size n and truncating rate (TR) 1− α.
For a given functional g and its estimate ĝn,h, the GMSE computed along B =
200 Monte Carlo trials and a grid of bandwidths h ∈ H is defined as

GMSE(h) =
1

Bm

B
∑

k=1

m
∑

ℓ=1

(ĝn,h,k(xℓ)− g(xℓ))
2 ,

where m is a number of equidistant points xℓ belonging to the range ]0, 4] and
ĝn,h,k(xℓ) is the value of ĝn,h(xℓ) computed at iteration k. In computing the
GMSE′s, optimal global bandwidths (ogb) were used for both density and haz-
ard rate function estimation. The values GMSE := minh∈H GMSE(h) and the
corresponding global bandwidths hopt := argminh∈H GMSE(h) are reported in
Table 1 and Table 2. The MSE’s reported in Table 3 were evaluated by using op-
timal local bandwidths (olb) for hazard rate estimation. Furthermore, to display
the quality of fit of the estimators, we first plotted the target density f together
with its average and median estimates as illustrated in Figure 1 and Figure 2.
Then, we plotted the target hazard rate λ with its average and median estimates
for both global optimal bandwidths and local optimal ones as shown in Figure 3,
Figure 4 and Figure 5.
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n 50 100 200

1− α (TR)

0.05
0.15
0.25

hopt GMSE

0.575 0.0073
0.600 0.0090
0.575 0.0155

hopt GMSE

0.475 0.0048
0.475 0.0079
0.475 0.0122

hopt GMSE

0.375 0.0029
0.400 0.0073
0.400 0.0096

Table 1: Density function with optimal global bandwidths

n 50 100 200

TR

0.05
0.15
0.25

hopt GMSE

0.825 0.2052
0.800 0.2574
0.750 0.2676

hopt GMSE

0.675 0.1404
0.725 0.1732
0.750 0.1800

hopt GMSE

0.600 0.0743
0.640 0.0908
0.650 0.1145

Table 2: Hazard rate function with optimal global bandwidths

n 30 50 100

TR

0.05
0.15
0.25

MSE

0.2247
0.2632
0.3384

MSE

0.1949
0.2104
0.2848

MSE

0.1286
0.1500
0.1848

Table 3: Hazard rate function with optimal local bandwidths
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Figure 1: Density estimation (ogb):n=100 and TR≈0.05,0.25
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Figure 2: Density estimation (ogb): n=100,500 and TR≈0.15
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Figure 3: Hazard rate (ogb): n=100 and TR≈0.05,0.15,0.25
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Figure 4: Hazard rate (ogb): TR≈0.15 and n=50,200
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Figure 5: Hazard rate (olb):TR≈0.15 and n=30,50,100
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3.2. Comments on the simulation results

As it can be seen from the tables and figures, the higher the sample size
and smaller the TR, the better the quality of fit. This means that the errors
tend to be negligible in each case when n increases. Likewise, the quality of fit
deteriorates slightly for sufficiently high TR value but, it increases along with n
and becomes better in any cases. Note also that, in particular, the estimation of
the hazard rate function suffers from the well-known boundary effects that occur
in nonparametric functional estimation. If the target functional has a support on
[0,∞), the use of classical estimation methods with symmetric kernels yield a large
bias on the zero boundary and leads to a bad quality of the estimates. This is the
case here and is due to the fact that symmetric kernel estimators assign non-zero
weight at the interval (−∞, 0]. The graphs reveal this phenomenon when using
optimal global bandwidths but, the bias effect is subsequently reduced and tends
to disappear when optimal local bandwidths are used as shown in Figure 5. We
point out that one may also select another approach to deal with the boundary
bias effect which consists in using an asymmetric kernel as the Gamma kernel
since it is non-negative and changes its shape depending on the position on the
semi-axis. The inverse Gaussian kernel is also an interesting alternative.

4. AUXILIARY RESULTS AND PROOFS

Before proving the main results, we briefly discuss the tools used here.

Remark 4.1. As it was mentioned above, there are processes which are
associated but not mixing. In such cases, it would be interesting to have at
disposal similar results as stated here.
It is noteworthy that for the proof of our results we use similar tools used in the α-
mixing frameworks. The main difference here is that functional of associated rv’s
are not associated in general, which is the case when dealing with nonparametric

kernel estimation. This is due to the fact that the random functions K
(

x−Xi
h

)

are, in general not associated but remain α-mixing if the Xi’s are, since K is a
measurable function in general. To keep the association, we should apply only
monotone transformations to the original variables, which is not the case with a
general kernel. To overcome this problem, one may assume that the kernel K is
of bounded variation. This condition permits to write K = K1−K2, with K1 and
K2 are monotone functions. In this paper, we do not follow this procedure but
we use results stated for weakly dependent models in the sense of Doukhan and
Louhichi ([7]), since associated models are κ-weakly dependent. Note also that
to treat the fluctuation part in Proposition 2.1, we use bounds for covariances
in applying an exponential inequality stated by Doukhan and Neumann ([8]) for
weakly dependent rv’s. To this end, we use Theorem 5.3 in (Bulinski and Shashkin
([3])), and Proposition 8 in (Doukhan and Neumann ([8])).
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Indeed, for any x ∈ D , set Ui(x, h) :=
α

G(Xi)
K
(

x−Xi
h

)

−E

(

α
G(Xi)

K
(

x−Xi
h

))

.

So, it follows that

(4.1) f̃n(x)−E

(

f̃n(x)
)

=
1

nh

n
∑

i=1

Ui(x, h).

The proof of Proposition 2.1 is based on Lemma 4.1 and Lemma 4.2 here-
after.

Lemma 4.1. Under the assumptions of Proposition 2.1, for all u-tuples
(s1, ..., su) and all v-tuples (w1, ..., wv) with 1 ≤ s1 ≤ ... ≤ su ≤ w1 ≤ ... ≤ wv ≤
n, we have

(i) cov

(

su
∏

i=s1

Ui(x, h),
wv
∏

j=w1

Uj(x, h)

)

=: cov1 ≤ cu+vh−2uvρ(w1 − su),

(ii) cov

(

su
∏

i=s1

Ui(x, h),
wv
∏

j=w1

Uj(x, h)

)

=: cov2 ≤ cu+vh2

Proof of Lemma 4.1: Let Lip(Φ) denote the Lipschitz modulus of con-
tinuity of Φ, that is

Lip(Φ) = sup
x 6=y

|Φ(x)− Φ(y)|
|x− y|1

,

where |(z1, . . . , zd)|1 = |z1|+ ...+ |zd|.

To prove item (i), we use a result in (Bulinski and Shashkin ([3]), Theorem 5.3,
p. 89) and then we have

cov1 ≤ Lip

(

su
∏

i=s1

Ui(x, h)

)

Lip





wv
∏

j=w1

Uj(x, h)





su
∑

i=s1

wv
∑

j=w1

cov(Xi, Xj).

Now since

Lip

(

k
∏

i=1

Ui(x, h)

)

≤ c

h

(

2

G(a)

)k

‖K‖k−1
∞ ,

where ‖K‖∞ := supuK(u). Then by stationarity and Assumption A2, we get

cov1 ≤
c22u+v

h2Gu+v(a)
‖K‖u+v−2

∞ uvρ(w1 − su).

Thus result (i) holds. The result (ii) follows by simple algebra using assumptions
A3-A5. The proof is finished.
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Lemma 4.2. There exist constants M,L1, L2 < +∞, µ, λ ≥ 0 and a
non-increasing sequence of real numbers (φ(n))n≥1 such that

a) cov

(

su
∏

i=s1

Ui(x, h),
wv
∏

j=w1

Uj(x, h)

)

=: cov ≤ cu+vhuvφ(w1 − su),

b)
∑

t≥0
(t+ 1)k0φ(t) ≤ L1L

k0
2 (k0!)

µ, ∀k0 ≥ 0,

c) E

(

|Ui(x, h)|k0
)

≤ (k0!)
λMk0 .

The items in Lemma 4.2 are nearly the conditions of Theorem 1 in (Doukhan
and Neumann ([8])). This latter will allow us to use their exponential inequality
in proving Proposition 2.1.

Proof of Lemma 4.2: To prove item a) we apply Lemma 4.1 by taking

φ(·) = ρ1/4(·) and writing cov = cov
1/4
1 cov

3/4
2 . The proofs for b) and c) are similar

to those in (Doukhan and Neumann ([8]), Proposition 8) by choosing λ = 0, µ = 1
and L1 = L2 =

1
1−e−γ/4 , and then we omit them.

Proof of Proposition 2.1: The main tool used here to bound the fluc-
tuation term in (4.1), is an exponential inequality due to Doukhan and Neumann
([8]), that is

(4.2) P

(

n
∑

i=1

Ui(x, h) ≥ ε

)

≤ exp

(

− ε2/2

An +B
1/(µ+λ+2)
n ε(2µ+2λ+3)/(µ+λ+2)

)

,

where An can be chosen such that An ≤ σ2
n with

σ2
n := V ar

(

n
∑

i=1

Ui(x, h)

)

,

and

Bn = 2cL2

(

24+µ+λcnhL1

An
∨ 1

)

.

For this purpose, let us calculate σ2
n = (nh)2V ar(f̃n(x). We have

(nh)2V ar(f̃n(x) = n

{

E

[

α2

G2(X1)
K2

(

x−X1

h

)]

−E
2

[

α

G(X1)
K

(

x−X1

h

)]}

+
n
∑

i=1

n
∑

j 6=i,j=1

cov

(

α

G(Xi)
K

(

x−Xi

h

)

,
α

G(Xj)
K

(

x−Xj

h

))

= : V1 + V2.
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On the one hand, by assumptions A3-A4, a change of variable and the Dominated
Convergence Theorem, we obtain V1 = O(nh).
On the other hand, from Lemma 4.1, we can write

(4.3) cov

(

α

G(Xi)
K

(

x−Xi

h

)

,
α

G(Xj)
K

(

x−Xj

h

))

= O(h2).

And, let

B1 = {(i, j)/ 1 ≤ |i− j| ≤ ηn} and B2 = {(i, j)/ ηn + 1 ≤ |i− j| ≤ n− 1} ,

where ηn = o(n). Then

V2 =

n
∑

i=1

∑

j∈B1

cov

(

α

G(Xi)
K

(

x−Xi

h

)

,
α

G(Xj)
K

(

x−Xj

h

))

+
n
∑

i=1

∑

j∈B2

cov

(

α

G(Xi)
K

(

x−Xi

h

)

,
α

G(Xj)
K

(

x−Xj

h

))

= : V21 + V22.

From (4.3) we have

(4.4) V21 = O(ηnnh
2),

then by Assumption A2 and Lemma 4.2 a) we obtain

(4.5)
V22

nh
≤ c

nh

n
∑

i=1

∑

j∈B2

he−
γ|i−j|

4 ≤ c

∫ n

ηn

e−
γu
4 du = O

(

e−
γηn
4

)

.

Choosing ηn = O(hδ−1) with 0 < δ < 1 (δ may be the same as that in A6), the
statements (4.4) and (4.5) give V21 = o(nh) and V22

nh = o(1). Consequently

σ2
n = O(nh).

Thus we choose An = O(nh) and Bn = O(1).
At this step we are able to apply (4.2). To end the proof of Proposition 2.1, we
use a covering of the compact D by a finite number ℓn of intervals D1, ...,Dℓn of
equal length an = O

(

n−1/2h3/2
)

and centered at points x1, ..., xℓn , respectively.
Note that as D is bounded, there exists a constant M0 > 0 such that ℓn ≤ M0a

−1
n .

Then observe that

sup
x∈D

∣

∣

∣
f̃n(x)−E

(

f̃n(x)
)∣

∣

∣
= sup

x∈D

1

nh

∣

∣

∣

∣

∣

n
∑

i=1

Ui(x, h)

∣

∣

∣

∣

∣

≤ max
k=1,...,ℓn

sup
x∈Dk

1

nh

n
∑

i=1

|Ui(x, h)− Ui(xk, h)|

+ max
k=1,...,ℓn

1

nh

∣

∣

∣

∣

∣

n
∑

i=1

Ui(xk, h)

∣

∣

∣

∣

∣

.
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First, since K is Lipschitz we have

1

nh

n
∑

i=1

|Ui(x, h)− Ui(xk, h)| ≤
1

nh

n
∑

i=1

α

G(Xi)

∣

∣

∣

∣

K

(

x−Xi

h

)

−K

(

xk −Xi

h

)∣

∣

∣

∣

+
1

h
E

(

α

G(Xi)

∣

∣

∣

∣

K

(

x−Xi

h

)

−K

(

xk −Xi

h

)∣

∣

∣

∣

)

≤ 1

h

2

G(a)

∣

∣

∣

∣

x− xk
h

∣

∣

∣

∣

≤ c

G(a)
√
nh

= O

(

1√
nh

)

.

Next, by Assumption A6, if we replace ε by ε0
√
nh logn =: εn in (4.2), we then

get

P

(

max
k=1,...,ℓn

1

nh

∣

∣

∣

∣

∣

n
∑

i=1

Ui(xk, h)

∣

∣

∣

∣

∣

> ε0

√

log n

nh

)

≤
ℓn
∑

k=1

P

(∣

∣

∣

∣

∣

n
∑

i=1

Ui(xk, h)

∣

∣

∣

∣

∣

> εn

)

≤ ca−1
n exp







−
(

ε20 log n
)

/2

c+ ε
5/3
0

(

log5 n
nh

)1/6







≤ c

(nh1+δ)
3

2(1+δ)

n
−cε20+

4+δ
2(1+δ) .(4.6)

For a suitable choice of ε0, the right hand side term in (4.6) becomes the general
term of a convergent series. Then Borel-Cantelli’s lemma gives

max
k=1,...,ℓn

1

nh

∣

∣

∣

∣

∣

n
∑

i=1

Ui(xk, h)

∣

∣

∣

∣

∣

= O

(
√

log n

nh

)

.

This latter jointly with (4.6) allow us to conclude the desired result, that is

sup
x∈D

1

nh

∣

∣

∣

∣

∣

n
∑

i=1

Ui(x, h)

∣

∣

∣

∣

∣

= O

(
√

log n

nh

)

= sup
x∈D

∣

∣

∣f̃n(x)−E

(

f̃n(x)
)∣

∣

∣ ,

which ends the proof of Proposition 2.1.

Now the proof of Theorem 2.1 is immediately established once the following lem-
mas (Lemma 4.3 and Lemma 4.4) are stated.

Lemma 4.3. Under assumptions A1-A2, for n sufficiently large we have

sup
x∈D

|Gn(x)−G(x))| = O

[

(

log log n

n

)θ
]

a.s.,(4.7)

|αn − α| = O

[

(

log logn

n

)θ
]

a.s.(4.8)
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Proof of Lemma 4.3: To prove (4.7), it suffices to follow step by step
the proof in (Guessoum et al. ([11]), Theorem 3.2). The result (4.8) ensues using
the following decomposition

|αn − α| = 1

Cn(x)C(x)
|C(x)(Gn(x)−G(x))(1− Fn(x))

+ C(x)G(x)(F (x)− Fn(x)) +G(x)(Cn(x)− C(x))(F (x)− 1)| .
Thus the result holds using (4.7) jointly with Theorem 3.2 and Lemma 4.2 in
(Guessoum et al. ([11])).

Lemma 4.4. Under the hypotheses of Theorem 2.1, for large n enough
we have

sup
x∈D

∣

∣

∣

(

f̂n(x)− f̃n(x)
)∣

∣

∣
= O

[

(

log logn

n

)θ
]

a.s.,(4.9)

sup
x∈D

∣

∣

∣

(

E(f̃n(x))− f(x)
)∣

∣

∣
= O(h2) a.s.(4.10)

Proof of Lemma 4.4: To get (4.9), remark that

∣

∣

∣f̂n(x)− f̃n(x)
∣

∣

∣ =
1

nh

n
∑

i=1

∣

∣

∣

∣

αn (G(Xi)−Gn(Xi)) + (αn − α)Gn(Xi)

Gn(Xi)G(Xi)

∣

∣

∣

∣

K

(

x−Xi

h

)

.

Then, Lemma 4.3 gives the result. For the bias term in statement (4.10), the
result is obtained by using classical tools under assumptions A3 and A4.

Proof of Theorem 2.1: The result holds by writing f̂n(x) − f(x) =
(

f̂n(x)− f̃n(x)
)

+
(

f̃n(x)−E(f̃n(x))
)

+
(

E(f̃n(x))− f(x)
)

and using Proposi-

tion 2.1 together with Lemma 4.4.

Proof of Theorem 2.2: Let us consider the following decomposition

λ̂n(x)− λ(x) =
(1− F (x))−1

(1− Fn(x))

(

(1− F (x))(f̂n(x)− f(x))− f(x)(F (x)− Fn(x))
)

.

Then the proof follows from Theorem 3.2 in (Guessoum et al. ([11])) and Theo-
rem 2.1.

ACKNOWLEDGMENTS

We are grateful to an anonymous reviewer for his/her particularly careful
reading, relevant remarks and constructive comments, which helped us to improve
the quality and the presentation of an earlier version of this paper.



Hazard rate estimation under association and left-truncation 21

REFERENCES

[1] Bagai, I. and Prakasa Rao, B.L.S. (1995). Kernel-type density and failure
rate estimation for associated sequences. Ann. Inst. Stat. Math., 47, 253–266.

[2] Benrabah, O,; Ould Saïd, E. and Tatachak, A. (2015). A kernel mode esti-
mate under random left truncation and time series model: asymptotic normality.
Stat. Papers, 56, 887–910.

[3] Bulinski, A. and Shashkin, A. (2007). Limit theorems for associated random

fields and related systems. World Scientific, Singapore

[4] Cai, Z. and Roussas, G.G. (1998). Kaplan-meier estimator under association.
J. Multivariate Anal., 67, 318–348.

[5] Cao, R.; Delgado, M.A. and Gonzalez-Manteiga, W. (1997). Nonparamet-
ric curve estimation: an overview. investigaciones economicas, XXI, 209–252.

[6] Chen, K.; Chao, M.T. and Lo, S.H. (1995). On strong uniform consistency of
the Lynden-Bell estimator for truncation data. Ann. Statist., 23, 440–449.

[7] Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and
applications to moments inequalities. Stochastic Processes and their applications,

84, 313–342.

[8] Doukhan, P. and Neumann, M. (2007). Probability and moment inequalities
for sums of weakly dependent random variables, with applications. Stochastic Pro-

cesses and their Applications, 117, 878–903.

[9] Esary, J.; Proschan, F. and Walkup, D. (1967). Association of random vari-
ables with applications. Ann. Math. Statist., 38, 1466–1476.

[10] Estévez, G. and Quintela, A. (1999). Nonparametric estimation of the haz-
ard function under dependence conditions. Com. Statist. Theory & Meth., 28 10,
2294–2331.

[11] Guessoum, Z.; Ould Saïd, E.; Sadki, O. and Tatachak, A. (2012). A note
on the Lynden-Bell estimator under association. Statist. Probab. lett., 82, 1994–
2000.

[12] Harlow, S.D.; Cain, K.; Crawford, S. et al. (2006). Evaluation of four
proposed bleeding criteria for the onset of late menopausal transition. J. Clin.

Endocrinol. Metab., 91, 3432–3438.

[13] He, S. and Yang, G. (2003) Estimation of regression parameters with left trun-
cated data. J. Statist. Plan. Inference, 117, 99–122.

[14] He, S. and Yang, G. (1998). Estimation of the truncation probability in the
random truncation model. Ann. Statist., 26, 1011–1027.

[15] Lynden-Bell, D. (1971). A method of allowing for known observational selec-
tion in small samples applied to 3CR quasars. Monthly Notices Royal Astronomy

Society, 155, 95–118.

[16] Meister, R. and Schaefer, C. (2008). Statistical methods for estimating the
probability of spontaneous abortion in observational studies-analyzing pregnancies
exposed to coumarin derivatives. Reprod. Toxicol., 26, 31–35.

[17] Oliveira, P.E. (2012). Asymptotics for Associated Random Variables. Springer
Verlag.



22 Zohra Guessoum and Abdelkader Tatachak

[18] Ould Saïd, E. and Tatachak, A. (2009a). On the nonparametric estimation
of the simple mode under left-truncation model. Romanian Journal of Pure and

Applied Mathematics, 54, 243–266.

[19] Ould Saïd, E. and Tatachak, A. (2009b). Strong consistency rate for the
kernel mode under strong mixing hypothesis and left truncation. Com. Statist.

Theory & Meth., 38, 1154–1169.

[20] Prakasa Rao, B.L.S. (2012). Associated Sequences, Demimartingales and Non-

parametric Inference. Probability and its Applications, Springer Basel AG.

[21] Stute, W. (1993). Almost sure representation of the product-limit estimator for
truncated data. Ann. Statist., 21, 146–156.

[22] Stute, W. and Wang, J.L. (2008). The central limit theorem under random
truncation. Bernoulli, 14, 604–622.

[23] Sun, L. and Zhou, X. (2001). Survival function and density estimation for
truncated dependent data. Statist. Probab. Lett., 52, 47–57.

[24] Watson, G.S. and Leadbetter, M. R. (1964). Hazard analysis I. Biometrika,

51, 175–184.

[25] Woodroofe, M. (1985). Estimating a distribution function with truncated data.
Ann. Statist., 13, 163–177.


