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Abstract:

• In this communication, we study doubly truncated weighted Kullback-Leibler diver-
gence (KLD) between two nonnegative random variables. The proposed measure is a
generalization of the dynamic weighted KLD introduced by Yasaei Sekeh et al. (2013).
In reliability theory and survival analysis, it plays a significant role to study several
aspects of a system when lifetimes fall in a time interval. It is showed that under
some conditions, the proposed measure determines the distribution function uniquely.
Further, characterization theorems for various lifetime distributions are proved. The
effect of the monotone transformation on the proposed measure is studied. Some
inequalities and bounds in terms of useful measures are obtained and finally, few
applications are provided.
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1. INTRODUCTION

Kullback-Leibler divergence (see Kullback and Leibler, 1951) is an impor-
tant measure in information theory, which has proven to be useful in reliability
analysis and other related fields. It measures similarity (closeness) between two
statistical distributions. To be specific, let X and Y be two nonnegative abso-
lutely continuous random variables associated with probability density functions
(pdf) f and g, and cumulative distribution functions (cdf) F and G, respectively.
Then the KLD between f and g is given by

DKL(X||Y ) =

∫ +∞

0
f(x) ln

(f(x)
g(x)

)
dx = Ef

(
ln

(f(X)

g(X)

))
,(1.1)

where “ ln ” stands for the natural logarithm. We remark that DKL(X||Y ) is
nonnegative, not symmetric in f and g, zero if the distributions match exactly.
It is scale invariant, that is, for two nonnegative random variables Z1 = aX and
Z2 = aY with a > 0, we have DKL(X||Y ) = DKL(Z1||Z2). Note that DKL(X||Y )
given by (1.1), which is a special case of Csiszar’s ϕ-divergence measure can be
viewed as a measure of the information loss in the fitted model relative to that
in the reference model. For some recent development on KLD, we refer to Kasza
and Solomon (2015) and Sankaran et al. (2016).

In recent past, there have been considerable interest to enlarge the concept
of uncertainty by introducing nonnegative weight function. Belis and Guiasu
(1968) first proposed the notion of (discrete) weighted entropy. It takes two kind
of uncertainty into consideration. One of them is related to objective proba-
bility and other is related to utility. In analogy to Belis and Guiasu (1968),
Di Crescenzo and Longobardi (2006) considered the weighted differential en-
tropy for a nonnegative absolutely continuous random variable X as Sw(X) =
−
∫ +∞
0 xf(x) ln f(x)dx. It is shift dependent, though the differential entropy

S(X) = −
∫ +∞
0 f(x) ln f(x)dx is not. Besides weighted differential entropy, sev-

eral authors introduced and studied some other weighted information measures.
In this direction, we refer to Suhov and Yasaei Sekeh (2015), Mirali et al. (2017),
Nourbakhsh et al. (2016), and Rajesh et al. (2017).

Recently, based on the concept of weighted differential entropy, Yasaei
Sekeh et al. (2013) considered weighted KLD as

Dw
KL(X||Y ) =

∫ +∞

0
xf(x) ln

(f(x)
g(x)

)
dx = Ef

(
X ln

(f(X)

g(X)

))
,(1.2)

which takes into account the qualitative characteristic related to utility. To illus-
trate the importance of the weighted KLD, we consider the following example.

Example 1.1. Let X1 and Y1 be two nonnegative absolutely continuous
random variables with pdfs f1(x) = 2x, 0 < x < 1 and g1(x) = 2(1 − x), 0 <
x < 1, respectively. We consider another random variables X2 and Y2 with pdfs
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f2(x) = x/2, 0 < x < 2 and g2(x) = (2 − x)/2, 0 < x < 2, respectively. From
(1.1) we obtain DKL(X1||Y1) = 1 and DKL(X2||Y2) = 1. Also, from (1.2) we get
Dw

KL(X1||Y1) = 1 and Dw
KL(X2||Y2) = 2. Thus, from the objective probability

point of view, KLD measures are same. But, when we take the qualitative char-
acteristics into consideration, they differ. Here, Dw

KL(X1||Y1) < Dw
KL(X2||Y2).

Note that when the weight function “x” equals to 1, Dw
KL(X||Y ) coincides

with the standard KLD given by (1.1). Yasaei Sekeh et al. (2013) considered
weighted KLD between two residual (truncated from left) lifetime distributions
and two past (truncated from right) lifetime distributions. But there exist several
situations in real life, where statistical data are not only truncated from left or
right side, but also from both sides. When data are truncated from left and right
sides, we call it as doubly truncated. Doubly truncated data play a central role in
various statistical analysis of survival data. Doubly truncated failure time occurs
if the failure of an individual occurs within a certain interval. In medical science,
the induction time data in AIDS are doubly truncated, since HIV was unknown
to us before the year 1982. Also, during a survival experiment, sometimes it is
required to collect data after an engineering system starts operating and before
it fails. Let X denote the lifetime of a system. Then the conditional random
variable (X|x < X < y) is known as doubly truncated lifetime. That is, event
time of an individual lies within a certain time interval (x, y) is only observed.
Therefore, an individual is not observed if it’s event time does not fall in this
predefined interval. Hence, information on the subject outside this interval is not
available to the investigator. Misagh and Yari (2012) considered doubly truncated
(truncated from both sides) KLD as

DKL(X||Y ; t1, t2) =

∫ t2

t1

f(x)

∆F
ln

(f(x)/∆F

g(x)/∆G

)
dx,(1.3)

where ∆F = F (t2)−F (t1), ∆G = G(t2)−G(t1) and (t1, t2) ∈ D = {(x, y)|F (x) <
F (y) and G(x) < G(y)}. In this paper, we consider doubly truncated weighted
KLD between f and g, which is given by

Dw
KL(X||Y ; t1, t2) =

∫ t2

t1

x
f(x)

∆F
ln

(f(x)/∆F

g(x)/∆G

)
dx.(1.4)

Note that Dw
KL(X||Y ; t1, t2) is a generalization of the measures considered by

Yasaei Sekeh et al. (2013) in the sense that it reduces to the weighted KLD
between two residual lives and two past lives, when t2 tends to +∞ and t1 tends
to 0, respectively. Mathematically,

lim
t2→+∞

Dw
KL(X||Y ; t1, t2) =

∫ +∞

t1

x
f(x)

F̄ (t1)
ln
(f(x)/F̄ (t1)

g(x)/Ḡ(t1)

)
dx

and

lim
t1→0

Dw
KL(X||Y ; t1, t2) =

∫ t2

0
x
f(x)

F (t2)
ln

(f(x)/F (t2)

g(x)/G(t2)

)
dx.
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The doubly truncated weighted KLD given by (1.4) may take negative values,
though the doubly truncated KLD always take nonnegative values. The expres-
sion given by (1.4) measures the weighted discrepancy between two systems with
lifetimes X and Y, which have survived up to time t1 and have seen to be down
at time t2. In fact, (1.4) can be used to measure divergence between two distribu-
tions having different supports. We consider the following example to illustrate
this.

Example 1.2. Let X and Y be two nonnegative absolutely continuous
random variables with pdfs f(x) = 3

4(2x + x2), 0 < x < 1 and g(x) = 1
8(1 +

3y), 0 < y < 2, respectively. As supports of the distributions are different,
therefore, the expression given by (1.1) can not be used to compute the divergence
between f and g. In this situation, one may use (1.4) for finding divergence. In
particular, Dw

KL(X||Y ; 0.1, 0.5) = 0.033427 and Dw
KL(X||Y ; 0.3, 0.9) = 0.014291.

Again, the doubly truncated weighted KLD given by (1.4) can be expressed
in terms of the doubly truncated weighted Shannon entropy and the doubly trun-
cated weighted inaccuracy as

Dw
KL(X||Y ; t1, t2) = −Sw(X; t1, t2) + Iw(X||Y ; t1, t2),(1.5)

where Sw(X; t1, t2) and Iw(X||Y ; t1, t2) are defined in the next section.

The paper is arranged as follows. First, in Section 2, we recall some prelim-
inary definitions. Few characterization results are proved in Section 3. Further,
various lifetime distributions are characterized from the relationships among reli-
ability measures. In Section 4, we analysis the effect of the affine transformations
on the doubly truncated weighted KLD. Then, few inequalities and bounds are
obtained in Section 5. Section 6 contains few examples in support of the results
obtained in Section 5. Finally, some concluding remarks have been added in Sec-
tion 7.

Throughout the paper, the random variables are taken to be nonnegative
and absolutely continuous. The terms increasing and decreasing are used in non-
strict sense. The differentiation, integration and expectation wherever used are
assumed to exist.

2. PRELIMINARY RESULTS

In this section, we present some preliminary definitions and results which
are useful for the rest of the paper. Let X and Y be two nonnegative absolutely
continuous random variables with pdfs f and g, and cdfs F and G, respectively.
Then the generalized failure rate (GFR) functions of (X|t1 < X < t2) and (Y |t1 <
Y < t2) are given by (see Navarro and Ruiz, 1996)

hX1 (t1, t2) =
f(t1)

∆F
, hX2 (t1, t2) =

f(t2)

∆F
(2.1)
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and

hY1 (t1, t2) =
g(t1)

∆G
, hY2 (t1, t2) =

g(t2)

∆G
,(2.2)

respectively for (t1, t2) ∈ D. Note that when t2 tends to +∞, hX1 (t1, t2) reduces
to the failure rate of X, and when t1 tends to zero, hX2 (t1, t2) reduces to re-
versed failure rate of X. Similarly for the random variable Y. Navarro and Ruiz
(1996) showed that the distribution function can be uniquely determined by GFR
functions.

Definition 2.1. Let X be a nonnegative random variable with pdf f
and cdf F. Then the generalized conditional mean (GCM) of a doubly truncated
random variable (X|t1 < X < t2) is given by

µX(t1, t2) = E(X|t1 < X < t2) =

∫ t2

t1

xf(x)

∆F
dx.(2.3)

For some characterizations based on (2.3), one may refer to Ruiz and
Navarro (1996).

Definition 2.2. Let X be a nonnegative random variable with pdf f
and cdf F. Then the geometric vitality function for (X|t1 < X < t2) is defined as

GX(t1, t2) = E(lnX|t1 < X < t2) =

∫ t2

t1

lnxf(x)

∆F
dx.(2.4)

Note that GX(t1, t2) gives the geometric mean life of X truncated at two
points t1 and t2. Nair and Rajesh (2000) gave some applications of geometric
vitality function. Sunoj et al. (2009) discussed few properties of this measure
and showed that it determines the distribution function uniquely. The weighted
version of the measure given by (2.4) is defined as follows.

Definition 2.3. The weighted geometric vitality function of a nonneg-
ative random variable X with pdf f and cdf F is given by

Gw
X(t1, t2) = E(X lnX|t1 < X < t2) =

∫ t2

t1

x lnxf(x)

∆F
dx.(2.5)

Definition 2.4. For a nonnegative random variable X with pdf f and
cdf F, the doubly truncated weighted Shannon entropy is given by

Sw(X; t1, t2) = −
∫ t2

t1

x
f(x)

∆F
ln

(f(x)
∆F

)
dx.(2.6)

In the following we consider the definition of weighted inaccuracy measure
between two doubly truncated random variables.
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Definition 2.5. The doubly truncated weighted inaccuracy measure be-
tween two nonnegative random variables X and Y is given by

Iw(X||Y ; t1, t2) = −
∫ t2

t1

x
f(x)

∆F
ln

(g(x)
∆G

)
dx.(2.7)

Next we recall the following important definition from Shaked and Shan-
thikumar (2007).

Definition 2.6. Let X and Y be two random variables with pdfs f and
g, and cdfs F and G, respectively. We say that X is larger than Y in likelihood
ratio order, denoted by X ≥lr Y if f(x)/g(x) is increasing in x.

Log-sum inequality: Let m be a sigma finite measure. If f and g are positive
and m integrable, then∫

f log
(f
g

)
dm ≥

[ ∫
fdm

]
log

[∫ fdm∫
gdm

]
.(2.8)

3. CHARACTERIZATIONS

In this section, we obtain some characterization results which may be used
to describe probability distributions. The general characterization problem is to
determine when the doubly truncated weighted KLD uniquely determines the dis-
tribution function. Yasaei Sekeh et al. (2013) showed that under some conditions,
the weighted KLD for two residual and past lifetime distributions characterizes
the distribution function uniquely. In the following theorem, we show that using
relationship between doubly truncated weighted KLD and GCM, and under the
condition on GFR functions, one can characterize one of the distributions when
other is known.

Theorem 3.1. Let X and Y be two absolutely continuous nonnegative
random variables with pdfs f and g and cdfs F and G, respectively, such that
hYi (t1, t2) ≤ hXi (t1, t2), i = 1, 2. Then the doubly truncated weighted KLD given
by (1.4) characterizes the distribution function G (or F ), when F (or G) is known,
provided Dw

KL(X||Y ; t1, t2) = µX(t1, t2).

Proof: Differentiating (1.4) partially with respect to t1 (for any fixed
t2) and t2 (for any fixed t1), we get after simplification

∂Dw
KL(X||Y ; t1, t2)

∂t1
= hX1 (t1, t2)

[
Dw

KL(X||Y ; t1, t2) + µX(t1, t2)

+t1 ln
(hY1 (t1, t2)
hX1 (t1, t2)

)]
− hY1 (t1, t2)µX(t1, t2)(3.1)
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and

∂Dw
KL(X||Y ; t1, t2)

∂t2
= −hX2 (t1, t2)

[
Dw

KL(X||Y ; t1, t2) + µX(t1, t2)

+t2 ln
(hY2 (t1, t2)
hX2 (t1, t2)

)]
+ hY2 (t1, t2)µX(t1, t2).(3.2)

Moreover, differentiating (2.3) with respect to t1 and t2, we obtain

∂µX(t1, t2)

∂t1
= hX1 (t1, t2)

[
µX(t1, t2)− t1

]
(3.3)

and

∂µX(t1, t2)

∂t2
= −hX2 (t1, t2)

[
µX(t1, t2)− t2

]
,(3.4)

respectively. Again, differentiating Dw
KL(X||Y ; t1, t2) = µX(t1, t2) with respect

to ti (for fixed tj , j ̸= i), i, j = 1, 2 and using (3.1), (3.2), (3.3) and (3.4) we get

tih
X
i (t1, t2)

[
1 + ln

(hYi (t1, t2)
hXi (t1, t2)

)]
+ [hXi (t1, t2)− hYi (t1, t2)]µX(t1, t2) = 0.(3.5)

The above equation given by (3.5) can be further written as

gi(x) = ti[1 + lnx] + (1− x)µX(t1, t2) = 0, i = 1, 2,(3.6)

where x = hYi (t1, t2)/h
X
i (t1, t2) and 0 < x < 1. Thus, for any fixed t2 and

arbitrary t1, h
Y
1 (t1, t2)/h

X
1 (t1, t2) is a positive solution of the equation g1(x) = 0.

Also, for any fixed t1 and arbitrary t2, h
Y
2 (t1, t2)/h

X
2 (t1, t2) is a positive solution

of the equation g2(x) = 0. After some simple calculations, it is easy to show that
both the solutions of g1(x) = 0 and g2(x) = 0 are unique. Hence, using the result
that GFR functions uniquely determine the distribution function (see Navarro
and Ruiz, 1996), the proof follows. This completes the proof of the theorem.

Theorem 3.2. Let X and Y be two absolutely continuous nonnegative
random variables with pdfs f and g and cdfs F and G, respectively. Assume
hY1 (t1, t2) = θhX1 (t1, t2) and Dw

KL(X||Y ; t1, t2) > (<)(θ − 1)µX(t1, t2) − t1 log θ,
where θ > 0. If Dw

KL(X||Y ; t1, t2) is strictly increasing (decreasing) in t1 for fixed
t2, then Dw

KL(X||Y ; t1, t2) characterizes the distribution function uniquely.

Proof: Under the given hypothesis, (3.1) is reduced to

∂Dw
KL(X||Y ; t1, t2)

∂t1
= hX1 (t1, t2)

[
Dw

KL(X||Y ; t1, t2)

+(1− θ)µX(t1, t2) + t1 ln θ
]
.(3.7)
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The expression in (3.7) can be written further as

u(x) =
∂Dw

KL(X||Y ; t1, t2)

∂t1
− x

[
Dw

KL(X||Y ; t1, t2) + (1− θ)µX(t1, t2) + t1 ln θ
]

= 0,(3.8)

where x = hX1 (t1, t2) is a positive solution of u(x) = 0. Since Dw
KL(X||Y ; t1, t2) >

(<)(θ − 1)µX(t1, t2)− t1 log θ, therefore from (3.8) it is easy to show that

lim
x→+∞

u(x) = −∞ (+∞).(3.9)

Again, Dw
KL(X||Y ; t1, t2) is strictly increasing (decreasing) in t1 for fixed t2.

Therefore,

lim
x→0

u(x) =
∂Dw

KL(X||Y ; t1, t2)

∂t1
> (<)0.(3.10)

Differentiating (3.8) with respect to x we have u′(x) = −[Dw
KL(X||Y ; t1, t2)+(1−

θ)µX(t1, t2) + t1 ln θ] < (>) 0 implies u(x) is a decreasing (increasing) function
in x > 0. Hence, x = hX1 (t1, t2) is the only solution of u(x) = 0. This completes
the proof of the theorem.

Theorem 3.3. Let X and Y be two absolutely continuous nonnegative
random variables with pdfs f and g and cdfs F and G, respectively. Assume that
for θ > 0, hY2 (t1, t2) = θhX2 (t1, t2) and Dw

KL(X||Y ; t1, t2) < (>)(θ− 1)µX(t1, t2)−
t2 ln θ. If Dw

KL(X||Y ; t1, t2) is strictly increasing (decreasing) in t2 for fixed t1,
then Dw

KL(X||Y ; t1, t2) characterizes the distribution function uniquely.

Proof: Proof follows along the similar arguments of that of the Theorem
3.2. Hence it is omitted.

It is noted that the conditions used in the above theorems are sufficient. Hence-
forth, we present characterization theorems for some useful continuous distribu-
tions. Let X and Y be two nonnegative absolutely continuous random variables
with cdfs F and G, pdfs f and g, hazard rate functions λF and λG and reversed
hazard rate functions rF and rG, respectively. Then X and Y are said to satisfy
the proportional hazard rate model (PHRM) and proportional reversed hazard
rate model (PRHRM) if for some θ > 0,

Ḡ(x) = [F̄ (x)]θ and G(x) = [F (x)]θ,(3.11)

respectively, where F̄ = 1− F and Ḡ = 1−G. The constant θ is known as pro-
portionality constant. Several researchers used PHRM for survival data analysis.
See, for instant, Cox (1972), Ebrahimi and Kirmani (1996) and Nair and Gupta
(2007). On the other hand, for various results on PRHRM, we refer to Gupta
and Gupta (2007) and Sankaran and Gleeja (2008). In the following consecu-
tive theorems, we present characterizations of the first and second kind Pareto
distributions.
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Theorem 3.4. Let X and Y be two absolutely continuous nonnegative
random variables with pdfs f and g and cdfs F and G, respectively. Assume that
F and G satisfies PHRM with proportionality constant θ > 0. Then for i = 1, 2,
the following relationship of the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1 + αθ) ln ti + ln

(hYi (t1, t2)
hXi (t1, t2)

)]
= (1 + αθ)Gw

X(t1, t2) + E(X ln f(X)|t1 < X < t2),(3.12)

holds if and only ifX follows Pareto-I distribution with cdf F (x) = 1−(β/x)α, x >
β > 0, α > 0.

Proof: The “if part” can be proved easily. To prove the “only if part”,
we assume that (3.12) holds. Using (1.4) and after simplification, we get from
(3.12)∫ t2

t1

xf(x) ln
(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1 + αθ) ln ti + ln

(g(ti)
∆G

)
− ln

(f(ti)
∆F

)]
×
∫ t2

t1

xf(x)dx = (1 + αθ)

∫ t2

t1

xf(x) lnxdx+

∫ t2

t1

xf(x) ln f(x)dx.(3.13)

Differentiating (3.13) with respect to ti and then further calculations lead to

g(ti) = kt
−(αθ+1)
i , i = 1, 2 and k > 0.

Hence the required result follows. This completes the proof.

Theorem 3.5. Let X and Y be two absolutely continuous random vari-
ables as described in Theorem 3.4 and satisfying PHRM with proportionality
constant θ > 0. Then for i = 1, 2, the following relationship of the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1 + αθ) ln(ti − γ + β) + ln

(hYi (t1, t2)
hXi (t1, t2)

)]
= (1 + αθ)Gw

Z(t1, t2) + E(X ln f(X)|t1 < X < t2),(3.14)

where Gw
Z(t1, t2) = E(X ln(X−γ+β)|t1 < X < t2) holds if and only if X follows

Pareto-II distribution with cdf F (x) = 1− [1 + (x−γ
β )]−α, x > γ > 0, α, β > 0.

Proof: The “if part” is straightforward and hence omitted. To prove
the “only if part”, let us assume that (3.14) holds. Then from (3.14) and (1.4)
we obtain∫ t2

t1

xf(x) ln
(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1 + αθ) ln(ti − γ + β) + ln

(g(ti)
∆G

)
− ln

(f(ti)
∆F

)] ∫ t2

t1

xf(x)dx = (1 + αθ)

∫ t2

t1

xf(x) ln(x− γ + β)dx

+

∫ t2

t1

xf(x) ln f(x)dx.(3.15)
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Differentiating (3.15) with respect to ti, i = 1, 2 and after some algebraic calcu-
lations, we get

g(ti) = k(ti − γ + β)−(1+αθ), i = 1, 2 and k > 0.

Hence the result follows. This completes the proof of the theorem.

Here, below we present a characterization theorem for Weibull distribution.

Theorem 3.6. Let X and Y be two absolutely continuous nonnegative
random variables as mentioned in Theorem 3.4. Also, assume that they satisfy
PHRM with proportionality constant θ > 0. Then the following relationship of
the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
λθtpi + ln f(ti) + (1− p) ln ti + ln

(hYi (t1, t2)
hXi (t1, t2)

)]
+λθµXp+1(t1, t2) = (1− p)Gw

Z∗(t1, t2) + E(X ln f(X)|t1 < X < t2), i = 1, 2,

(3.16)

where µXp+1(t1, t2) = E(Xp+1|t1 < X < t2) and Gw
Z∗(t1, t2) = E(X ln(X −

α)|t1 < X < t2) holds if and only if X follows Weibull distribution with cdf
F (x) = 1− exp(−λxp), x > 0, p > 0, λ > 0.

Proof: The “if part” is straightforward. To prove the “only if part”, we
first assume that (3.16) holds. Then using (1.4) in (3.16), we get∫ t2

t1

xf(x) ln
(f(x)/∆F

g(x)/∆G

)
dx +

[
λθtpi + ln f(ti) + (1− p) ln ti + ln

(g(ti)
∆G

)
− ln

(f(ti)
∆F

)] ∫ t2

t1

xf(x)dx = (1− p)

∫ t2

t1

xf(x) ln(x− α)dx

+

∫ t2

t1

xf(x) ln f(x)dx− λθ

∫ t2

t1

xp+1f(x)dx.(3.17)

Differentiating (3.17) with respect to ti, i = 1, 2, and after some algebraic calcu-
lations, we obtain

g(ti) = ct
(p−1)
i e−λθtpi , i = 1, 2 and c > 0.

Hence the required result follows. This completes the proof.

Remark 3.1. In particular, for p = 1, 2, the Theorem 3.6 provides char-
acterization results of exponential distribution with cdf F (x) = 1 − e−λx, x >
0, λ > 0 and Rayleigh distribution with cdf F (x) = 1 − e−λx2

, x > 0, λ > 0,
respectively.
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Hereafter, we present results which characterize uniform and power distributions.

Theorem 3.7. Let X and Y be two absolutely continuous nonnegative
random variables as described in Theorem 3.4 and satisfying PRHRM with pro-
portionality constant θ > 0. Then the following relationship of the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1− θ) ln(ti − α) + ln

(hYi (t1, t2)
hXi (t1, t2)

)]
= (1− θ)Gw

Z∗(t1, t2) + E(X ln f(X)|t1 < X < t2), i = 1, 2,(3.18)

where Gw
Z∗(t1, t2) = E(X ln(X − α)|t1 < X < t2) and α < t1 < t2 < β holds if

and only if X follows uniform distribution in the interval (α, β).

Proof: The “if part” is straightforward. To prove the “only if part”,
assume that (3.18) holds for i = 1 and 2. Using (1.4), the above relation (3.18)
further reduces to∫ t2

t1

xf(x) ln
(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1− θ) ln(ti − α) + ln

(g(ti)
∆G

)
− ln

(f(ti)
∆F

)] ∫ t2

t1

xf(x)dx = (1− θ)

∫ t2

t1

xf(x) ln(x− α)dx

+

∫ t2

t1

xf(x) ln f(x)dx,(3.19)

for i = 1, 2. Differentiating (3.19) with respect to ti, i = 1, 2 and then simplifying
further, we obtain

g(ti) = c(ti − α)(θ−1), i = 1, 2 and c > 0,

which gives the required result. This completes the proof.

Theorem 3.8. Let X and Y be two absolutely continuous nonnegative
random variables as mentioned in Theorem 3.4 and satisfying PRHRM with pro-
portionality constant θ > 0. Then for c > 0, the following relationship of the
form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1− cθ) ln ti + ln

(hYi (t1, t2)
hXi (t1, t2)

)]
= (1− cθ)Gw

X(t1, t2) + E(X ln f(X)|t1 < X < t2), i = 1, 2,(3.20)

where Gw
X(t1, t2) is given by (2.5) holds if and only if X follows power distribution

with cdf F (x) = (xb )
c, 0 < x < b, c > 0.

Proof: The “if part” is straightforward. To prove the “only if part”, let
us assume that (3.20) holds. Using (1.4), (3.20) further reduces to∫ t2

t1

xf(x) ln
(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1− cθ) ln ti + ln

(g(ti)
∆G

)
− ln

(f(ti)
∆F

)]
×
∫ t2

t1

xf(x)dx = (1− cθ)

∫ t2

t1

xf(x) lnxdx+

∫ t2

t1

xf(x) ln f(x)dx.(3.21)
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Differentiating (3.21) with respect to ti, i = 1, 2, we get

g(ti) = kt
(cθ−1)
i , i = 1, 2 and k > 0,

which follows the required result. This completes the proof.

4. MONOTONE TRANSFORMATIONS

In this section, we analysis the effect of the doubly truncated weighted KLD
given by (1.4) under strictly monotone transformations. The following theorem
is a generalization of the Theorem 4.13 of Yasaei Sekeh et al. (2013).

Theorem 4.1. Let X and Y be two absolutely continuous nonnegative
random variables with pdfs f and g, and cdfs F and G, respectively. Consider
two bijective functions ϕ1 and ϕ2, which are strictly monotone and differentiable.
Then for all 0 ≤ t1 < t2 < +∞, we have

Dw
KL(ϕ1(X)||ϕ2(Y ); t1, t2) =


Dw,ϕ1

KL (X||ϕ−1
1 (ϕ2(Y ));ϕ−1

1 (t1), ϕ
−1
1 (t2)),

if ϕ1 and ϕ2 are strictly increasing,

Dw,ϕ1

KL (X||ϕ−1
1 (ϕ2(Y ));ϕ−1

1 (t2), ϕ
−1
1 (t1)),

if ϕ1 and ϕ2 are strictly decreasing,

where

Dw,ϕ
KL(X||Y ; t1, t2) =

∫ t2

t1

ϕ(x)
f(x)

∆F
ln

(f(x)/∆F

g(x)/∆G

)
dx.(4.1)

Proof: Assume that ϕ1(x) and ϕ2(x) are strictly increasing functions.
Under this condition, the pdfs and cdfs of ϕ1(X) and ϕ2(Y ) can be obtained as

fϕ1(x) =
f(ϕ−1

1 (x))

ϕ′
1(ϕ

−1
1 (x))

and Fϕ1(x) = F (ϕ−1
1 (x))(4.2)

and

gϕ2(x) =
f(ϕ−1

2 (x))

ϕ′
2(ϕ

−1
2 (x))

and Gϕ2(x) = G(ϕ−1
2 (x)),(4.3)

respectively. Moreover, the pdf and the cdf of ϕ−1
1 (ϕ2(X)) are respectively given

by

gϕ−1
1 (ϕ2)

(x) =
g(ϕ−1

2 (ϕ1(x)))ϕ
′
1(x)

ϕ′
2(ϕ

−1
2 (ϕ1(x)))

and Gϕ−1
1 (ϕ2)

(x) = G(ϕ−1
2 (ϕ1(x))).(4.4)

Applying (4.2) and (4.3) in (1.4), we obtain

Dw
KL(ϕ1(X)||ϕ2(Y ); t1, t2) =

∫ t2

t1

x
f(ϕ−1

1 (x))/ϕ′
1(ϕ

−1
1 (x))

∆F ϕ1

× ln

(
f(ϕ−1

1 (x))/(ϕ′
1(ϕ

−1
1 (x))∆F ϕ1)

g(ϕ−1
2 (x))/(ϕ′

2(ϕ
−1
2 (x))∆Gϕ2)

)
dx,(4.5)
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where ∆F ϕ1 = F (ϕ−1
1 (t2)) − F (ϕ−1

1 (t1)) and ∆Gϕ2 = G(ϕ−1
2 (t2)) − G(ϕ−1

2 (t1)).
Further, using the transformation u = ϕ−1

1 (x) in (4.5), we get

Dw
KL(ϕ1(X)||ϕ2(Y ); t1, t2) =

∫ ϕ−1
1 (t2)

ϕ−1
1 (t1)

ϕ1(u)
f(u)

∆F ϕ1

× ln

(
f(u)/(ϕ′

1(u)∆F ϕ1)

g(ϕ−1
2 (ϕ1(u)))/(ϕ′

2(ϕ
−1
2 (ϕ1(u)))∆Gϕ2)

)
du.(4.6)

Hence from (4.6), the first part of the theorem follows. The second part can be
proved similarly and hence omitted. This completes the proof of the theorem.

Remark 4.1. Note that when t1 → 0 (for fixed t2) and t2 → ∞ (for
fixed t1), Theorem 4.1 reduces to Theorem 4.13 of Yasaei Sekeh et al. (2013).

Remark 4.2. Consider ϕ1(x) = F (x) and ϕ2(x) = G(x). Here, both
F (x)and G(x) are strictly increasing in their supports. Also, consider ϕ1(x) =
F (x) and ϕ2(x) = G(x), which are strictly decreasing in supports. Clearly, ϕ1(x)
and ϕ2(x) satisfy the assumptions of Theorem 4.1. Thus as an application of the
Theorem 4.1, we get

Dw
KL(F (X)||G(Y ); t1, t2) = Dw,F

KL (X||F−1(G(Y ));F−1(t1), F
−1(t2))(4.7)

and

Dw
KL(F̄ (X)||Ḡ(Y ); t1, t2) = Dw,F̄

KL (X||F̄−1(Ḡ(Y )); F̄−1(t2), F̄
−1(t1)).(4.8)

The following proposition is due to Theorem 4.1. It provides the effects of
the doubly truncated weighted KLD under affine transformations.

Proposition 4.1. Let X and Y be two nonnegative absolutely contin-
uous random variables with pdfs f and g, and cdfs F and G, respectively. Define
ϕ1(X) = a1X + b1 and ϕ2(Y ) = a2Y + b2, where a1, a2 > 0 and b1, b2 ≥ 0 are
constants. Then for t1 > b2 and b2 ≥ b1,

Dw
KL(ϕ1(X)||ϕ2(Y ); t1, t2) = Dw,ϕ1

KL

(
X||a2

a1
Y +

b2 − b1
a1

;
t1 − b1
a1

,
t2 − b1
a1

)
.(4.9)

Remark 4.3. Under the assumptions as described in Proposition 4.1,
the right hand side expression given by (4.9) can be written further as

Dw
KL(ϕ1(X)||ϕ2(Y ); t1, t2) = a1D

w
KL

(
X||a2

a1
Y +

b2 − b1
a1

;
t1 − b1
a1

,
t2 − b1
a1

)
+b1DKL

(
X||a2

a1
Y +

b2 − b1
a1

;
t1 − b1
a1

,
t2 − b1
a1

)
.(4.10)
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In particular, if we consider ϕ1(x) = ϕ2(x) = ϕ(x), then Theorem 4.1
reduces to the following result. We omit the proof as it follows from that of the
Theorem 4.1.

Theorem 4.2. Let X and Y be two absolutely continuous nonnega-
tive random variables as described in Theorem 4.1. Assume that ϕ(x) is strictly
monotone and differentiable function. Then for all 0 ≤ t1 < t2 < +∞, we have

Dw
KL(ϕ(X)||ϕ(Y ); t1, t2) =


Dw,ϕ

KL(X||Y ;ϕ−1(t1), ϕ
−1(t2)),
if ϕ(x) is strictly increasing,

Dw,ϕ
KL(X||Y ;ϕ−1(t2), ϕ

−1(t1)),
if ϕ(x) is strictly decreasing,

where Dw,ϕ
KL(X||Y ; t1, t2) is given by (4.1).

Proposition 4.2. Let X and Y be two nonnegative absolutely contin-
uous random variables with pdfs f and g, and cdfs F and G, respectively. Define
ϕ1(x) = ϕ2(x) = ϕ(x) = ax + b, where a > 0 and b ≥ 0 are constants. Then for
t1 > b

Dw
KL(ϕ(X)||ϕ(Y ); t1, t2) = Dw,ϕ

KL

(
X||Y ;

t1 − b

a
,
t2 − b

a

)
.(4.11)

5. INEQUALITIES AND BOUNDS

In this section, we obtain various inequalities and bounds for doubly trun-
cated weighted KLD given by (1.4) in terms of other measures, which may be
useful in mathematical statistics, ergodic theory and other scientific fields. Most
of these depend on the measures (2.1)-(2.3) and (2.5)-(2.7). Several authors stud-
ied these measures and obtained various results. For some results on these mea-
sures, we refer to Navarro and Ruiz (1996), Misagh and Yari (2011), Sankaran
and Sunoj (2004) and Kundu (2017).

Proposition 5.1. Let X and Y be two nonnegative absolutely continu-
ous random variables with pdfs f and g, and cdfs F and G, respectively. Suppose
that Dw

KL(X||Y ; t1, t2) is increasing (decreasing) in t1 (for fixed t2) and t2 (for
fixed t1). Then

Dw
KL(X||Y ; t1, t2) ≥ (≤)

(hY1 (t1, t2)
hX1 (t1, t2)

− 1
)
µX(t1, t2)− t1 ln

(hY1 (t1, t2)
hX1 (t1, t2)

)
and

Dw
KL(X||Y ; t1, t2) ≤ (≥)

(hY2 (t1, t2)
hX2 (t1, t2)

− 1
)
µX(t1, t2)− t2 ln

(hY2 (t1, t2)
hX2 (t1, t2)

)
.
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Proof: Under the given condition, the required inequalities follow from
(3.1) and (3.2), and hence, omitted.

The following proposition provides bounds of (1.4) in terms of GCM, GFR func-
tions and doubly truncated weighted inaccuracy measure.

Proposition 5.2. Let X and Y be two random variables as described
in Proposition 5.1. If f(x) is increasing (decreasing) in x > 0, then

Dw
KL(X||Y ; t1, t2) ≥ (≤) µX(t1, t2) lnh

X
1 (t1, t2) + Iw(X||Y ; t1, t2) and

Dw
KL(X||Y ; t1, t2) ≤ (≥) µX(t1, t2) lnh

X
2 (t1, t2) + Iw(X||Y ; t1, t2).

Proof: Let f(x) be increasing (decreasing) in x > 0. Then for t1 < x <
t2, we have

f(t1)

∆F
≤ (≥)

f(x)

∆F
≤ (≥)

f(t2)

∆F
.(5.1)

Moreover, g(x)/∆G is positive. Thus from (5.1) we get

ln
(f(t1)
∆F

/g(x)

∆G

)
≤ (≥) ln

(f(x)
∆F

/g(x)

∆G

)
≤ (≥) ln

(f(t2)
∆F

/g(x)

∆G

)
.(5.2)

Multiplying (5.2) by xf(x)
∆F and then integrating from t1 to t2 with respect to x,

the required inequalities follow.

Proposition 5.3. Let X and Y be two random variables as described
in Proposition 5.1. If g(x) is increasing (decreasing) in x > 0, then

Dw
KL(X||Y ; t1, t2) ≥ (≤) −µX(t1, t2) lnh

Y
2 (t1, t2)− Sw

X(t1, t2) and

Dw
KL(X||Y ; t1, t2) ≤ (≥) −µX(t1, t2) lnh

Y
1 (t1, t2)− Sw

X(t1, t2).

Proof: Proof follows analogous to that of the Proposition 5.2. Hence
omitted.

Below, in Proposition 5.4, we give new inequalities forDw
KL(X||Y ; t1, t2) involving

a pair of likelihood ratio ordered random variables.

Proposition 5.4. Let X and Y be two random variables as described
in Proposition 5.1. If X ≥lr Y, then

µX(t1, t2) ln
(hX1 (t1, t2)

hY1 (t1, t2)

)
≤ Dw

KL(X||Y ; t1, t2) ≤ µX(t1, t2) ln
(hX2 (t1, t2)

hY2 (t1, t2)

)
.
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Proof: Under the given condition, f(x)/g(x) is increasing in x > 0.

Then for t1 < x < t2, we have f(t1)
g(t1)

≤ f(x)
g(x) ≤ f(t2)

g(t2)
. Thus from (1.4) we obtain

Dw
KL(X||Y ; t1, t2) ≤

∫ t2

t1

x
f(x)

∆F
ln

(f(t2)/∆F

g(t2)/∆G

)
dx

= µX(t1, t2) ln
(hX2 (t1, t2)

hY2 (t1, t2)

)
(5.3)

and

Dw
KL(X||Y ; t1, t2) ≥

∫ t2

t1

x
f(x)

∆F
ln

(f(t1)/∆F

g(t1)/∆G

)
dx

= µX(t1, t2) ln
(hX1 (t1, t2)

hY1 (t1, t2)

)
.(5.4)

Combining (5.3) and (5.4), we obtain the required inequalities.

Proposition 5.5. Let X and Y be two random variables as described
in Proposition 5.1. Then

Dw
KL(X||Y ; t1, t2) ≥ µX(t1, t2) ln

(µX(t1, t2)

µY (t1, t2)

)
.

Proof: The result follows from the log-sum inequality and hence omit-
ted.

Proposition 5.6. Let X and Y be two random variables as described
in Proposition 5.1. Then

Dw
KL(X||Y ; t1, t2) ≤ E

(
X

f(X)/∆F

g(X)/∆G

∣∣∣t1 < X < t2

)
− µX(t1, t2).(5.5)

Proof: The proof follows from the inequality lnx ≤ x− 1, for all x > 0.
Hence it is omitted.

Hereafter, we consider three nonnegative random variablesX1, X2 andX3 and ob-
tain bounds of Dw

KL(X1||X3; t1, t2), D
w
KL(X1||X2; t1, t2) and Dw

KL(X2||X3; t1, t2).

Proposition 5.7. Let X1, X2 and X3 be three nonnegative absolutely
continuous random variables with pdf’s f1(x), f2(x) and f3(x), respectively. The
corresponding cdf’s are F1(x), F2(x) and F3(x). If X1 ≥lr X2, then

Dw
KL(X1||X3; t1, t2) ≥ µX1(t1, t2) ln

(hX1
1 (t1, t2)

hX2
1 (t1, t2)

)
+ IDw(t1, t2) and

Dw
KL(X1||X3; t1, t2) ≤ µX1(t1, t2) ln

(hX1
2 (t1, t2)

hX2
2 (t1, t2)

)
+ IDw(t1, t2),

where IDw(t1, t2) = Iw(X1||X3; t1, t2)− Iw(X1||X2; t1, t2).
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Proof: UsingX1 ≥lr X2 and t1 < x, we obtain f1(x) ≥ f2(x)f1(t1)/f2(t1).
Thus, from (1.4)

Dw
KL(X1||X3; t1, t2) =

∫ t2

t1

x
f1(x)

∆F1
ln

(f1(x)/∆F1

f3(x)/∆F3

)
dx

≥
∫ t2

t1

x
f1(x)

∆F1
ln

((f2(x)f1(t1))/(∆F2∆F1)

(f3(x)f2(t1))/(∆F3∆F2)

)
dx

= µX1(t1, t2) ln
(hX1

1 (t1, t2)

hX2
1 (t1, t2)

)
+ IDw(t1, t2).(5.6)

The upper bound can be obtained similarly. This completes the proof.

Proposition 5.8. Let X1, X2 and X3 be three random variables as
described in Proposition 5.7. If X2 ≥lr X3, then

Dw
KL(X1||X2; t1, t2) ≥ µX1(t1, t2) ln

(hX3
2 (t1, t2)

hX2
2 (t1, t2)

)
+ ISw

1 (t1, t2) and

Dw
KL(X1||X2; t1, t2) ≤ µX1(t1, t2) ln

(hX3
1 (t1, t2)

hX2
1 (t1, t2)

)
+ ISw

1 (t1, t2),

where ISw
1 (t1, t2) = Iw(X1||X3; t1, t2)− Sw(X1; t1, t2).

Proof: UnderX2 ≥lr X3, for x < t2, we have f2(x) ≤ f3(x)f2(t2)/f3(t2).
Thus applying this inequality in (1.4) and after some simplifications, lower bound
can be obtained. The upper bound can be obtained similarly. This completes
the proof.

Proposition 5.9. Let X1, X2 and X3 be three random variables as
described in Proposition 5.7. If X1 ≥lr X3, then

Dw
KL(X2||X3; t1, t2) ≥ µX2(t1, t2) ln

(hX1
1 (t1, t2)

hX3
1 (t1, t2)

)
+ ISw

2 (t1, t2) and

Dw
KL(X2||X3; t1, t2) ≤ µX2(t1, t2) ln

(hX1
2 (t1, t2)

hX3
2 (t1, t2)

)
+ ISw

2 (t1, t2),

where ISw
2 (t1, t2) = Iw(X2||X1; t1, t2)− Sw(X2; t1, t2).

Proof: It is given that X1 ≥lr X3. Therefore, for x > t1, we have
f3(x) ≤ f1(x)f3(t1)/f1(t1). Applying this in (1.4), we get the lower bound of
Dw

KL(X2||X3; t1, t2). The upper bound can be obtained similarly. This completes
the proof.
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6. NUMERICAL EXAMPLES

In this section, we consider examples for the verification of few of the results
obtained in Section 5. To verify the Proposition 5.2, we consider the following
example and present numerical values of the lower and upper bounds of the
doubly truncated weighted KLD.

Example 6.1. Suppose that X follows power distribution and Y follows
U-quadratic distribution in the interval (0, 1) with pdfs f(x) = cxc−1, c > 0, 0 <
x < 1 and g(x) = 12(x − 1

2)
2, 0 < x < 1, respectively. Here, f(x) is decreasing

in x for c < 1 and increasing in x for c > 1. In Table 1 and Table 2, we present
numerical values of the lower bounds (LB) and upper bounds (UB) of the doubly
truncated weighted KLD for different values of t1 and t2 for c = 0.5 and 1.5,
respectively.

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) 0.022421 0.077094 0.184155 (0.4,0.5) 0.405266 0.428923 0.455370
(0.1,0.5) 0.252138 0.321949 0.473062 (0.4,0.7) 0.467240 0.532709 0.619190
(0.1,0.9) 0.233992 0.360127 0.710058 (0.4,0.9) 0.546199 0.649186 0.802994
(0.2,0.5) 0.309069 0.369426 0.464263 (0.5,0.6) 0.445497 0.469392 0.495566
(0.2,0.7) 0.356237 0.449858 0.622275 (0.5,0.7) 0.439779 0.485807 0.540251
(0.2,0.8) 0.296777 0.406123 0.620246 (0.5,0.9) 0.426941 0.513659 0.629808

Table 1: Bounds of Dw
KL(X||Y ; t1, t2) for c = 0.5

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) 0.048524 0.185502 0.232704 (0.4,0.5) 0.455614 0.483096 0.505924
(0.1,0.5) 0.434464 0.634879 0.694851 (0.4,0.7) 0.362879 0.458389 0.518698
(0.1,0.9) 0.014652 0.519028 0.628185 (0.4,0.9) 0.280465 0.458343 0.550633
(0.2,0.5) 0.458314 0.570112 0.623685 (0.5,0.6) 0.395761 0.422765 0.445968
(0.2,0.7) 0.404517 0.620202 0.701468 (0.5,0.7) 0.340430 0.398162 0.441841
(0.2,0.8) 0.213175 0.487130 0.581533 (0.5,0.9) 0.227166 0.356106 0.435718

Table 2: Bounds of Dw
KL(X||Y ; t1, t2) for c = 1.5

To illustrate Proposition 5.3, we consider the following example.

Example 6.2. Let X and Y be two random variables with pdfs f(x) =
1, 0 < x < 1 and g(x) = b(1 − x)b−1, 0 < x < 1, b > 0, respectively. Note that
g(x) is increasing in x for b < 1 and decreasing in x for b > 1. In Table 3 and 4,
we present the numerical values of the bounds of the doubly truncated weighted
KLD for b = 0.2 and b = 1.2, respectively.
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(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) -0.042188 -0.006974 0.038905 (0.4,0.5) -0.033416 -0.000816 0.032219
(0.1,0.5) -0.074668 -0.012759 0.066401 (0.4,0.7) -0.163019 -0.006694 0.141966
(0.1,0.9) -0.532245 -0.044619 0.346645 (0.4,0.9) -0.547117 -0.003054 0.384598
(0.2,0.5) -0.068887 -0.007283 0.062713 (0.5,0.6) -0.050187 -0.000755 0.047997
(0.2,0.7) -0.193724 -0.020447 0.159375 (0.5,0.7) -0.128847 -0.002608 0.116350
(0.2,0.8) -0.315074 -0.027845 0.239444 (0.5,0.9) -0.521607 0.005471 0.379679

Table 3: Bounds of Dw
KL(X||Y ; t1, t2) for b = 0.2

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) -0.009386 0.002084 0.010888 (0.4,0.5) -0.007930 0.000329 0.008478
(0.1,0.5) -0.015747 0.004043 0.019521 (0.4,0.7) -0.033325 0.003839 0.042921
(0.1,0.9) -0.069415 0.028401 0.150307 (0.4,0.9) -0.080490 0.016423 0.152438
(0.2,0.5) -0.015039 0.002460 0.017861 (0.5,0.6) -0.011771 0.000417 0.012774
(0.2,0.7) -0.036351 0.008604 0.051923 (0.5,0.7) -0.027794 0.001945 0.033504
(0.2,0.8) -0.052349 0.014472 0.086279 (0.5,0.9) -0.081046 0.012505 0.144275

Table 4: Bounds of Dw
KL(X||Y ; t1, t2) for b = 1.2

The following example shows a case in which Proposition 5.4 is fulfilled.

Example 6.3. Consider two nonnegative random variables X and Y
with pdfs f(x) = 2

3(1+x), 0 < x < 1 and g(x) = 2
3(2−x), 0 < x < 1, respectively.

By straightforward calculations, it is not hard to verify that X ≥lr Y. In Table
5, we present the numerical values of the lower and upper bounds of the doubly
truncated weighted KLD between X and Y.

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.3) -0.028607 0.005274 0.278213 (0.5,0.7) -0.080397 0.006264 0.081120
(0.1,0.6) -0.126393 0.034815 0.122128 (0.5,0.8) -0.131348 0.014560 0.134047
(0.1,0.8) -0.229447 0.071593 0.225767 (0.5,0.9) -0.189889 0.026835 0.196978
(0.3,0.4) -0.023699 0.001387 0.023540 (0.6,0.7) -0.043674 0.001614 0.043969
(0.3,0.7) -0.136517 0.023788 0.136517 (0.6,0.8) -0.094577 0.006683 0.096309
(0.3,0.9) -0.248611 0.056871 0.255551 (0.6,0.9) -0.153075 0.015624 0.158454

Table 5: Bounds of Dw
KL(X||Y ; t1, t2).

In this part of the paper, we provide an example in support of the Propo-
sition 5.7.

Example 6.4. Let X and Y be two nonnegative random variables as
described in Example 6.3. Consider another random variable Z with pdf f3(x) =

1
2
√
1−x

, 0 < x < 1.Here,X ≥lr Y. The lower and upper bounds ofDw
KL(X||Y ; t1, t2)

obtained in the Proposition 5.7 are presented in Table 6.



On doubly truncated weighted Kullback-Leibler divergence 21

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.2) -0.011780 0.000238 0.009483 (0.4,0.6) -0.074033 -0.001039 0.000091
(0.1,0.5) -0.107631 0.000543 0.061938 (0.4,0.7) -0.127975 -0.003167 0.094956
(0.1,0.7) -0.230205 -0.004876 0.113178 (0.4,0.9) -0.274740 -0.012652 0.175896
(0.2,0.4) -0.046788 0.000172 0.035488 (0.6,0.7) -0.045791 -0.000503 0.041852
(0.2,0.5) -0.085598 -0.000282 0.058566 (0.6,0.8) -0.103484 -0.002223 0.087403
(0.2,0.8) -0.275617 -0.011008 0.146067 (0.6,0.9) -0.172764 -0.004064 0.138765

Table 6: Bounds of Dw
KL(X||Y ; t1, t2).

Real Data: We consider two real data sets, which represent the failure times of
the air conditioning system of two different air planes (see Bain and Engelhardt,
1991, P. 101). The data sets are given below:

Data Set I (Plane 7912): 1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20,
21, 23, 42, 47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246, 261.

Data Set II (Plane 7911): 33, 47, 55, 56, 104, 176, 182, 220, 239, 246, 320.

The above data sets, Data Set I and Data Set II can be fitted as exponential
distributions with parameters (hazard rates) λ1 and λ2, respectively. We assume
that due to some reasons, the data in the interval [50, 200] are observed. Based
on this assumption, the unknown parameters can be estimated. For this pur-
pose, we use the method of maximum likelihood. Here, the estimated values
of the parameters are λ̂1 = 0.026029 and λ̂2 = 0.005611. From (1.4), we get
D̂w

KL(X||Y ; 50, 200) = 2.5069.

7. CONCLUDING REMARKS

In this paper, we consider a generalized discrimination measure, which is
known as the doubly truncated weighted KLD. We obtain few characterization
results based on the proposed measure. These results may be useful in studying
various characteristics of a system when its lifetimes fall in an interval. Further,
the effect of the affine transformations on the proposed discrimination measure is
studied. Several inequalities and bounds are obtained. Finally, few applications
with bounds in support of the results are presented.
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