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Abstract:

• The aim of this paper is to adjust the existing believe on the condition that a Rotat-

able Orthogonal Central Composite Design can be created from an Orthogonal Central

Composite Design. Therefore the appropriate introduction is discussed concerning the

Rotatable Orthogonal Central Composite Design. Then, the main result is presented,

i.e. The necessary and sufficient conditions in order an Orthogonal Central Composite

Design to be Rotatable.
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1. INTRODUCTION

When we are constructing designs to explore the overall response surface,

rather than the response to individual factors, the main request is for optimum

position, i.e. the combination of factor levels for which the expected response is

maximized. In principle, the design of an experiment to explore the response sur-

face will cover —eventually— only a region of the unknown surface, for which a

rather known center exists. Therefore observations at the center are important.

Moreover, blocking and replication are always important, as for any experiment.

Therefore, the Response Surface Method (RSM) is based on this framework. As

an example, there is a nice experiment to investigate the effect of the levels of two

additives on the quality of a cake production process in [7]. In addition to the fac-

torial experiment portion as well as to the number of observations at the center,

additional points are added to the design of each factor or, equivalently, to each

axis, known as axial (or star).

Therefore, a Central Composite Design (CCD) is: an experimental fractional

design which is supplemented by additional experimental points such as center

points and star points. In principle, we need the main effects to be separately esti-

mated. That is why the sense of Orthogonal design is essential: a design in which

the given variables (or a linear combination of them) are regarded as statistical

independent. In RSM it is important to choose the “path” towards the optimum.

Thus, the steepest accent method is applied from the Numerical Analysis (see [5]

among others), while the sequential principle of design is adopted. Therefore, the

Rotatable design is a real need to be defined, as the one which has equal predictive

power (predictiveness) in all directions from the center point and from the points

that are at equidistant from the center.

The aim of this paper is to discuss, and eventually adjust, the necessary and

sufficient conditions, for the number of design points, to be satisfied so that to es-

timate the design points for an Orthogonal Central Composite Design (OCCD) to

be rotatable (ROCCD). The problem has been discussed extensively by [3], [7], [6],

[8], where the conditions for a Central Composite Design (CCD) to be OCCD and

ROCCD are reviewed and examined. We shall refer and extend/adjust the condi-

tion for a ROCCD, as appeared in [6, p. 304] and [7, p. 550]. The improvement is

that the imposed already condition is now used for obtaining real solutions, when

positive integer solution is actually needed. To to the best of our knowledge, we

have not see any attempts trying to adjust this conclusion. This adjustment is our

contribution, so that the experimenter can work to Response Surface Methods,

with a number of up to 14 input variables, as we are providing the appropriate

calculations, based on the developed theory. For a compact form of the obtained

calculations see Table 1. Through out this paper the standard notation for the

Response Surface Methods is adopted; see [6] and [8].



4 Kitsos

2. CONDITIONS FOR A ROCCD

The Central Composite Design (CCD) appears an aesthetic appeal within

the class of the second order response surface design. It was introduced in the

pioneering paper of [4]. In principle the Central Composite Design (CCD) can

always be constructed as a two block Orthogonal (OCCD). This is based in two

blocks: the factorial portion and the star portion. The first block is based on NF

factorial points and NCF center points. The second block is based on NA axial

points and NCA center points for the star portion. It has been traditionally denoted

by (a) the distance of the star points from the center of the design. For a factorial or

fractional factorial experiment NF = 2q or 2k−q observations are needed. Consider

NA = 2k points with k being the number of input variables and q such that 0< k <

q.

For Orthogonal blocking, in two blocks in a CCD, the fractional of the total

sum of squares, of each input variable contributed by every block, has to be equal

to the fraction of the total observations allotted to the block. It is, for each block,

NF

NF +2a2
=

NF +NCF

N
and(2.1a)

2a2

NF +2a2
=

NA+NCA

N
,(2.1b)

respectively. The total number of observation is then N = NF +NA +NC, with NC

the number of central points i.e. NC = NCF+NCA. Then from (2.1a) and (2.1b) it is

(2.2) a2
=

NF

(

2k+NCA

)

2
(

NF +NCF

)

.

When the design is required to be also a rotatable one, then [6, p. 304],

(2.3) a2
= N1/2

F .

From (2.2) and (2.3) the second degree equation

(2.4) 2NF −N1/2
F

(

2k+NCA

)

+2NCF = 0,

has to be satisfied, see also [7, p. 550]. Both [7] and [6] note that is not always pos-

sible to find a design that satisfies (2.4). Moreover, in [6] is provided as a necessary

condition for the satisfaction of equation (2.4) the relation

(2.5) D =

(

2k+NCA

)2
−16NCF ≥ 0,

But the discriminant D positive means that (2.4) has real roots. And we are look-

ing for positive integers as solution of (2.4). This is the crucial point. The necessary

and sufficient conditions, so that the number of the design points NF for a ROCCD

needs more investigation and we are providing this investigation in section 3.
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3. INTEGER SOLUTION FOR A ROCCD

Trivially the coefficient of the second order equation (2.4) are asked to be

positive integers and not just real numbers. We state and prove in Appendix A the

following Theorem which shall help us to develop the line of though tackling the

problem, see Theorem 3.1 and Proposition 3.1.

Theorem 3.1. Consider the second order equation

(3.1) Ax2
+Bx+C = 0,

with A, B and C integers. Then the roots of (3.1) are integers if and only if

1. A divides B, i.e. A
∣

∣B,

2. A divides C, i.e. A
∣

∣C, and

3. The discriminant D of (3.1) is a square, i.e. D =µ
2
∈Z.

Now, consider (2.4). The following theorem holds.

Theorem 3.2. The necessary and sufficient conditions in order the equa-

tion

(3.2) 2NF −N1/2
F

(

2k+NCA

)

+2NCF = 0,

to have positive integer solutions are:

(3.3a) 2
∣

∣NCA, i.e. 2 divides NCA, i.e. is even,

(3.3b) D =

(

2k+NCA

)2
−16NCF =µ

2, µ ∈Z.

Proof: Trivially, if we let x = N1/2
F

, (3.2) is then reduced to (3.1) with A =

2, B =−

(

2k+NCA

)

, C = 2NCF. Therefore condition (1) of Theorem 3.1 is reduced to

(3.3a), (2) holds, and (3) is reduced to (3.3b). Thus, the roots are integer numbers.

Moreover the sum of roots of (3.2) is (2k + NCA) > 0 and the product of roots is

2NCF > 0. Therefore, the integer roots are positive. Eventually the conditions

(3.3a) and (3.3b) are necessarily and sufficient to have positive integer roots.

Practically the factorial portion consists from a 2k design. Usually k is not

greater than 6, otherwise a portion 2k−p is used. We investigate next the cases of

k up to 14 in the following Proposition.
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Proposition 3.1. Consider (3.2) and the case that NF = 2k. Then, an

integer solution exists for k even. Moreover, for

(3.4) k = 2,4,6,8,10,12,14,

the relation between NCF and NCA should be of the form

(3.5) NCF = 2v
(

NCA−K
)

, v=
1
2

k−1,

and K = K (k)

(3.6) K = 0,0,4,16,44,104,228,

respectively.

Proof: Trivially k has to be an even integer otherwise there is no integer

solution. Thus, 2k/2 has to be integer. Now, from (3.2), we obtain:

For k = 2: 23
−2

(

4+NCA

)

+2NCF = 0, i.e. NCF = NCA = 20(NCA −0).

For k = 4: NCF = 2NCA = 21
(

NCA−0
)

.

For k = 6: NCF = 4NCA−16= 22
(

NCA −4
)

.

In order that both NCF and NCA be positive integers, it is required to be

NCF = 4p, p ∈Z
+ as

1
4

NCF +4= NCA.

Therefore for k = 6,

NCF = 4p, NCA = p+4.

For k = 8 it is from (3.2)

28
−23

(

16+NCA

)

+NCF = 0, i.e.

NCF = 8NCA −128 = 23
(

NCA −16
)

.

Now, in order that both NCA and NCF are positive integers, NCA should be an

integer greater than 16, so 1
8

NCF +16= NCA and therefore, NCF = 8p, NCA = 8(p+

2). Thus the case k = 8 can rarely be of practical use.

For k = 10 it is from (3.2)

1024−320−16NCA +NCF = 0, i.e.

NCF = 24NCA−2444 = 24
(

NCA −44
)

.

There is no practical use for the case k = 10 as well as in order NCF to be positive

NCA has to be greater than 44 i.e.

NCF = 24 p, NCA = p+44.
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Similar, for k =12, it is

NCF = 32NCA −3328= 25
(

NCA−104
)

,

NCF = 25 p, NCA = p+104.

For k = 14 it is then

NCF = 64NCS −14592= 26
(

NCA −228
)

, i.e.

NCF = 26 p, NCA = p+228.

There is no practical use to investigate grater values, as the number of ob-

servations turns to be very large in such a case. From the above discussion it is

easy to see that the following holds.

Corollary 3.1. In principle,

(3.7) NCF = 2k/2−1
[

NCA −

(

2k/2−1
−2k

)

]

, k = 2,4,6, . . .

Corollary 3.2. The general form of required samples are:

(3.8) NCF = 2k/2−1p, NCA = p+2k/2+1
−2k, p ∈Z

+.

Proposition 3.2. For the equation (3.2) as in Theorem 3.2, considering

k = 2(2)14 the corresponding pair of values (NCA, NCF) for a double root x= N1/2
F

=

2k/2, are

(4,4), (8,16), (20,64), (48,256), (108,1024), (232,4096), (484,16384).

Proof: The proof is based on (3.3b) with ν= 0 and on the results obtained

in Proposition 3.1. Namely for:

• k = 2, D = (4−NCA)2, hence NCA = 4= NCF.

• k = 4, D = (8+NCA)2 −32NCA = (8−NCA)2, hence NCA = 8, NCF = 16.

• k = 6, D = (12+NCA)2 −16(4NCA −16)= (20−NCA)2,

so NCA = 20, NCF = 64.

• k = 8, D = (16+NCA)2 −16(8NCA −128)= (48−NCA)2,

so NCA = 48, NCF = 256.

• k = 10, D = (20+NCA)2 −16(16NCA −704)= (108−NCA)2,

so NCA = 108, NCF = 1024.
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• k = 12, D = (24+NCA)2 −16(32NCA −3328)= (232−NCA)2,

so NCA = 232, NCF = 4096.

• k = 14, D = (28+NCA)2 −16(64NCA −14592)= (484−NCA)2,

so NCA = 484, NCF = 16384.

It is clear that for k greater than 8 there is no practical use, as we have

already comment, as the required observations are too many and it is not practical

use of an experiment 28.

4. DISCUSSION

The above provided analysis proves that the restriction D ≥ 0 is not the ap-

propriate one for an OCCD to be ROCCD. In Table 1 we summarize, for practical

use values of k and the appropriate values of design points, according to the above–

mentioned calculations. The appropriate necessary and sufficient condition was

stated and proved, adjusting an old wrong result, with a rather “simple” approach.

Some experimenters decide in advance, rather from experience or depending on

how easy is to perform the experiment, the needed size of the experiment. But

the investigation needs a deeper approach, we believe, with not such a difficult

mathematical approach for the experimenter. We worked towards this direction:

to keep it simple. Table 1 summarizes the results from the above discussion. In

a future attempt, it would be interesting to construct, mainly from a theoretical

point of view, the appropriate calculations with k larger than 14, in order to see

the behavior of the discussed “system” for “large” values. It is also clear that the

researcher working at EVOP designs (see the pioneering paper in [2]) can adopt

the calculations performed here, for the initial design, as EVOP is based, briefly

speaking, on a “factorial + centre” design. Therefore, despite its theoretical frame-

work and background, the above proposed integer solution can be very helpful in

practice as well.
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k NF NA NCF NCA NC N

4 4 4 2 2 4 12

3 3 6 14

4 4 8 16

4 16 8 4 2 6 30

6 3 9 33

8 4 12 36

16 8 24 48

6 64 12 4 5 9 85

8 6 14 90

12 7 19 95

64 20 84 160

6 256 16 8 17 25 297

16 18 34 306

24 19 34 306

256 48 304 576

Table 1: Design points needed for a ROCCD with k = 2(2)8, for a double

root x = N1/2
F

.

A. APPENDIX

Proposition 1.1. Let x2
+ px+ q, p, q ∈Z. Then its roots x1, x2 ∈Z if and

only if the discriminant D =µ
2, µ ∈Z, or µ= 0.

Proof: If x1, x2 ∈Z: x2
+ px+ q ⇔ x2

− (x1 + x2)x+ x1x2 = 0.

Let D = (x1 + x2)2 −4x1x2 = (x1 − x2)2 = µ
2, with µ = x1 − x2 ∈Z as x1, x2 ∈Z.

Now, let D = p2
−4q =µ

2, µ ∈Z. Then

x1, x2 =
−p±µ

2
=−

p∓µ

2
.

But: p2
−4q = µ

2
⇒ p2

−µ
2
= 4q ⇔ (p−µ)(p+µ) = 4q ⇒ p+µ = 2n1, n1 ∈Z and

p−µ= 2n2, n2 ∈Z. Therefore x1 = n1 and x2 =−n2, i.e. x1 and x2 are integers.

Proof of Theorem 3.1: If A
∣

∣B and A
∣

∣C then:

Ax2
+Bx+C = 0⇔ x2

+
B
A

x+ C
A
= 0⇔ x2

+ px+ q = 0, p, q ∈Z.

It is also: D1 = p2
−4q =µ

2
1
, µ

2
1
∈Z⇔

B2

A2
−4

C

A
=µ

2
1 ⇔

B2
−4AC

A2
=µ

2
1 ⇒ D =B2

−4Ac = (µ1 A)2 =µ
2
1, µ ∈Z.
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So x2
+ px+ q = 0 has integer roots and so does Ax2

+Bx+C = 0.

The inverse: Let x1,x2 ∈Z be the roots of Ax2
+Bx+C = 0. Then: x1+x2 =−

B
A

and x1x2 =
C
A

. Thus x1 + x2 ∈Z⇒ A
∣

∣B and x1x2 ∈Z⇒ A
∣

∣C. Moreover:

Ax2
+Bx+C = 0⇒ x2

+
B
A

x+ C
A
= 0⇒ x2

+ px+ q = 0,

has integer roots (Proposition 1.1).

Let D1 = p2
−4q =µ

2
1, µ1 ∈Z, i.e.

B2

A2
−4

C

A
=µ

2
1 ⇒

B2
−4AC

A2
=µ

2
1 ⇒ D = B2

−4AC = (Aµ1)2 =µ
2, µ ∈Z.
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