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1. Introduction

Quantiles fully describe univariate probability distributions and may be
very useful for statistical inference. Scalar random variables and their quantiles
can often be expected to depend on some influential factors whose precise im-
pact can be analyzed in the quantile regression framework, introduced in [23] and
surveyed in [22]. Under weak moment assumptions, it models the entire condi-
tional distribution of interest and not only its mean as the least squares approach.
Therefore, it can reliably reveal even subtle changes in the conditional distribu-
tion that usually remain hidden in a conventional statistical analysis despite their
possibly very important consequences. In fact, it is the tails of such conditional
distributions that often contain much useful information and are thus very inter-
esting for researchers in various fields such as finance and insurance, meteorology
and climatology, labor and public economics, reliability and quality management,
developmental studies, and medicine.

The everyday reality is usually intrinsically multivariate, and its success-
ful analysis thus asks for multivariate quantiles. Unfortunately, they cannot be
defined in a universally acceptable way because there exists no canonical way of
ordering multivariate points and because all the attractive properties of univariate
quantiles cannot be met simultaneously in a single multivariate quantile concept.
Consequently, there already exist dozens of different multivariate quantile propos-
als that are usually based on data depth or spatial ranks, norm minimization or
M-estimation, inversion of mappings, gradients, or generalized quantile processes;
see, e.g., [33] for an overview.

Despite the abundance of the literature on multivariate quantiles (also
called location quantiles), their regression generalizations are still scarce; see
[15]. They may be either parametric (when the overall regression dependence
is supposed to have a particular functional form), or nonparametric (when the
overall dependence pattern is unknown). In the latter case, it is often possible
to assume that the regression dependence is locally polynomial, which opens the
door to the spline or locally polynomial (or, kernel) approach. Therefore, it makes
perfect sense to call multivariate regression quantiles after the way they were ob-
tained as parametric, nonparametric, or locally polynomial, for example. On the
one hand, the parametric regression approach requires relatively strong assump-
tions regarding the particular form of regression dependence, on the other hand,
it allows for general designs and implies standard consistency rates of related
estimators (unlike its nonparametric competitors).

Most of the existing definitions of multivariate regression quantiles follow
a directional strategy. They first define directional regression quantiles as simple
objects (typically points or hyperplanes) and then use the directional objects for
all directions to construct the resulting multivariate regression quantile (contour
or region). The promising parametric proposals presented in [16, 17] and [29] are
quite representative of this category and lead to the same multivariate regression
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quantile regions. Therefore, they will be considered as an established parametric
golden standard and used as a benchmark hereinafter. They define a polyhedral
multivariate regression quantile as the intersection of all directional regression
quantile halfspaces of the same quantile level. They are implementable by means
of [30, 31] and [2, 3], and applied, e.g., in [34] and [35]. The other proposals with
directional flavor include [8], [25], [6], [9], [37], [26], [18], [7] and [4].

The alternative approach is not directional but direct (or, global) because
it defines multivariate regression quantiles and related contours and regions di-
rectly, i.e., without any auxiliary directional construction. Apart from the very
recent (but not affine equivariant) proposal of [5] inspired by [10], this category
mainly includes various regression extensions of the two proposals of multivariate
quantiles with elliptical shapes (or, elliptical quantiles) that were presented in
[20] and [21]. The former proposal was motivated by linear quantile regression,
included even a heuristic definition of locally constant elliptical quantiles, and
employed only convex optimization that turned out very useful for its analysis.
Unfortunately, it could not be extended within its convex optimization setting to
include robust or flexible parametric regression quantiles, which is why the latter
generalized multivariate elliptical quantile concept was proposed as a remedy in
[21]. It could not rely on convex optimization any more, but, on the other hand,
it was very general and even covered the former approach as a special case, after
a suitable reparametrization.

Now the parametric regression extension of the generalized multivariate
elliptical quantiles of [21] is discussed, investigated, and illustrated here in a very
general nonlinear heteroscedastic framework. An important particular case with
unique features has been briefly introduced in [14] together with its examination
by means of convex analysis. It is nicely complemented with the general theory
derived in this article.

It should also be mentioned for the sake of completeness, that the general-
ized parametric elliptical regression quantiles considered here bear some similarity
to multivariate regression S-estimators and their modifications (see, e.g., [1], [36],
and [32]) that are not used for defining multivariate regression quantiles but also
result from some location-scale or regression-scale models where the determinant
of the shape-defining matrix plays a crucial role.

As the parametric elliptical regression quantiles also roughly order the re-
gression space, they remotely resemble the depth-like notions for regression ob-
servations (see, e.g., [16], [29], [34], and [18]).

In [21], the generalized multivariate elliptical quantiles have been shown
useful for symmetric distributions and highly competitive with the benchmark
introduced above for elliptical distributions. Their parametric regression exten-
sions appear to preserve most of their properties, but they should also be used
only if their conditionally elliptical shape is acceptable and, ideally, if the condi-
tional distribution is at least centrally symmetric, which is fortunately the case
of all widely used error distributions. Then they are roughly on par with the
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benchmark in terms of natural nestedness, equivariance properties, and the abil-
ity to change with the quantile level and to capture the symmetry or ellipticity
of the underlying conditional distribution.

However, the generalized parametric elliptical regression quantiles then also
excel in other important aspects. Indeed, unlike the benchmark, (1) they can
easily incorporate homoscedasticity and many other types of a priori information
regarding their conditional scales, shapes, and centers, (2) their quantile levels
can correspond directly to their probability content, (3) they can be parametrized
flexibly and very naturally by means of their conditional centers, shape matrices,
and inflation (scaling) factors (whose estimates seem very useful for goodness-
of-fit tests or for statistical inference regarding conditional location, dispersion,
symmetry, or ellipticity), (4) they can be quite robust to outliers, (5) they can
work well even in complicated cases involving nonlinear trend or heteroscedastic-
ity, and (6) their computation can be feasible even in the sample cases involving
moderate dimensions and large data sets. In fact, their development seems mo-
tivated by the lack of a multivariate regression quantile concept with such a
combination of favorable properties. Of course, some of them hold only under
certain assumptions on the joint distribution of responses and regressors and on
the parametrization of the model. Nevertheless, (1), (3), and (6) are totally out
of reach of any directional multivariate quantile regression method.

Most of the following text only clarifies and demonstrates the vaguely stated
properties of the generalized elliptical regression quantiles (and the conditions of
their validity). As they generally do not result from convex optimization, their
computation in the sample case may be quite complicated and their uniqueness
may not be guaranteed. Nevertheless, they must be unique in certain special
cases including those of [14], and such a possible ambiguity is common to many
popular robust or nonlinear estimators. It might even be viewed as a positive
feature in some cases involving multimodal conditional distributions that may
arise easily in the context of mixtures; see, e.g., [12]. Until the uniqueness issues
are satisfactorily resolved, it is nevertheless recommended to use the generalized
parametric elliptical regression quantiles cautiously, to experiment with various
initial values for their computation in the sample case, and to prefer linearity in
their parametrization whenever possible.

Although the generalized parametric elliptical regression quantiles present-
ed here are still somewhat rigid due to the ellipticity woven into their definition,
they are definitely worthy of wide attention and careful investigation because
there is apparently no other multivariate quantile regression methodology en-
abling joint parametric nonlinear modeling of both trend and heteroscedasticity
without any specific distributional assumptions. It seems that the parametric
elliptical quantile regression presented here has great potential and that it could
be used with benefits for vector responses in the same fields as the univariate
quantile regression or wherever else the whole conditional response distributions
or their tails or covariance structures are of interest. That is to say that (vari-
ous) multivariate regression quantiles have already proved very useful in several
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instances, e.g., in investigating the dependence (1) of a few kinds of expendi-
tures on the total income [5], (2) of both systolic and diastolic blood pressures
on age [6] or on age and BMI [9], (3) of sales growth and sales profitability on
the creativity test score in evaluating the performance of salespersons [6], (4) of
weight and height on age [37, 26], (5) of a few product characteristics on the
time of production to take the tool wear into consideration in the definition of
a precision index [35], (6) of length/height or weight and head circumference on
age [27], (7) of female thigh and calf maximum girths on age, height, weight or
BMI [16, 18], (8) of male life expectancy and death rate on the GNP per capita
[29], or (9) of a few financial time series [11, 4]. Some of the cited articles describe
the application and its benefits in detail and should be consulted in case of any
remaining doubts.

This article further proceeds as follows. Section 2 presents necessary no-
tation and introduces the definition of generalized elliptical regression quantiles,
Section 3 studies their basic properties in the population case, Section 4 dis-
cusses their parametrization, Section 5 uses them to classify multivariate het-
eroscedasticity, Section 6 deals with their computation in the sample case, Sec-
tion 7 proposes some tools for their validation, Section 8 illustrates them with
a few carefully designed demo examples, Section 9 applies them to a referential
biometric dataset, and concluding Section 10 comments on the previous results
and achievements. Applied statisticians reading the article for the first time may
skip the text after Definition 2.1 and go directly to Section 4 or 8.

2. Definitions and Notation

Consider a general regression setup where an m-variate stochastic vector
of responses Y = (Y (1), . . . , Y (m))′ ∈ Rm is to be explained with the aid of
the corresponding p-variate regressor Z ∈ Rp, and (Y ′,Z ′)′ has an absolutely
continuous distribution with a density differentiable almost everywhere.

Recall that the standard location and regression quantiles of [23] can be
defined for any τ ∈ (0, 1) by means of the non-negative convex real-valued check
function ρτ (t) = t(τ − I(t < 0)) = max{(τ − 1)t, τ t} with a unique minimum.
This function was also used in [20, 21] for defining two types of location elliptical
quantiles. Here the second proposal is extended to a general parametric regression
setup.

The next definition is rather complicated because it deals with the whole
class of parametric elliptical regression quantiles indexed by quantile levels (τ)
and certain monotone functions (g), and because the natural parameters charac-
terizing the shape of possible elliptical regression quantile contours (εg,τ ) them-
selves depend on a common parameter vector (θ). Only its optimal value (θτ )
resulting from a minimization problem is used in the definition.
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Definition 2.1. For any τ ∈ (0, 1) and any function g specified below,
the parametric elliptical regression τ -g-quantile (contour) εg,τ (Y ,Z) and the cor-
responding lower and upper parametric τ -g-quantile regression regions E−g,τ (Y ,Z)
and E+g,τ (Y ,Z) can be defined by means of the shape (matrix), trend (vector),
and scale (scalar) quantile parameters Aτ (θ, z) ∈ Rm×m, sτ (θ, z) ∈ Rm, and
cτ (θ, z) ∈ R depending on z ∈ Rp as well as on a common parameter vector
θ = (θ1, . . . , θq)

′ ∈ Rq:

εg,τ (Y ,Z) = {(y, z) ∈ Rm+p : hτ (θτ ,y, z) = 0},
E−g,τ (Y ,Z) = {(y, z) ∈ Rm+p : hτ (θτ ,y, z) < 0},
E+g,τ (Y ,Z) = {(y, z) ∈ Rm+p : hτ (θτ ,y, z) ≥ 0},

where

hτ (θ,y, z) = g
(
(y − sτ (θ, z))′Aτ (θ, z)(y − sτ (θ, z))

)
− cτ (θ, z),

g(t) : [0,∞) 7→ [0,∞) is a suitable strictly increasing smooth function such that
g(0) = 0, and θτ minimizes the objective function

(OF) Ψτ (θ) = E ρτ (hτ (θ,Y ,Z))

over the whole parametric space Θτ ⊂ Rq, Θτ = Θ◦τ , subject to a regularity
constraint on Aτ ensuring that Aτ (θ, z) ∈ Rm×m is always symmetric positive
definite (its choice is discussed below). The definition also tacitly assumes that
the expectation in (OF) is finite and that its partial derivatives with respect to
θ are exchangeable with the expectation sign.

The sets εg,τ (Y ,Z) ∩ {(y, z) ∈ Rm+p : z = z0}, defined for any fixed
z0 ∈ Rp, will be conveniently called elliptical τ -g-quantile z0-cuts.

As far as the terminology is concerned, all the quantile-related adjectives,
prefixes, indices, and arguments may be omitted on condition that they are either
clear from the context or irrelevant to the statement being made.

Note that all the regression τ -g-quantile z0-cuts are ellipsoids and that
their definition resembles that of multivariate elliptical quantiles of [21] if Aτ ,
sτ , and cτ are independent of z and the regularity constraint is of the form
detAτ (θ, z) = 1. This constraint seems optimal for achieving the best possible
equivariance properties of the resulting elliptical regression τ -quantile entities
and also from the statistical point of view, see [28], which is why it is exclusively
considered here. This does not necessarily imply complete uselessness of all the
other possible regularizations based on the eigenvalues of either Aτ itself or of
its product with a positive regressor-dependent scale factor; see [20] for some
alternatives.

The definition of multivariate elliptical regression τ -g-quantiles is obviously
very general. First of all, it allows for very general trend and heteroscedastic
patterns with possible nonlinearity in unknown parameters and with arbitrary τ -
dependence of g, q, Θτ , and the specifications for Aτ , sτ , and cτ . It also permits
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quite general interdependencies between Aτ , sτ , and cτ thanks to their common
dependence on the same parametric vector. Nevertheless, it is recommended that
practitioners invoke simplicity and linearity whenever possible and reduce the use
of interdependencies to the absolute minimum.

Of course, if there is any information regarding θτ available in advance,
then it can be used advantageously in the optimization of (OF). This might also
give rise to some multipliers that could be useful for statistical inference like θτ ,
Ψτ (θτ ), Aτ (θτ , z), sτ (θτ , z), and cτ (θτ , z), possibly considered as functions of
τ and g. That is to say that the choice of g matters in general and may have
a huge impact on required moment assumptions as well as on the robustness
and rigidity of the resulting elliptical regression quantile contours. In fact, the
parametrization of quantile characteristics Aτ , sτ , and cτ is so important that it
is repeatedly discussed throughout the next sections.

Unfortunately, the parametric elliptical regression τ -quantiles are not uniq-
uely defined in the instances when Ψτ (θ) attains multiple global minima, which is
typical of all nonlinear regression estimators; see [21] for a slightly more detailed
discussion of that in the generic multivariate case.

If the lack of robustness is not an issue, then gI(t) = t seems the best
choice because it can often be reasonably expected to minimize the number of
local minima of (OF) as well as the overall computational burden. This choice also
produces the very special uniquely defined elliptical regression quantiles described
and illustrated in [14]. If robustness is of high priority, then one should choose
either g(t) = tα for α < 1 to preserve affine equivariance or perhaps g equal
to a simple, bounded, and easy to compute function behaving like the identity
function close to zero. However, if α < 0.5 or g is bounded, then the objective
function (OF) may easily become misbehaving. This is why such choices cannot
be recommended before such behavior and its consequences are fully clarified.

Obviously, the elliptical regression quantiles handle response outliers better
than the design ones, because their robustness to design outliers may remain in
question even for a bounded g due to the possible negative impact of cτ (θ, z).
This defect is unpleasant although cτ (θ, z) unbounded in z need not always spoil
the robustness too much and although it can be bounded easily by means of a
suitable parametrization; see Figure 3 for a result of such an attempt.

The definition of the parametric elliptical regression quantiles is so general
that one can hardly say anything special about them without further assumptions.
The next section attempts to point out some of their favorable properties without
sacrificing too much generality. The following terminology then comes in handy.

Definition 2.2. The parametrization of the elliptical regression τ -g-
quantiles is called

• separable if θ = (θ′s,θ
′
A,θ

′
c)
′ and sτ (θ), Aτ (θ), and cτ (θ) really depend

solely on θs, θA, and θc, respectively.



Parametric elliptical regression quantiles 9

• reducible in sτ if sτ (θ, z) = s0τ + s1τ (θ, z) where s1τ is some function, and
s0τ is an m-dimensional subvector of θ in which Aτ (θ), cτ (θ), and s1τ (θ) are
constant.

• reducible in cτ if cτ (θ, z) = c0τ + c1τ (θ, z) where c1τ is some function, and
c0τ is a scalar subvector of θ in which sτ (θ), Aτ (θ), and c1τ (θ) are constant.

• admissible if there exists θ0τ ∈ Θτ such that

sτ (θ0τ , z) = s0τ (z), Aτ (θ0τ , z) = A0
τ (z), and cτ (θ0τ , z) = c0τ (z)

for almost all z where s0τ (z), A0
τ (z), and c0τ (z) describe a multivariate

elliptical τ -g-quantile of the conditional distribution of Y given Z = z, as
defined in [21]. It means that s0τ (z), A0

τ (z), and c0τ (z) jointly minimize the
expectation (with respect to the conditional distribution)

EY |Z=z ρτ
(
g
(
(Y − s)′A(Y − s)

)
− c
)

subject to the constraints that A is positive semidefinite and det(A) = 1.

The parametrization is therefore admissible if there exists θ0τ ∈ Θτ such
that the z-cuts of the corresponding elliptical regression τ -g-quantile are equal
to multivariate τ -g-quantiles of the conditional distributions of Y given Z = z
for almost all z.

Example 2.1. Consider τ ∈ (0, 1) and (Y ′,Z ′)′ with a multivariate nor-
mal distribution or with a multivariate elliptical distribution having all required
moments finite. Then any separable parametrization of elliptical regression τ -g-
quantiles such that

1. Aτ (θ, z),θ ∈ Θτ , does not depend on z and may become any positive
definite matrix with unit determinant,

2. sτ (θ, z),θ ∈ Θτ , includes any affine function of z, and

3. cτ (θ),θ ∈ Θτ , does not depend on z and may attain any positive value,

is admissible for any permitted g if it leads to the uniquely defined elliptical
regression τ -g-quantile; see [13] and Theorem 3.5 below.

3. Basic Properties

The justification for elliptical regression quantiles is based on their good
properties in the special location case, resulting from the necessary gradient con-
ditions of [21]. The conditions play such a prominent role that they deserve to
be paraphrased below using current terminology:
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Theorem 3.1. Consider the special location case (without regressors)
when (Y ′,Z ′) = Y ′ and the parameters sτ , Aτ , and cτ are constant. Then the
elliptical τ -g-quantiles must satisfy the necessary conditions (1) to (4) of [21] that
translate to

1 = det(Aτ ),(3.1)

0 = P
(
(Y ′,Z ′)′ ∈ E−g,τ

)
− τ,(3.2)

0 =
1

1− τ
E[γRτ I[(Y ′,Z′)′∈E+g,τ ]]−

1

τ
E
[
γRτ I[(Y ′,Z′)′∈E−g,τ ]

]
(3.3)

and(3.4)

Lτ
det(Aτ )

τ(1− τ)
A−1τ =

1

1− τ
E[γRτR

′
τ I[(Y ′,Z′)′∈E+g,τ ]]−

1

τ
E
[
γRτR

′
τ I[(Y ′,Z′)′∈E−g,τ ]

]
,

(3.5)

where Aτ is assumed symmetric positive semidefinite, Lτ is the Lagrange multi-
plier corresponding to the constraint −det(Aτ ) + 1 = 0, Rτ = Y − sτ , ġ(t) :=
∂g(t)/∂t, and γ = ġ(R′τAτRτ ).

The probability interpretation of the location elliptical quantiles then re-
sults from (3.2). If g = gI , then γ = 1 and the conditions simplify considerably
and become easy to interpret; see [21] for further details.

In the general regression context considered here, sτ , Aτ , and cτ may de-
pend on z and on the common underlying parameter θ. Consequently, one should
derive (OF) as a compound function and the derivatives of sτ , Aτ , and cτ with
respect to θ should also enter the scene.

If the properties of elliptical regression quantiles should naturally generalize
those of the location ones, then only separable parametrizations reducible both
in cτ and sτ should be considered.

The next theorem summarizes some obvious special cases.

Theorem 3.2. If the parametrization of the elliptical regression τ -quant-
iles

• is reducible in cτ , then (3.2) holds.

• is reducible in sτ with z-independent Aτ , then (3.3) holds.

• is separable and cτ = θ′Lz+cIτ (θc, z) where θL is a subvector of θc in which
cIτ is constant, then

0 =
1

1− τ
E[Z I[(Y ′,Z′)′∈E+g,τ ]]−

1

τ
E
[
Z I[(Y ′,Z′)′∈E−g,τ ]

]
.

Assume that all the three conditions are satisfied. Then the population
parametric elliptical regression quantiles have a clear probability interpretation,
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E−g,τ is nonempty for τ > 0, and the centers of probability mass of E−g,τ (Y ,Z) and
E+g,τ (Y ,Z) have the same z-coordinates. The second claim then meaningfully
links the probability mass centers of scaled residuals γ(Y − sτ (θτ ,Z)) corre-
sponding to the regression observations in E−g,τ (Y ,Z) and E+g,τ (Y ,Z).

Every reasonable multivariate quantile regression concept should also ex-
hibit good equivariance properties. The parametric elliptical quantile regression
need not be an exception in this regard. What really matters is how sτ (θτ ),
Aτ (θτ ), and cτ (θτ ) change with the transformations of Y , and this follows di-
rectly from the location case of [21].

Definition 3.1. The parametrization of elliptical regression τ -g-quant-
iles is called affine equivariant if g(t) = tr for some r > 0 and if, for any a ∈ Rm,
any regular m×m matrix B (with determinant d), and any θ ∈ Θτ , there exists
θB,a,d ∈ Θτ such that

Aτ (θB,a,d, z) = d2
(
B−1

)′Aτ (θ, z)B−1,(3.6)

sτ (θB,a,d, z) = a+ Bsτ (θ, z), and(3.7)

cτ (θB,a,d, z) = g
(
d2g−1

(
cτ (θ, z)

))
(3.8)

for all z. If (3.6), (3.7) and (3.8) hold for d = 1, then the parametrization is
called shift and rotation equivariant, even if g is not a polynomial.

Theorem 3.3. If the parametrization of elliptical regression τ -quantiles
is affine equivariant, then the resulting elliptical regression τ -quantiles are affine
equivariant. If it is shift and rotation equivariant, then the resulting elliptical
regression τ -quantiles are shift and rotation equivariant.

Proof: If θ ∈ Θτ minimizes (OF) for random vector (Y ′,Z ′)′ ∈ Rm+p,
then corresponding θB,a,d ∈ Θτ from the above definition of the equivariant

parametrization obviously minimizes (OF) for random vector
(
(a+BY )′,Z ′

)′ ∈
Rm+p for any a ∈ Rm and any regular m×m matrix B with determinant d.

In other words, if the elliptical regression τ -quantile of (Y ′,Z ′)′ is parametr-
ized with Aτ , sτ , and cτ by means of an affine equivariant parametrization, then
the elliptical regression τ -quantile of ((a + BY )′,Z ′)′ can be parametrized with
d2
(
B−1

)′AτB−1, a+ Bsτ , and g
(
d2g−1

(
cτ (θ, z)

))
.

The graph of Ψτ (θ) crucially influences the process of optimization. The
following consequences of convex calculus might serve as a guidance for choosing
g and minimizing the troubles with the optimization of Ψτ (θ).

Theorem 3.4. Assume a separable parametrization of the elliptical re-
gression τ -g-quantiles with θ = (θ′s,θ

′
A,θ

′
c)
′.
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• If g = gI , then Ψτ is convex in Aτ .

• If cτ is linear in θc, then Ψτ (θ) is convex in θc.

In fact, g = gI may easily lead to uniquely defined parametric elliptical
regression quantiles; see [14].

Generally speaking, the good properties of multivariate elliptical quantiles
extend to the elliptical regression quantiles with admissible and affine equivariant
parametrizations.

Theorem 3.5. Let τ ∈ (0, 1) and f(y, z) = f1(y|z)f2(z) be the density
of (Y ′,Z ′)′ ∈ Rm+p where f2(z) is the marginal density of Z and f1(y|z) is
the regularized version of the density of the conditional distribution of Y given
Z = z that is assumed to exist.

If the parametrization Aτ (θ, z), sτ (θ, z), and cτ (θ, z) of the elliptical re-
gression τ -quantile is admissible, then there exists θτ ∈ Θτ minimizing (OF). If
for any ortonormal matrix O there exists θ̃τ (O) ∈ Θτ such that Aτ (θ̃τ (O), z) =
O′Aτ (θτ , z)O, cτ (θ̃τ (O), z) = cτ (θτ , z), and sτ (θ̃τ (O), z) = µ(z)+O′(sτ (θτ , z)−
µ(z)) for the particular µ appearing below, and

[1] if f1(y|z) = f1(µ(z) +O(y−µ(z))|z) for some function µ = (µ1, . . . , µm)′

and for an orthonormal matrix O = O−1′ , then there exists an elliptical
regression τ -quantile parametrized with Aτ (θ̃τ (O), z), sτ (θ̃τ (O), z), and
cτ (θ̃τ (O), z).

If the elliptical regression τ -quantile is moreover uniquely defined, then

[2] if sτ (θτ , z) = (s1, . . . , sm)(z)′, Aτ (θτ , z) = (aij(z))mi,j=1, and f1(y|z) =
f1(µ(z) + J(y − µ(z))|z) for all z and a sign-change matrix J = J′ =
J−1 = diag(j1, . . . , jm) with diagonal elements ±1, then si(z) = µi(z)
whenever ji = −1, i ∈ {1, . . . ,m}, and aij(z) = 0 whenever jijj = −1,
i, j ∈ {1, . . . ,m}.

[3] if all the conditional distributions of Y given Z = z are centrally symmetric
around their center of symmetry µ(z), then sτ (θτ , z) = µ(z).

[4] if all the conditional distributions of Y given Z = z centered with µ(z) are
symmetric around a common hyperplane H, then sτ (θτ , z) − µ(z) lies on
H.

[5] if all the conditional distributions of Y given Z = z centered with µ(z) are
symmetric along a common axis o, then sτ (θτ , z)− µ(z) lies on that axis.

Proof: As for [1], the assumed admissible parametrization guarantees
that there exists θτ ∈ Θτ such that Aτ (θτ , z), sτ (θτ , z), and cτ (θτ , z) minimize
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Φzτ (A, s, c) := EY |Z=z ρτ
(
g
(
(Y − s)′A(Y − s)

)
− c
)

for almost all z. There-
fore, they minimize (OF) as well. The assumption on the conditional density
further implies Φzτ (Aτ , sτ , cτ ) = Φzτ (O′AτO,µ(z) + O′(sτ − µ(z)), cτ ), and thus
O′Aτ (θτ , z)O, µ(z) + O′(sτ (θτ , z)− µ(z)) and cτ (θτ , z) also minimize not only
the same conditional expectation for almost all z, but also (OF) as well, and,
therefore, they also describe an elliptical regression τ -quantile thanks to the as-
sumed existence of θ̃τ (O).

As for [2], it follows directly from [1] because matrix J is orthonormal.
Only the two elliptical regression τ -quantiles from [1] must now coincide due to
the uniqueness assumption. This fact implies si(z) = µi(z) whenever ji = −1,
and aij(z) = 0 whenever jijj = −1, i, j ∈ {1, . . . ,m}. Furthermore, [2] implies [3]
for J = −I. The rest ([4] and [5]) analogously results from [1] and [2] for certain
orthonormal matrices.

Note 3.1. In [1], [2], and [3], it would be enough to assume the exis-
tence of θ̃τ (O) ∈ Θτ only for the particular orthonormal matrices O considered
there. In fact, the statements [2] to [5] could be proved directly by generalizing
the location case with similar behavior regarding symmetry, only with the re-
quirement of an admissible parametrization and without any need of θ̃τ (O) for
some orthonormal matrices O.

Note 3.2. The somewhat analogous Theorem 1 of [21] and its proof
unfortunately contain a couple of misprints and one error. First, any occurrence
of Osτ should be replaced with O′sτ there. Second, the proof should apply (2)
to (6), not (2)–(6). And most importantly, the natural behavior of generalized
elliptical quantiles under affine transformations of the response vector, postulated
by Theorem 1 (1), is there falsely interpreted as full affine equivariance for any
function g, which invalidates the proofs of further statements (3), (4), (5), and
(10). While the generalized elliptical quantiles are always shift and rotation
equivariant, they are certain to be fully affine equivariant only for g(t) = tα,
α > 0. Consequently, the statements (3), (4), (5), and (10) there hold only for
such functions g or for spherical distributions. The claims (6)–(9) there really
require only rotation and shift equivariance and, therefore, remain valid for any
function g as they stand.

The uniqueness assumption used in Theorem 3.5 is not as severe as it might
seem at first sight. That is to say that what really matters is only the uniqueness
of Aτ (θτ , z), sτ (θτ , z) and cτ (θτ , z) in the population case.

Any admissible parametrization by definition guarantees the existence of
such θ0 ∈ Θτ that (for almost all z) minimizes the (non-negative finite) condi-
tional expectation of ρτ (hτ (θ,Y ,Z)) (with respect to the conditional distribution
of Y given Z = z). This implies that the same θ0 also minimizes its uncondi-
tional (finite) expectation (OF). Therefore, the parameter vector θ0 ∈ Θτ also
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defines an elliptical regression τ -quantile that is uniquely defined if all the purely
multivariate elliptical τ -quantiles of L(Y |Z = z) are uniquely defined. The
uniqueness of multivariate elliptical τ -quantiles has been studied in [20, 21] and
established for g(t) = t under very mild conditions. Consequently, the aforemen-
tioned considerations extend the uniqueness result even to elliptical regression
quantiles with g(t) = t and admissible parametrizations. This is why g(t) = t is
generally preferred to other possibilities for the time being.

Unfortunately, ill-specified models for elliptical regression quantiles gen-
erally need not lead to a unique solution even for g(t) = t. This is typical
of all nonlinear regression methods. Nevertheless, there exist certain natural
parametrizations with g(t) = t that lead to unique elliptical regression quantiles
even if the model is misspecified; see [14].

4. The Art of Parametrization

The parametrization of sτ follows directly from available preconceptions
regarding the multivariate trend, and that of cτ also often results from the con-
text quite easily. One choice can be nevertheless much better than its formal
equivalents from the computational point of view; see Section 6.

On the contrary, it need not be that clear how to parametrize Aτ to keep it
positive definite with unit determinant so that one could avoid all the restrictions
and constrained optimization. In the case of bivariate responses withm = 2, there
are several possibilities at hand, e.g.

Aτ (θ, z) =

(
a211 a12
a12 (1 + a212)/a

2
11

)
,(4.1)

Aτ (θ, z) =

(
c1 c2
0 1

c1

)′(
c1 c2
0 1

c1

)
=

(
c21 c1c2
c1c2 c

2
2 + 1

c21

)
or(4.2)

Aτ (θ, z) =

(
cos(α) − sin(α)
sin(α) cos(α)

)′(
d2 0
0 1

d2

)(
cos(α) − sin(α)
sin(α) cos(α)

)
,(4.3)

where the obvious dependence of a11, a12, c1, c2, α, and d2 on τ , θ, and z is not
emphasized for the sake of brevity. Of course, one could also consider exp(a11)
and exp(d) instead of a211 and d2, not to mention other alternatives in the same
spirit.

Clearly, (4.1) is the most straightforward possibility but it can hardly be
generalized beyond dimension m = 2 or m = 3. On the other hand, (4.2) follows
from the Choleski decomposition advocated in [21] and it can be easily adjusted
to any dimension of the responses. The third example (4.3) results from the spec-
tral decomposition and it also can be extended to general multivariate response
settings, though in a rather complicated way.
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The optimal choice of parametrization for Aτ crucially depends on the
type of expected heteroscedasticity. The spectral decomposition in (4.3) appears
very appealing due to its easy and natural interpretation. Unfortunately, such
a parametrization of a positive definite matrix is not unique without further
assumptions regarding the angles and/or the diagonal elements of the sandwiched
matrix. Sometimes one can give up the uniqueness, find a solution, and then
transform it to a canonical form without any harm. One could also use the well-
worn tricks how to enforce one parameter higher than the other or in a certain
range. The choices may depend on the expected model, which shifts the modeling
from a boring routine to sophisticated art.

In the cases of homoscedasticity and multiplicative heteroscedasticity de-
scribed below and corresponding to constant Aτ , one can simply avoid all such
problems by using the parametrization based on the Choleski decomposition,
which is generally recommended in such situations.

5. Classification of Heteroscedasticity

Assume that a correctly specified elliptical quantile regression model for
bivariate responses leads to a unique solution Aτ (θτ , z), sτ (θτ , z), and cτ (θτ , z),
with Aτ (θτ , z) parametrized by means of ατ (θτ , z) and dτ (θτ , z) as in (4.3). Then
it makes sense to speak of τ -level homoscedasticity when ατ (θτ , z), cτ (θτ , z), and
dτ (θτ , z) are all independent of z. Furthermore, it is possible to distinguish three
canonical τ -level heteroscedastic patterns corresponding to the cases when only
one of the characteristics ατ (θτ , z), cτ (θτ , z), and dτ (θτ , z) depends on z: (1)
rotational heteroscedasticity (if only ατ (θτ , z) is z-dependent), (2) multiplicative
(or scale) heteroscedasticity (if only cτ (θτ , z) is z-dependent), and (3) propor-
tional heteroscedasticity (if only dτ (θτ , z) is z-dependent). Any type of bivariate
heteroscedasticity can then be decomposed into the three canonical forms. See
Figure 1 for an illustration of this classification.

If these heteroscedastic patterns are observed for all τ ∈ (0, 1), then one can
speak of τ -independent heteroscedastic patterns. If they are observed only locally
in τ or z, then one can speak of local heteroscedastic patterns. This terminology
can be adopted even informally when the true underlying model is unknown but
its heteroscedastic profile slightly resembles that of elliptical quantile regression.

The situation becomes more complicated in case of multivariate responses,
but even then the classification can still be used for any couple of their coordinates
and the terms like overall rotational/proportional/multiplicative heteroscedastic-
ity still make perfect sense.

Although the multiplicative heteroscedasticity seems by far the most com-
mon, the others are not necessarily extinct but maybe only hidden because the
ways available for their detection and modeling are rather limited and unpopular,
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at least for the time being. For example, the rotational heteroscedasticity may
be dormant in the data observed by the satellites orbiting the Earth. And it is
demonstrated below in Section 9 that it might be present even in biometric data.

6. Computation

The sample elliptical regression τ -g-quantiles can be obtained directly from
the definition if the expectation in (OF) is taken with respect to the discrete em-
pirical probability distribution. Consider n responses Y i’s accompanied with
corresponding regressor vectors Zi’s, i = 1, . . . , n, from the population distribu-
tion assumed above. Even if all the constraints on Aτ are removed in the way
described in Section 4, then it still remains to solve the unconstrained optimiza-
tion problem

min
θ

n∑
i=1

ρτ (hτ (θ,Y i,Zi))

for appropriate hτ where the objective function is generally neither smooth nor
convex. Of course, it could be done with a suitable general solver for non-convex
optimization. Fortunately, this problem can also be viewed as a nonlinear quan-
tile regression task with zero responses and regressors (Y ′i,Z

′
i)
′, i = 1, . . . , n, that

has already been studied successfully, see [22], and can be solved for differentiable
hτ with the special algorithm developed in [24] whose Matlab implementation in
ipqr.m, available at http://sites.stat.psu.edu/∼dhunter/code/qrmatlab, had been
tuned up and used for the computation of all the sample parametric elliptical re-
gression g-quantiles presented in the next sections. In other words, the parametric
elliptical regression quantiles can be computed like their location predecessors of
[21].

Unfortunately, the algorithm of [24] must be initialized with a preliminary
estimate of θτ . This is a stage when any available information about the esti-
mated vector parameter can be employed advantageously. Of course, one should
experiment with several wise choices of initial parameters and then choose the
solution according to the final parameter estimators and corresponding values of
the minimized objective function. If some not-so-complicated regression models
were considered, then one might also fit each response component by means of
single-response quantile regression and use the resulting parameter estimates to
initialize the algorithm. A few multivariate quantile cuts obtained from other
multi-response quantile regression method(s) could also be mined for some infor-
mation leading to the initial parameter estimates.

The parametrization of the problem also matters as one can lead to the
successful end much more quickly and easily than another. From this point of
view, it is strongly recommended to avoid nonlinearities whenever possible. If the
Jacobian derived from hτ is singular from the very beginning or becomes singular
or close to singular during the computation, then insuperable numerical problems
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can be expected, which also speaks for using well-thought-out parametrizations
and parameter initializations. For example, such a situation may happen for
d2 = 1 if the parametrization (4.3) is used for Aτ .

The computational side of many nonlinear regression methods is not ideal
and the parametric elliptical quantile regression is no exception in this regard.
But one can hardly hope for anything else if the model is genuinely nonlinear and
non-convex in its parameters.

7. Model Validation

This section suggests a few heuristic ways how to validate the resulting
elliptical quantile regression models before the topic is treated elsewhere in full
detail and exactness. The first two are commonly used in the ordinary least
squares regression.

Suppose that n regression observations (Y ′i,Z
′
i)
′, i = 1, . . . , n, were fitted

with a generalized parametric elliptical (τ -g-)quantile regression model leading to
unique quantile parameter estimates A(θ̂, z), s(θ̂, z), c(θ̂, z), and to homogenized
(pseudo)residuals ri(θ̂) := h(θ̂,Y i,Zi), i = 1, . . . , n; see Definition 2.1 for the
origin of h.

One can then use the cross-validation approach to look for outliers or in-
fluential observations. In other words, the impact of some observation(s) can be
evaluated by means of the differences θ̂ − θ̂−, Ψ(θ̂)−Ψ(θ̂−), c(θ̂, z)− c(θ̂−, z),
g−1(c(θ̂, z))− g−1(c(θ̂−, z)), s(θ̂, z)− s(θ̂−, z), A(θ̂, z)−A(θ̂−, z), A−1(θ̂, z)−
A−1(θ̂−, z), ri(θ̂) − ri(θ̂−), and their parts or norms where θ̂− is the quantile
coefficient estimate obtained by excluding the suspected observation(s) from the
sample. Of course, the differences of the whole quantile cuts corresponding to θ̂
and θ̂− could also be investigated. And it would be wise to consult such differ-
ences even in testing various submodels where the role of θ̂− would be played by
the optimal estimate of θ in the restricted model.

One could also inspect various charts to check the behavior of the homog-
enized (pseudo)residuals. In a well-specified model, they should be (roughly)
mutually independent, identically distributed, and independent of the covariates
(and also of the responses if all the conditional distributions were elliptical). For
example, one may plot ri or r2i on their lagged values and (the norms or compo-
nents of) Y i and Zi, i = 1, . . . , n.

One could verify as well whether the estimated quantile cuts share their
centers, axes, and hyperplanes of symmetry with the expected conditional dis-
tributions. The opposite might imply that the model assumptions were wrong,
owing to Theorem 3.5.
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If c(θ̂, z) is unexpectedly negative for common regressor values, then there
must be something wrong with the model specification too.

Finally, one might also validate the model by comparing the resulting quan-
tile cuts with those obtained with another multivariate quantile regression method
that requires even weaker assumptions and is still applicable to the data. De-
pending on the context, the benchmark or the nonparametric proposals of [26],
[20], [18] or [4] could often serve the purpose quite well.

8. Illustrations

This section presents some pictures to support the claim that the para-
metric elliptical regression g-quantiles are indeed promising candidates for wide
dissemination thanks to their many good properties. For the sake of simplicity,
only the most often recommended natural choice gI(t) = t is considered here-
inafter.

Unfortunately, the precise rules for choosing g in different situations are
still to be developed. For the time being, it only seems wise to scale the data
properly before their analysis and then to use gI in the absence of outliers. The
choice is also preferable from the computational point of view.

The examples below testify that the elliptical quantile regression can work
well both for elliptical and non-elliptical underlying error distributions, and also
for the number of observations n as low as 99 and as high as 99 999. For the sake
of simplicity and ease of presentation, the colors of both data points and quantile
cuts are changing in dependence of the corresponding regressor values, and only
bivariate responses with scalar regressors are considered. Nevertheless, there is
no intrinsic restriction on the dimension of responses or regressors involved in
the empirical model provided that the number of free model parameters is low
relative to the total number of observations and not too large for the computation
to terminate successfully.

The elliptical regression τ -g-quantiles are parametrized by means of sτ , Aτ ,
and cτ . In the examples, Aτ is always considered in its spectral decomposition
(4.3) described by d2τ and ατ , although less complicated parametrizations of Aτ
should be generally preferred for models with constant Aτ ; see Section 4 for the
discussion of some possibilities.

Figure 1 is included to demonstrate that parametric elliptical g-quantile
regression is suitable for both small and large data sets and for capturing various
kinds of heteroscedasticity.

Figure 2 illustrates another key advantage of elliptical regression g-quantiles,
namely their ability to easily incorporate many types of a priori information re-



Parametric elliptical regression quantiles 19

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2-1.5-1-0.5 0 0.5 1 1.5 2

y2

y1

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

y2

y1

(a) (b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2-1.5-1-0.5 0 0.5 1 1.5 2

y2

y1

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

y2

y1

(c) (d)

Figure 1: Classification of heteroscedasticity in R2. The plots illus-
trate four basic patterns of heteroscedasticity in R2 with ellip-
tical regression 0.3-gI -quantile cuts computed for six equidis-
tant reference points z0 = −0.75,−0.45, . . . , 0.75 from n regres-
sion observations (Y1, Y2, Z) generated by the regression model
(Y1, Y2)′ = (Z, 0)′ + q(ε), Z ∼ U([−1, 1]) is independent of ε ∼
U([−1, 1])×U([−2, 2]): (a) no heteroscedasticity [n = 99, q(ε) =
ε], (b) rotational heteroscedasticity [n = 999, q(ε) = ε′P where
vec(P)′ = (cos(πZ/2), sin(πZ/2),− sin(πZ/2), cos(πZ/2))], (c)
multiplicative heteroscedasticity [n = 9 999, q(ε) = (0.1 +
0.9|Z|)ε], and (d) proportional heteroscedasticity [n = 99 999,
q(ε) = ε′P where vec(P)′ = (exp(|Z|), 0, 0, exp(−|Z|))].

garding the model parameters. Last but not least, Figure 3 indicates that the
concept of parametric elliptical regression quantiles is not bound to linear re-
gression settings and can be used even for fitting highly complicated nonlinear
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Figure 2: Elliptical regression quantiles and a priori informa-
tion. The plots show elliptical regression τ -gI -quantile cuts
and their centers, τ = 0.5, obtained for reference points z0 =
−1.9,−1.8, . . . , 1.9 from n = 9 999 observations following the
regression model (Y1, Y2) = (Z,Z2) + (1 + 3| sin(πZ/2)|)ε where
Z ∼ U(−2, 2) is independent of ε ∼ N(0, 1/4) × N(0, 1/4).
They assume a general quadratic trend in each component and
(a) homoscedasticity or (b) the right form of heteroscedasticity.
Both the quantile curves and data points lighten with increasing
values of the corresponding regressor.

models.

The four plots in Figure 1 illustrate all the core types of heteroscedastic
behavior described in Section 5 with different numbers of observations. The ellip-
tical regression τ -gI -quantiles, τ = 0.3, were always computed from n regression
observations (Y1, Y2, Z) generated by the regression model (Y1, Y2)

′ = (Z, 0)′+q(ε)
where Z ∼ U([−1, 1]), ε ∼ U([−1, 1])×U([−2, 2]) is independent of Z (as every-
where below), and q(ε) denotes a transformation of ε specific to each case. As for
their parametrization by means of sτ , dτ , ατ , and cτ , always sτ = (β1Z, β2)

′ and
also d2τ = δ21 , ατ = α1, and cτ = γ1 up to the exceptions listed below together
with other specific features unique to individual pictures (a) to (d):
(a) no heteroscedasticity: n = 99, q(ε) = ε,
(b) rotational heteroscedasticity: n = 999, ατ = πα1Z, q(ε) = ε′P where
vec(P)′ = (cos(πZ/2), sin(πZ/2),− sin(πZ/2), cos(πZ/2)),
(c) multiplicative heteroscedasticity: n = 9 999, cτ = γ1 + γ2|Z| + γ3Z

2, q(ε) =
(0.1 + 0.9|Z|)ε, and
(d) proportional heteroscedasticity: n = 99 999, d2τ = exp(δ1Z), q(ε) = ε′P where
vec(P)′ = (exp(|Z|), 0, 0, exp(−|Z|)).
The objective function defining elliptical regression τ -g-quantiles was optimized
over all the scalar parameters occurring in the parametrization, as in all the fol-
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Figure 3: Elliptical regression quantiles and nonlinearity. The
plots display elliptical regression τ -gI -quantiles, τ ∈
{0.1, 0.3, 0.5, 0.7}, for 19 equidistant reference points z0 =
−9π/10,−8π/10, . . . , 9π/10, computed from n = 9 999 obser-
vations coming from a complicated nonlinear regression model
(Y1, Y2)′ = (1.5 + sin(Z), 1.5 + sin(2Z))′ + q(ε), Z ∼ U([−π, π])
is independent of ε ∼ U([−0.25, 0.25])×U([−0.25, 0.25]), where
(a) q(ε) = ε or (b) q(ε) = cos(Z)ε. The quantile curves lighten
with increasing z0 and the data points get darker while the re-
gressor values are decreasing.

lowing examples. In this case, it was over all θ = (β1, β2, δ1, α1, γ1, γ2, γ3)
′ ∈ R7

in case (c) and over θ = (β1, β2, δ1, α1, γ1)
′ ∈ R5 otherwise.

Figure 2 depicts elliptical regression τ -gI -quantiles with the trend, obtained
for τ = 0.5 from n = 9 999 observations following the regression model (Y1, Y2) =
(Z,Z2)+(1+3| sin(πZ/2)|)ε where Z ∼ U(−2, 2) and ε ∼ N(0, 1/4)×N(0, 1/4).
They were parametrized with sτ = (β1 +β2Z+β3Z

2, β4 +β5Z+β6Z
2)′, d2τ = δ21 ,

ατ = α1 and (a) cτ = γ1 or (b) cτ = γ1 +γ2| sin(πZ/2)|+γ3 sin2(πZ/2); compare
it to Figure 5 of [20] that is based on the same data generating model. This figure
reminds you that one can easily enforce homoscedasticity or numerous equality
constraints on model parameters when examining various submodels. In this
particular case, the knowledge of the scale period is used in advance.

Figure 3 is inspired by the well known Lissajous curves and highlights the
fact that the parametric elliptical regression τ -g-quantiles are especially conve-
nient for fitting highly nonlinear models if one has an idea how to correctly
describe the nonlinearity. They are computed for τ ∈ {0.1, 0.3, 0.5, 0.7} and
gI from n = 9 999 observations coming from a complicated nonlinear regres-
sion model (Y1, Y2)

′ = (1.5 + sin(Z), 1.5 + sin(2Z))′ + q(ε), Z ∼ U([−π, π]),
ε ∼ U([−0.25, 0.25])×U([−0.25, 0.25]), where (a) q(ε) = ε or (b) q(ε) = cos(Z)ε.
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The quantile parameters were always looked for in the same form with generally
τ -dependent coefficients: sτ = (β1 + β2 sin(β3Z), β4 + β5 sin(β6Z))′, d2τ = δ21 ,
ατ = α1, and cτ = γ1 + γ22 cos2(γ3Z).

The elliptical regression quantile methodology remains under investigation
also in the next section where it is applied to real biometric data.

9. Application

For the sake of comparison, the parametric elliptical regression quantile
methodology is tested on the same body girth measurements data of [19] as in
[16], namely on n = 260 observations of calf maximum girth Y1 (cm) and thigh
(maximum) girth Y2 (cm) of the physically active women whose age (years),
weight (kg), height (cm) and body mass index (BMI = 10000weight/height2)
are separately tried as the only regressor Z in the attempts to explain Y1 and
Y2. Although the observations do not constitute a random sample from any well-
defined population, they are considered suitable for illustrating various statistical
concepts.

In this particular case study, the parametric elliptical regression τ -g-quant-
iles are computed for g = gI . They are plotted only for τ ∈ {0.1, 0.9} and
for Z = z0 where z0 is equal to the empirical pth quantile of the regressor,
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results are displayed in the same way as in Figure
7 of [16] to make the comparison as easy as possible. The only notable difference
lies in the colors and quantile levels. That is to say that the pictures here are
only black-and-white and, consequently, they illustrate the elliptical regression τ -
gI -quantiles only for two representative values of τ to stay legible. Note also that
the quantile levels used for indexing the elliptical regression quantiles by their
overall probability coverage are not related to those used by the multiple-output
directional quantile regression of [16] or [29] in any predictable way.

Figure 4 adopts the parametrization sτ = (β1 + β2Z, β3 + β4Z)′, d2τ = δ21 ,
ατ = α1, and cτ = γ1 + γ2Z (with possibly different coefficients for each τ) that
allows for changes in location and scale and thus mimics the model used in [16]
quite closely. Not surprisingly, it also produces similar output. Figures 4(a) and
4(c) clearly reveal certain location shift and scale increase of plotted τ -quantile
cuts caused by increasing weight and BMI, respectively. Figure 4(b) indicates
that age influences only the location and volume of the outer quantile cuts but
not of the inner ones. Figure 4(d) suggests that increasing height shifts both the
inner and outer quantile cuts in mutually orthogonal directions but only affects
the volume of the outer ones. Although all of these patterns can be more or less
observed in Figure 7 of [16] as well, they are more clearly articulated through the
simple elliptical shapes here. See also [18] and [14] for other quantile regression
fits of the same data and their explanations.
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Figure 4: Application to real data I. The plots illustrate the depen-
dence of female calf maximum girth (Y1) and thigh (maximum)
girth (Y2) on (a) weight, (b) age, (c) BMI, or (d) height by means
of parametric elliptical gI -quantile regression with a single re-
gressor (Z), constant matrix parameter A, linear inflation factor
c, and linear trend s. The elliptical regression gI -quantiles are
displayed for both τ = 0.1 (solid line) and τ = 0.9 (dashed line)
and for regressor values z0 equal to the empirical pth quantile
of Z, p = 0.1, 0.3, 0.5, 0.7, and 0.9. The quantile curves lighten
with increasing p and the data points get darker while the re-
gressor values are decreasing.

Figure 5 plots the results regarding BMI for the generalized parametrization
with d2τ = (δ1 + δ2Z)2, ατ = α1 + α2Z, and the other settings left unchanged, as
in Figure 4(c). The modification permits more flexible changes of the regression
quantile shape and is able to detect even the slight rotation of the outer quantile
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Figure 5: Application to real data II. The plot shows the dependence
of female calf maximum girth (Y1) and thigh (maximum) girth
(Y2) on BMI by means of parametric elliptical quantile regres-
sion assuming linear trend and a general form of heteroscedastic-
ity. The elliptical regression gI -quantiles are displayed for both
τ = 0.1 (solid line) and τ = 0.9 (dashed line) and for regressor
values z0 equal to the empirical pth quantile of the regressor,
p = 0.1, 0.3, 0.5, 0.7, and 0.9. The quantile curves lighten with
increasing p and the data points get darker while the regressor
value is decreasing.

cuts with increasing BMI, observed in [16].

Although the analysis above is too simplistic to establish anything certain
about female legs, it clearly demonstrates that the generalized parametric ellip-
tical quantile regression is a powerful and flexible analytical method capable of
pointing out even the smallest subtleties in the data behavior.

10. Concluding Remarks

All the presented theory and pictures demonstrate that the generalized
parametric elliptical quantile regression may lead to natural and reasonable fits,
even when the assumption of conditional symmetry cannot be relied on, as in Sec-
tion 9. That is to say that the conditional central symmetry may simplify model
validation and make the results from a well parametrized model particularly easy
to interpret, but it is not strictly required for the method to work.

Sections 7, 8, and 9 also tacitly assume that the sample estimators of the
quantile coefficients and cuts are consistent. It still has to be proved in full
generality although it is already known in some special cases; see [14].
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There is always a risk that the complicated non-convex optimization behind
the generalized parametric elliptical quantile regression will terminate without
finding the real global minimum. Nevertheless, this threat can be fought back by
using global optimization strategies and model validation tools. And this problem
should not theoretically appear at all for g(t) = t and well-specified or specific
models [14], and it is thus not likely to be severe in very similar situations.

The dependence of generalized parametric elliptical regression quantiles
on function g may rise another concern as it may seem to introduce too much
arbitrariness into the model selection. However, simple fully affine equivariant
parametrizations strongly ask for a power function g, and then its selection be-
comes as arbitrary as the choice of p > 0 in the standard Lp regression. Only
L2 and L1 regression methods are usually used because of their simplicity and
easily interpretable results. And the same reasons lead to the choices g(t) = t or
g(t) =

√
t in the generalized parametric elliptical quantile regression, though the

latter seems reasonable only in certain special cases.

This article should be interpreted only as a single step on the long way
to the successful elliptical quantile regression methodology. The next steps will
include nonparametric generalizations, statistical inference, and a powerful and
reliable software support.

It is difficult to predict if the proposed generalized parametric elliptical
quantile regression withstands the test of time but, for the time being, it appears
quite promising.
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[15] Hallin, M. and Šiman, M. (2017). Multiple-output quantile regression. In
“Handbook of Quantile Regression” (R. Koenker, V. Chernozhukov, X. He and
L. Peng, Eds.), Chapman and Hall/CRC.
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[34] Šiman, M. (2011). On exact computation of some statistics based on projection
pursuit in a general regression context, Communications in Statistics - Simulation
and Computation, 40, 948–956.
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