
REVSTAT – Statistical Journal

Volume 0, Number 0, Month 0000, 000-000

ON CONSTRUCTION OF BERNSTEIN-BÉZIER TYPE
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Abstract:2

• In this paper, a new class of bivariate multi-parameter Archimedean copula based3

on Kendall distribution using Bernstein-Bézier polynomials is introduced. The new4

class copula has flexible dependence properties depending on the polynomial degree5

and the control points. Some dependence characteristics such as Kendall’s tau, upper6

tail and lower tail dependence of the new Archimedean copula class are derived. The7

simulation procedure based on these desired dependence characteristics is presented.8

Also, a parameter estimation process based on minimum Cramér-von-Mises distance9

is also given and its estimation performance is investigated through Monte Carlo10

simulation study.11
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1. INTRODUCTION

Copula models are popular tools for describing multivariate data where the17

univariate distribution functions are combined to joint distribution function by18

Sklar’s theorem (Sklar, 1959). Let X and Y be random variables with joint distri-19

bution function H and the marginal distribution functions F and G, respectively.20

Then, there exists a copula C such that H(x, y) = C(F (x), G(y)), for all x, y in <.21

As an advantage of the copula models, the dependence structure can be modelled22

separately from the marginal distributions. If F and G are continuous, then C is23
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unique. Otherwise, the copula C is uniquely determined on Ran(F )×Ran(G).1

There are various families of copulas. One of the most popular families is2

Archimedean copula family of which the dependence structure can be charac-3

terized by an univariate distribution function (Nelsen, 2006, Section 4). The4

important feature that separates this class from the others is that it has a gener-5

ator function ϕ which is used to construct an Archimedean copula.6

Definition 1. A generator function ϕ is a continuous, strictly decreasing7

convex function defined from I to [0,∞) such that ϕ(1) = 0. If ϕ(0) = ∞, then8

the generator is called as a strict generator. The pseudo inverse of ϕ is the9

function ϕ[−1], defined on [0,∞) to I is given by10

ϕ[−1] =

{
ϕ−1(t) 0 ≤ t ≤ ϕ(0)
0 ϕ(0) ≤ t <∞

A bivariate Archimedean copula with generator function ϕ,C : I2 → I is11

defined by12

(1.1) C(u, v) = ϕ[−1]{ϕ(u) + ϕ(v)}.

where u = F (x) and v = G(y).13

14

An Archimedean copula function can be reduced to an univariate dis-15

tribution function through generator function. Genest et al. (1993) showed16

that the function ϕ(t) can be obtained by the univariate distribution function17

K(t) = Pr(C(u, v) ≤ t). Remarkably, there is a link between the function ϕ(t)18

and K(t) such as19

(1.2) K(t) = t− ϕ(t)

ϕ′(t)
= t− λ(t).

K(t) called as Kendall distribution function identifies the generator function ϕ(t)20

and so the dependence structure of the Archimedean copula family. Dependence21

measures such as Kendall’s tau, upper and lower tail dependence coefficients can22

be obtained by using Kendall distribution function. For a bivariate Archimedean23

copula with Kendall distribution function K(t), Genest and MacKay (1986) de-24

fined Kendall’s Tau (τ) as25

(1.3) τ = 3− 4

∫ 1

0
K(t)dt.

And also, Michiels et al. (2011) defined lower λL and upper λU tail dependence26

as27

(1.4) λL = 2limt→0+

(
t−K(t)

)′
,
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1

(1.5) λU = 2− 2limt→1−
(
t−K(t)

)′
.

and they investigated a general method for constructing bivariate Archimedean2

copula families using λ function. They worked with polynomials to construct3

multi-parameter copula families. Genest et al. (1998) proposed several ways4

to generate bivariate Archimedean copula models via smooth transformations5

of existing generator function. Dimitrova et al. (2008) defined an estimation6

method of Kendall distribution using B-spline functions. In addition, they de-7

fined sufficient conditions for the B-spline estimator to possess the properties of8

the Kendall distribution function. So, the function can be considered as a proper9

Kendall distribution function and associated with the multivariate Archimedean10

copula. Cooray (2018) introduced two-parameter strict Archimedean generator11

function based on Clayton copula. Najjari et al. (2014) constructed a new gen-12

erator function ϕ(t) using hyperbolic functions as generators of Archimedean13

copulas. The majority of the papers proposed some methods based on generator14

function ϕ for constructing a new Archimedean family of copulas. In this study,15

we propose constructing a multi-parameter Archimedean copula using Kendall16

distribution function K(t). We use Bernstein-Bézier polynomials to create the17

new Archimedean class. Kendall’s tau, lower and upper tail dependence coef-18

ficients are also obtained according to the polynomial degree and the control19

points. This new multi-parameter Archimedean copula family is contributed to20

the expansion of the existing Archimedean copula family.21

The contribution of this study is two fold: First, a new Archimedean cop-22

ula class based on Bernstein-Bézier polynomial is proposed. Different values of23

Kendall’s tau (negative or positive), lower and upper tail dependence coefficients24

can be obtained by changing the polynomial degree and the control points, so25

the proposed class has flexible dependence structure. It is possible to create a26

new distribution function which has desirable dependence characteristics. This27

is quite useful in power analysis of goodness-of-fit test statistic. Second, an al-28

gorithm is proposed to create different distributions with the same dependence29

level by changing the control points for poynomial degree. Also, an estimation30

process based on minimizing Cramér-von Mises distance is presented and a Monte31

Carlo simulation study is employed to measure the performance of the parameter32

estimates.33

34

The rest of the paper is organized as follows. In Section 2, Bernstein-35

Bézier type Archimedean copula is given and some dependence characteristics are36

investigated. A simulation procedure of this new class for different polynomial37

degrees is given in Section 3. Parameter estimation procedure which is based38

on minumum Cramér-von-Mises measure is given and parameter estimates are39

obtained in Section 4. And the last section is devoted to the conclusion.40
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2. BERNSTEIN BÉZIER TYPE BIVARIATE ARCHIMEDEAN
COPULA

A Kendall distribution function, K(t) should satisfy the following properties1

(1-4) described in Nelsen (2006).2

1. K(0) = 03

2. K(1) = 14

3. K
′
(t) > 05

4. K(t) > t , t ∈ (0, 1)6

Let K(m,α; t) be a Bernstein-Bézier type Kendall distribution function7

with polynomial degree m and control points α defined as8

(2.1) K(m,α; t) =
m∑
k=0

αkBk,m(t)

where Bk,m(t) =
(
m
k

)
tk(1− t)m−k for t ∈ [0, 1].9

Lemma 2.1. A Bernstein-Bézier type Kendall distribution functionK(m,α; t)10

satisfies the properties (1-4) if the following constraints hold:11

1. α0 = 0 < α1 < α2 < . . . < αm = 112

2. αk >
k
m , k = 1, . . . ,m− 113

Proof: K(m,α, t = 0, ) =
∑m

k=0 αkBk,m(t = 0) = 0 holds since α0 = 0.14

Similarly, K(m,α, t = 1) =
∑m

k=0 αkBk,m(t = 1) = 1 holds since αm = 1 .15

Also, K(m,α, t)
′

= m
∑m−1

k=0 (αk+1−αk)Pk,m−1(t) ≥ 0. See, Duncan (2005).16

So, α0 = 0 < α1 < α2 < . . . < αm = 1.17

If the Bézier control points αk >
k
m , k = 1, . . . ,m−1 where αk = k/m+ εk,18

then,19
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K(m,α, t) =
m∑
k=0

αk

(
m

k

)
tk(1− t)m−k

=

m∑
k=0

(
k

m
+ εk)

(
m

k

)
tk(1− t)m−k

=

m∑
k=0

(
k

m
)

(
m

k

)
tk(1− t)m−k +

m∑
k=0

(εk)

(
m

k

)
tk(1− t)m−k

= t

m∑
k=1

(
m− 1

k − 1

)
tk−1(1− t)m−k +

m∑
k=0

(εk)

(
m

k

)
tk(1− t)m−k

= t
m−1∑
p=0

tp(1− t)m−p−1

(
m− 1

p

)
+

m∑
k=0

(εk)

(
m

k

)
tk(1− t)m−k

= t+
m∑
k=0

(εk)

(
m

k

)
tk(1− t)m−k > t.

1

We also obtain Kendall’s tau, lower and upper tail dependence of the2

Bernstein-Bézier type Archimedean copula class using the following lemmas.3

Lemma 2.2. Kendall’s tau for Bernstein-Bézier type Archimedean cop-4

ula is obtained as5

τ = 3− 4

m∑
k=0

αk

(
m

k

)
β(k + 1,m− k + 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1

0 t
v1−1(1 − t)v2−1dt for6

v1, v2 positive integers.7

Proof: τ is easily derived from equation τ = 3− 4
∫ 1

0 K(t)dt.8

Lemma 2.3. The lower tail λL and the upper tail λU dependence for9

Bernstein-Bézier type Archimedean copula are obtained by10

λL = 21−mα1

11

λU = 2− 21−m(1−αm−1)
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Proof: λU and λL are easily derived from equation λL = 2limt→0+

(
t−K(t)

)′
, λU =1

2− 2limt→1−
(
t−K(t)

)′
.2

It is seen that λL and λU are affected by only the control points α1 and3

αm−1, respectively. We can create Bernstein-Bézier type Archimedean copula4

using λL and λU , setting up the control points α1 and αm−1.5

6

The following inequalities given in the next lemma provide an information7

for proper selection of λU and λL.8

Lemma 2.4. Let λL and λU be lower and upper tail dependence of9

Bernstein-Bézier type Archimedean copula with polynomial degree m. Then,10

1 > λL >
22−m

2− λU
holds for all values of polynomial degree m.11

Proof: It can ve proved using the inequality α1 < αm−1. Also, 0 <12

λU , λL < 1, see Charpentier and Segers (2008).13

Suppose that the parameters αk are defined as αk > k
m for for k =14

1, . . . ,m− 1, then K(m,α; t) > t. See, Lemma 2.1. Also, we note that if the con-15

trol points are selected as αk → k
m , then the dependence coefficients (τ, λU , λL)16

approximate 1. In other words, the Bernstein-Bézier type Archimedean copula17

approximates comonotonic dependence when the control points are closely dis-18

tributed uniform.19

The Bernstein-Bézier type Archimedean copula with higher degree can rep-20

resent various dependence forms. However, they may have some disadvantages.21

1. As the degree increases, the complexity and therefore the processing time22

increase.23

2. Because of the complexity, the curves of higher degree are more sensitive24

to round off errors.25

As opposed to these disadvantages, we can combine several Bernstein-
Bézier type Kendall distribution functions, mostly of degree three and four. We
note that the Bernstein- Bézier polynomials are invariant under barycentric com-
binations (Farin (2001), p. 61). So, we obtain the following Bernstein-Bezier
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type Archimedean copulas for θ ∈ [0, 1]:

K(m,α; t) =
m∑
k=0

(
θα1,k + (1− θ)α2,k

)
Bk,m(t)

= θ
m∑
k=0

α1,kBk,m(t) + (1− θ)
m∑
k=0

α2,kBk,m(t)

= θK(m,α1,.; t) + (1− θ)K(m,α2,.; t).

We can construct the weighted average of two Bernstein-Bézier Archimedean1

copulas either by taking the weighted average of corresponding points on the2

distribution, or by taking the weighted average of corresponding parameters α.3

Dependence coefficients of two barycentric combinations of Bernstein-Bézier
type Archimedean copula are given by

τ =3− 4
m∑
k=0

α2,kβ(k + 1,m− k + 1)

(
m

k

)

+4θ
( m∑
k=0

(α2,k − α1,k)β(k + 1,m− k + 1)

(
m

k

))

λU =2− 21+θmα1,m−1+(1−θ)mα2,m−1−m

λL =21−
(
θmα1,1+(1−θ)mα2,1

)

Note that if θ is selected as 1, then the classical Bernstein-Bézier type4

Archimedean copula is obtained.5

3. SIMULATING DATA FROM BERNSTEIN BÉZIER TYPE ARCHIMEDEAN
COPULA

In this section, data simulation from Bernstein-Bézier type Archimedean6

copula is given. Construction of a new distribution function which has desirable7

Kendall’s tau and tail dependence coefficients are investigated.8

9

The following procedure is used to create a distribution with the dependence10

characteristics represented by Kendall’s tau and tail dependence coefficients.11
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1. The arbitrary value of the upper tail dependence λU is determined primarily.1

2. λL is determined arbitrarily by using Lemma 2.4.2

3. The value of Kendall’s tau τ is determined for the distributions with poly-3

nomial degrees 2 and 3. For the distributions having polynomial degree4

m ≥ 4, an interval of Kendall’s tau is determined. Then, Kendall’s tau is5

selected arbitrarily from this interval.6

4. Bivariate data is simulated using the following algorithm. See, Nelsen7

(2006).8

The algorithm based on Michiels et al. (2011) allows one to simulate C(u, v) by9

Kendall distribution function K(t) given as;10

• Simulate uniformly distributed random pair (s, t) on [0, 1].11

• Set w = K−1(t).12

• Set u such that
∫ u
w

1
t−K(t)dt− ln(s) = 0.13

• Set v such that
∫ v
w

1
t−K(t)dt− ln(1− s) = 0.14

The range of the parameters and the dependence coefficients depending on the15

Bernstein-Bézier polynomial degree m are summarized in Table 1. It is observed16

that as the degree of the polynomial increases, the range of the dependence co-17

efficients gets wider.18

19

Kendall’s tau, upper and lower tail dependence coefficients obtained by20

the Bernstein-Bézier type Archimedean copula with control points for degree21

(m = 3, 4, 5) are summarized in Table 2. Also, different distributions having the22

same dependence level at the control points α2 and α3 for poynomial degree 523

are given. All the Bernstein-Bézier control points and dependence coefficients24

are obtained by applying the simulation procedure (1-4). All cases in Table 2 are25

examined in the subsection (3.1-3.3).26

m α0 α1 α2 α3 α4 α5 τ λU λL

3 0 (1
3 , 1) (max(2

3 , α1), 1) 1 - - (0, 1) (0, 1) (1
4 , 1)

4 0 (1
4 , 1) (max(2

4 , α1), 1) (max(3
4 , α2), 1) 1 - (−0.2, 1) (0, 1) (1

8 , 1)

5 0 (1
5 , 1) (max(2

5 , α1), 1) (max(3
5 , α2), 1) (max(4

5 , α3), 1) 1 (−0.33, 1) (0, 1) ( 1
16 , 1)

Table 1:
Range of parameters and dependence coefficients
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Degree K(t) α0 α1 α2 α3 α4 α5 τ λU λL

m = 3 K1 0 0.7173 0.7928 1 - - 0.4899 0.7 0.45

m = 4 K2 0 0.3537 0.5828 0.9815 1 - 0.68 0.1 0.75

m = 5 K3 0 0.4 0.43 0.8531 0.9169 1 0.6 0.5 0.5

K4 0 0.4 0.63 0.6531 0.9169 1 0.6 0.5 0.5

Table 2:
Parameters and dependence coefficients

3.1. Bernstein-Bézier type Archimedean copula with degree three

A Bernstein-Bézier type Archimedean copula with degree 3 has the follow-1

ing distribution function,2

K(m = 3, α; t) =
3∑

k=0

αk

(
3

k

)
tk(1− t)3−k, t ∈ [0, 1]

From Lemma 2.1, α0 = 0, α3 = 1 , α0 < α1 < α2 < α3 and α1 >
1
3 , α2 >

2
3 .3

Kendall’s tau of the distribution is given as4

τ = 3− 4

3∑
k=0

αk

(
3

k

)
β(k + 1, 3− k + 1) = 2− α1 − α2

and lower and upper tail dependence coefficients are5

λL = 21−3α1 , λU = 2− 23α2−2

(1 − 4) procedure is applied to determine the Kendall’s tau and the tail6

dependence coefficients of the distribution. The arbitrary value of the upper tail7

dependence λU is determined primarily in the range λU ∈ (0, 1). We select λU8

as 0.7, so α2 is equal to 0.7928 . From Lemma 2.4, 1 > λL > 0.3846. Then, λL9

is determined arbitrarily as 0.45. So, α1 is equal to 0.7173. The stage conditions10

for control points given Lemma 1 are satisfied. Finally, Kendall’s tau is 0.4899.11

K(3, α; t) with control points α0 = 0, α1 = 0.7173, α2 = 0.7928 and α3 = 1 has12

the Kendall’s tau value as τ = 0.4899 and the value tail dependence coefficients13

as λL = 0.45 and λU = 0.7. Simulated data and K(m = 3, α; t) with the sample14

of size 150 are visualized in Figure 1.15
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Figure 1:
Simulated data from K(3, α; t) with τ = 0.4899, λL =
0.45, λU = 0.7

3.2. Bernstein-Bézier type Archimedean copula with degree four

Bernstein-Bézier type Archimedean copula with degree 4 has the following1

distribution function with the dependence characteristics, Kendall’s tau, lower2

and upper tail dependence,3

K(4, α; t) =
4∑

k=0

αk

(
4

k

)
tk(1− t)4−k, t ∈ [0, 1]

τ =
1

5

(
11− 4(α1 + α2 + α3)

)

λL = 21−4α1 , λU = 2− 24α3−3

(1−4) procedure is applied to determine the Kendall’s tau and the tail dependence4

values of the distribution. The arbitrary value of the upper tail dependence λU5

is determined primarily in range λU ∈ (0, 1). We select λU as 0.1 and so α3 is6

equal to 0.9815. From Lemma 2.4, 1 > λL > 0.1315. Then, λL is determined7

arbitrarily as 0.75 . So, α1 is equal to 0.3537. Finally from Lemma 2.1, Kendall’s8

tau should be selected in the range τ ∈ (0.3610, 0.7462). We determine Kendall’s9

tau arbitrarily as 0.68. So, α2 is 0.5828 . K(4, α; t) with control points α0 =10

0, α1 = 0.3537, α2 = 0.5828, α3 = 0.9815 and α4 = 1 has the value of Kendall’s11

tau τ = 0.68 and the values of tail dependences as λL = 0.75 and λU = 0.1.12

Simulated data and K(m = 4, α; t) with the sample of size 150 is visualized in13

Figure 2.14

3.3. Bernstein-Bézier type Archimedean copula with degree five

Bernstein-Bézier type Archimedean copula with degree 5 has the following15

distribution function with the dependence characteristics Kendall’s tau, lower16
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Figure 2:
Simulated data from K(4, α; t) with τ = 0.68, λL = 0.75, λU =
0.1

and upper tail dependence,1

K(5, α; t) =
5∑

k=0

αk

(
5

k

)
tk(1− t)5−k, t ∈ [0, 1]

τ =
1

3

(
7− 2(α1 + α2 + α3 + α4)

)

λL = 21−5α1 , λU = 2− 25α4−4

(1 − 4) procedure is again applied to determine the Kendall’s tau and the2

tail dependence values of the distribution. The arbitrary value of the upper tail3

dependence λU is determined primarily in range λU ∈ (0, 1). We select λU as4

0.5 and so α4 is equal to 0.9169. From Lemma 2.4, 1 > λL > 0.0833. Then,5

λL is determined arbitrarily as 0.5. So, α1 is equal to 0.4. Finally from Lemma6

2.1, Kendall’s tau should be selected in the range τ ∈ (0.2328, 0.6220). We7

determine Kendall’s tau arbitrarily as 0.6. α2 and α3 can be derived from solving8

equations α2 + α3 = 1.2831. From the last equation and Lemma 2.1, α2 and9

α3 should be selected in the range α2 ∈ (0.4, 0.6415) and α3 ∈ (0.6415, 0.8831),10

respectively. Different α2 and α3 values can be selected in order to provide11

α2+α3 = 1.2831 in the range of α2 and α3. This case is important, because we can12

create different distributions with the same dependence level by selecting different13

α2 and α3 values. One possible selection is α2 = 0.43 and α3 = 0.8531. Another14

possible selection is α2 = 0.63 and α3 = 0.6531. K1(5, α; t) with control points15

α0 = 0, α1 = 0.4, α2 = 0.43, α3 = 0.8531, α4 = 0.9169, α5 = 1 and K2(5, α; t)16

with control points α0 = 0, α1 = 0.4, α2 = 0.63, α3 = 0.6531, α4 = 0.9169, α5 = 117

with the same dependence level are visualized in Figure 3.18

For the higher order polynomial degree, for example m = 6, the range of τ, λL19

and λU are determined as the same as for degree m < 6. But the range of α2, α320

and α4 for the solutions of α2 + α3 + α4 = a cannot be determined easily.21
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Figure 3:
Simulated data from K1(5, α; t) and K2(5, α; t) with the same
τ = 0.6, λL = 0.5, λU = 0.5

4. PARAMETER ESTIMATION BASED ON CRAMÉR-VON-MISES
MEASURE

Genest and Rivest (1993) proposed a nonparametric procedure using em-
pirical estimate Kn of K. The psuedo observations of T̂i were obtained by

T̂i =

n∑
j=1

I(Xi < Xj , Yi < Yj)/(n− 1), i = 1, . . . , n.

Then, K(t) was estimated by the empirical distribution function as1

(4.1) K̂n(t) =
n∑
i=1

(T̂i ≤ t)/n.

Barbe et al. (1996) investigated consistency of K̂n(t). Alternatively, Susam2

and Ucer (2018) defined the empirical Bernstein estimator of order (m1 > 0) for3

the Kendall distribution function as,4

(4.2) K̂m1,n(t) =

m1∑
k=0

K̂n(k/m1)Pk,m1(t)

where Pk,m1(t) =
(
m1

k

)
tk(1 − t)m1−k is the binomial probability. Also, they5

showed that the Bernstein Kendall distribution function outperforms the empir-6

ical Kendall distribution function according to its performance by Monte Carlo7

simulation study.8
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In this study, through the parameter estimation process, we first estimate
the Bernstein-Bézier type Archimedean copula parameters by using empirical
estimate of K̂n. Then, Cramér-von-Mises (CvM) distance between the empirical
Kendall distribution function and the Bernstein-Bézier type Kendall distribution
function is obtained as

CvMK̂n
=

∫ 1

0
n
(
K̂n(t)−K(α,m2; t)

)2
dK̂n(t)

=
1

n

n∑
i=1

(
K̂n(T̂i)−K(α,m2; T̂i)

)2
.

Then the parameters are estimated by1

α̂K̂n
= argmin

α∈Θ

{
CvMK̂n

}

where Θ =
{
αk >

k
m2
, αk+1 > αk ; k = 1, . . . ,m2−1

}
and α0 = 0, αm2 = 1.2

Secondly, the Bernstein-Bézier type Archimedean copula parameters are3

estimated by using empirical Bernstein estimator K̂m1,n(t). Since the empirical4

Bernstein Kendall distribution function is a continuous approximation of the5

empirical Kendall distribution function K̂n, we use empirical Bernstein Kendall6

distribution function which is upgraded version of K̂n to obtain Cramér-von-Mises7

(CvM) distance as8

(4.3) CvMK̂n,m
=

∫ 1

0
n
(
K̂n,m1(t)−K(α,m2; t)

)2
dt.

The estimation of the dependence parameter αi for i = 0, . . . ,m2 can be selected9

as the value that minimizes the CvM distance.10

Lemma 4.1. Let K(α,m2; t) be the Bernstein-Bézier type Kendall dis-11

tribution function with order (m2 > 0) and let K̂m,n(t) be the empirical Bern-12

stein estimator of Kendall distribution function with order (m1 > 0). Then the13

Cramér-von-Mises distance is defined as14



14 Selim Orhun Susam and Burcu Hudaverdi

CvM = n

m1∑
k=0

(
m1

k

)2

K̂2
n(

k

m1
)β(2k + 1, 2m1 − 2k + 1)

+ 2n

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)(
m1

s

)
K̂n(

k

m1
)K̂n(

s

m1
)β(k + s+ 1, 2m1 − k − s+ 1)

+ n

m2∑
k=0

(
m2

k

)2

α2
kβ(2k + 1, 2m2 − 2k + 1)

+ 2n

m2−1∑
k=0

m2∑
s=k+1

(
m2

k

)(
m2

s

)
αkαsβ(k + s+ 1, 2m2 − k − s+ 1)

− 2n

m1∑
k=0

m2∑
s=0

K̂n(
k

m1
)αs

(
m1

k

)(
m2

s

)
β(k + s+ 1,m1 +m2 − k − s+ 1)

where β(., .) is the beta function defined as β(v1, v2) =
∫ 1

0 t
v1−1(1 − t)v2−1dt for1

v1, v2 positive integers.2

Proof:

CvM = n

∫ 1

0
(K̂n,m1(t)−K(α,m2; t))2dt

= n

∫ 1

0
K̂2
n,m1

(t)dt+ n

∫ 1

0
(K(α,m2; t))2dt− 2n

∫ 1

0
K̂n,m1(t)K(α,m2; t)dt

= n

∫ 1

0

( m1∑
k=0

(
m1

k

)
tk(1− t)m1−kK̂n(

k

m1
)
)2
dt

+ n

∫ 1

0
(

m2∑
k=0

αkt
k

(
m2

k

)
tk(1− t)m2−k)2dt

− 2n

m1∑
k=0

m2∑
s=0

K̂n(
k

m1
)αs

(
m1

k

)(
m2

s

)∫ 1

0
tk+s(1− t)m1+m2−k−sdt

= I1 + I2 − I3

Now, we calculate part of I1. We know that, (a1 + a2 + . . . + an)2 =
∑n

i=1 a
2
i +

2
∑n−1

i=1

∑n
j=i+1 aiaj , then we can write

I1 = n

m1∑
k=0

(
m1

k

)2

K̂2
n(

k

m1
)

∫ 1

0
t2k(1− t)2m1−2kdt

+ 2

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)
K̂n(

k

m1
)

(
m1

s

)
K̂n(

s

m1
)

∫ 1

0
tk+s(1− t)2m1−k−sdt

= n

m1∑
k=0

(
m1

k

)2

K̂2
n(

k

m1
)β(2k + 1, 2m1 − 2k + 1)

+ 2n

m1−1∑
k=0

m1∑
s=k+1

(
m1

k

)
K̂n(

k

m1
)

(
m1

s

)
K̂n(

s

m1
)β(k + s+ 1, 2m1 − k − s+ 1)
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proof of the parts of I2 and I3 are the same as proof of part I1.1

2

Then, the parameter estimate which gives the minimum value of Cramér-
von-Mises distance based on Bernstein empirical distribution is defined for Bernstein-
Bézier type Archimedean copula by

α̂K̂n,m
= argmin

α∈Θ

{
CvMK̂n,m

}
where Θ =

{
αk >

k
m2
, αk+1 > αk ; k = 1, . . . ,m2 − 1

}
and α0 = 0, αm2 = 1.3

4

Genest et al. (1993) introduced a method-of-moment estimator for bivariate5

Archimedean copula based on empirical Kendall distribution function K̂n(t). For6

one-parameter families, the parameter can be estimated by only using the first7

moment. However, for more than one parameters, we need the moments as much8

as the number of parameters.9

We note that the estimation procedure explained in this section are not only10

available for Archimedean copulas but also available for all continuous copula11

classes. The empirical Kendall distribution function can also be used for all12

continuous copula classes. See Genest et al. (1993)13

A Monte Carlo simulation study is conducted to measure the performance14

of the estimation method with several values of Kendall’s tau, lower and upper15

tail dependence coefficients.16

1.000 Monte Carlo samples of sizes n = 50, 150 are generated from each type17

of Bernstein-Bézier type Archimedean copulas given in Table 2 and investigated18

the performances of two parameter estimation methods as αK̂n
and αK̂n,m

. For19

the empirical Bernstein estimator, we select the polynomial degree as m1 = 1520

for sample size n = 50 and m1 = 30 for sample size n = 150.21

22

Simulation results are shown in Table 3 and Table 4. When the results23

are examined, the minumum Cramér-von-Mises method based on Kendall distri-24

bution using Bernstein polynomials outperforms the method based on empirical25

Kendall distribution in almost all cases for all sample sizes.26

5. CONCLUSION

In this study, we propose a new family of Archimedean copulas based on27

Kendall distribution function K(t). We use Bernstein-Bézier polynomials to con-28

struct this new multi-parameter distribution. The method is illustrated for poly-29

nomial degree m = 3, 4, 5. There are several advantages of this new Archimedean30
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Dist. Est. Mth. α̂1 α̂2 α̂3 α̂4

K1 α̂K̂n
0.00684 0.00431 - -

α̂K̂n,15
0.00575 0.00313 - -

K2 α̂K̂n
0.00903 0.01116 0.00221 -

α̂K̂n,15
0.00324 0.00688 0.00585 -

K3 α̂K̂n
0.00633 0.01580 0.01428 0.00349

α̂K̂n,15
0.00342 0.00925 0.01192 0.00193

K4 α̂K̂n
0.01544 0.00957 0.00992 0.00266

α̂K̂n,15
0.00534 0.01422 0.00923 0.00356

Table 3:
MSE of the parameter estimations for four Bernstein-Bézier
type copula with sample size n = 50

Dist. Est. Mth. α̂1 α̂2 α̂3 α̂4

K1 α̂K̂n
0.00261 0.00151 - -

α̂K̂n,30
0.00303 0.00141 - -

K2 α̂K̂n
0.00209 0.00437 0.00096 -

α̂K̂n,30
0.00123 0.00384 0.00177 -

K3 α̂K̂n
0.00177 0.00661 0.00827 0.00242

α̂K̂n,30
0.00229 0.00589 0.00614 0.00091

K4 α̂K̂n
0.00516 0.00775 0.00650 0.00144

α̂K̂n,30
0.00224 0.00753 0.00670 0.00165

Table 4:
MSE of the parameter estimations for four Bernstein-Bézier
type copula with sample size n = 150

copula class. It is shown that while working with the Bernstein-Bézier poly-1

nomial structures, a multi-parameter copula family can be constructed in an2

organized way. It is possible to create a new distribution function which has3

desirable dependence characteristics using Kendall’s tau, lower and upper tail4

dependence. The parameters of the new model can be interpreted in terms of5

these dependence characteristics. And also, it is possible that we can create dif-6

ferent distributions with the same dependence structures. Also, we obtain the7

parameter estimates minimizing the Cramér-von-Mises distance which is based8

on Bernstein-Bézier type Archimedean copulas. We measure the performance of9

the estimation method with several values of Kendall’s tau, lower and upper tail10

dependence coefficients by a Monte Carlo simulation study. We can conclude11

that the minimum Cramér-von-Mises method based on Kendall distribution us-12

ing Bernstein polynomials outperforms the method based on empirical Kendall13

distribution function.14
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lications de l’Institut de Statistique de l’Université de Paris,8, 229-231.35
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