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Abstract:

• Verification bias is a well known problem that can affect the statistical evaluation of
the predictive ability of a diagnostic test when the true disease status is unknown
for some of the patients under study. In this paper, we deal with the assessment of
continuous diagnostic tests when an (ordinal) three-class disease status is considered
and propose a fully nonparametric verification bias-corrected estimator of the ROC
surface based on nearest-neighbor imputation. Consistency and asymptotic normality
of the proposed estimator are proved under the missing at random assumption, and its
finite sample behavior is investigated by means of Monte Carlo experiments. Variance
estimation is also discussed and an illustrative example is presented.
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1. INTRODUCTION

The assessment of diagnostic tests is an important issue in modern medicine.
In a two-class problem, i.e. when the disease status has two categories (e.g.,
“healthy” and “diseased”), for a diagnostic test T that yields a continuous mea-
sure, the receiver operating characteristic (ROC) curve is a popular tool for dis-
playing the ability of the test to distinguish between the classes. Assuming,
without loss of generality, that higher test values indicate a higher likelihood of
disease, the ROC curve is defined as the set of points {(1−TNR(c),TPR(c)), c ∈
(−∞,∞)} in the unit square, where c is a cut point value, TPR(c) = Pr(T ≥
c| subject is diseased) is the true positive rate at c and TNR(c) = Pr(T <
c| subject is non–diseased) is the true negative rate at c. The shape of the ROC
curve allows to evaluate the ability of the test. For example, a ROC curve equal
to a straight line joining points (0, 0) and (1, 1) represents a diagnostic test which
is the random guess. A commonly used summary measure of the overall perfor-
mance of the test is the area under ROC curve (AUC). Under correct ordering,
values of AUC range from 0.5, suggesting that the test is no better than chance
alone, to 1.0, which indicates a perfect test. See, for example, [13] and [17] as
general references.

In some medical studies, the disease status often involves three classes; see,
for example, [5], [6] and [10]. In such situations, quantities used to evaluate the
accuracy of tests are the true class fractions (TCF’s). These quantities are defined
as generalizations of TPR and TNR. For a given pair of cut points (c1, c2) such
that c1 < c2, the true class fractions TCF’s of the continuous test T at (c1, c2)
are

TCF1(c1) = Pr(T < c1|class 1) = 1− Pr(T ≥ c1|class 1),

TCF2(c1, c2) = Pr(c1 ≤ T < c2|class 2)

= Pr(T ≥ c1|class 2)− Pr(T ≥ c2|class 2),

TCF3(c2) = Pr(T ≥ c2|class 3) = Pr(T ≥ c2|class 3).

The plot of (TCF1, TCF2, TCF3) at various values of the pair (c1, c2) pro-
duces the ROC surface, a generalization of the ROC curve to the unit cube
(see [10],[11],[15]). The ROC surface is the region defined by the triangle with
vertices (0, 0, 1), (0, 1, 0), and (1, 0, 0) if the three TCF’s are identical for every
pair (c1, c2). In this case, we say that the diagnostic test is, again, the random
guess. The ROC surface of an effective test lies in the unit cube above such
region. A summary measure of the overall diagnostic accuracy of the test under
consideration is the volume under the ROC surface (VUS), which can be seen
as a generalization of the AUC. For correctly ordered categories, values of VUS
vary from 1/6 to 1, ranging from bad to perfect diagnostic tests.

The application of a diagnostic test in the clinical practice requires a pre-
liminary rigorous statistical assessment of its performance. Clearly, the true ROC
curve (or surface) of the test under assessment and its AUC (or VUS) are un-
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known, so that the statistical evaluation relies on suitable inferential procedures,
typically based on measurements collected on a sample of patients. The assess-
ment requires to ascertain the true disease status of the patients in the sample,
a verification that it is generally done by employing the most accurate available
test, the so-called gold standard (GS) test. Some times, however, the GS test
is too expensive, or too invasive, or both to be used on large samples, so that
only a subset of patients undergoes disease verification. It happens that statisti-
cal evaluations based only on data from subjects with verified disease status are
typically biased, an effect known as verification bias.

Correcting for verification bias is a well known issue of medical statistics.
Various methods have been developed to deal with the problem, most of which
refer to the two-class case and assume that the true disease status, if missing,
is missing at random (MAR, see [9]). We recall, among others, papers [1], [2],
[3], [7], [14] and [17]. In particular, for continuous tests, [3] proposes four types
of partially parametric estimators of TPR and TNR under the MAR assump-
tion, i.e., full imputation (FI), mean score imputation (MSI), inverse probability
weighting (IPW) and semiparametric efficient (SPE, also known as doubly robust
DR) estimators. [1] and [2], instead, propose a fully nonparametric approach for
ROC curve and AUC estimation, respectively.

The issue of correcting for verification bias in ROC surface analysis is very
scarcely considered in the literature. To the best of our knowledge, only [5] and
[16] discuss the issue. [5] proposes a maximum likelihood approach for estimation
of the ROC surface and corresponding VUS for ordinal diagnostic tests, whereas
[16] extends methods in [3] to the estimation of ROC surfaces of continuous
diagnostic tests. It is worth noting that FI, MSI, IPW and SPE estimators in
[16] are partially parametric estimators and their use requires the specification
of parametric regression models for the probability of a subject being correctly
classified with respect to the disease state, or the probability of a subject being
verified (i.e., tested by GS), or both. As a consequence, a wrong specification of
such parametric models negatively affects the behavior of the estimators, that no
longer are consistent.

To avoid problems due to model misspecification, in this paper we propose
a fully nonparametric approach to estimate TCF1, TCF2 and TCF3 in the pres-
ence of verification bias, for continuous diagnostic tests. The proposed approach
is based on a nearest-neighbor (NN) imputation of the missing data and extends
an idea developed in [1]. Consistency and asymptotic normality of the estima-
tors derived from the proposed method are studied. In addition, estimation of
their variance is also discussed. Usefulness of our proposal and advantages in
comparison with partially parametric estimators is assessed with the aid of some
simulation experiments. An illustrative example is also given.

The rest of paper is organized as follows. In Section 2, we review partially
parametric methods for correcting for verification bias in case of continuous tests.
The proposed nonparametric method for (pointwise) estimating ROC surfaces
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and the related asymptotic results are presented in Section 3. In Section 4, we
discuss variance-covariance estimation and in Section 5 we give some simulation
results. An application is illustrated in Section 6. Finally, conclusions are drawn
in Section 7. Some technical details and other simulation results are available in a
Supplementary Material, downloadable at http://paduaresearch.cab.unipd.

it/11221/.

2. PARTIALLY PARAMETRIC ESTIMATORS OF ROC SUR-
FACES

Consider a study with n subjects, for whom the result of a continuous
diagnostic test T is available. For each subject, D denotes the true disease status,
that can possibly be unknown. Hereafter, we will describe the true disease status
as a trinomial random vector D = (D1, D2, D3). Dk is a binary variable that takes
1 if the subject belongs to class k, k = 1, 2, 3 and 0 otherwise. Here, class 1, class
2 and class 3 can be referred, for example, as “non-diseased”, “intermediate”
and “diseased”, and are assumed to be ordered. Further, let V be a binary
verification status for a subject, such that V = 1 if he/she is undergoes the
GS test, and V = 0 otherwise. In practice, some information, other than the
results from the test T , can be obtained for each patient. Let A be the covariate
vector for the patients, that may be associated both with D and V . We are
interested in estimating the ROC surface of T , and hence the true class fractions
TCF1(c1) = Pr(Ti < c1|D1i = 1), TCF2(c1, c2) = Pr(c1 ≤ Ti < c2|D2i = 1) and
TCF3(c2) = Pr(Ti ≥ c2|D3i = 1), for fixed constants c1, c2, with c1 < c2.

When all patients have their disease status verified by a GS, i.e., Vi = 1
for all i = 1, . . . , n, for any pair of cut points (c1, c2), the true class fractions
TCF1(c1), TCF2(c1, c2) and TCF3(c2) can be easily estimated by

T̂CF1(c1) = 1−

n∑
i=1

I(Ti ≥ c1)D1i

n∑
i=1

D1i

,

T̂CF2(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)D2i

n∑
i=1

D2i

,

T̂CF3(c2) =

n∑
i=1

I(Ti ≥ c2)D3i

n∑
i=1

D3i

,

where I(·) is the indicator function. It is straightforward to show that the above
estimators are consistent. However, they cannot be employed in case of incom-

http://paduaresearch.cab.unipd.it/11221/
http://paduaresearch.cab.unipd.it/11221/
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plete data, i.e. when Vi = 0 for some i = 1, . . . , n.

When only some subjects are selected to undergo the GS test, we need
to make an assumption about the selection mechanism. We assume that the
verification status V and the disease status D are mutually independent given
the test result T and covariate A. This means that Pr(V |T,A) = Pr(V |D, T, A)
or equivalently Pr(D|T,A) = Pr(D|V, T,A). Such assumption is a special case of
the missing at random (MAR) assumption (see [9]).

Under MAR assumption, verification bias-corrected estimation of the true
class fractions is discussed in [16], where (partially) parametric estimators, based
on four different approaches, are given. In particular, full imputation (FI) esti-
mators of TCF1(c1), TCF2(c1, c2) and TCF3(c2) are defined as

T̂CF1,FI(c1) = 1−

n∑
i=1

I(Ti ≥ c1)ρ̂1i

n∑
i=1

ρ̂1i

,

T̂CF2,FI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)ρ̂2i

n∑
i=1

ρ̂2i

,(2.1)

T̂CF3,FI(c2) =

n∑
i=1

I(Ti ≥ c2)ρ̂3i

n∑
i=1

ρ̂3i

.

This method requires a parametric model (e.g. multinomial logistic regression
model) to obtain the estimates ρ̂ki of ρki = Pr(Dki = 1|Ti, Ai), using only data
from verified subjects. Differently, the mean score imputation (MSI) approach
only uses the estimates ρ̂ki for the missing values of disease status Dki. Hence,
MSI estimators are

T̂CF1,MSI(c1) = 1−

n∑
i=1

I(Ti ≥ c1) [ViD1i + (1− Vi)ρ̂1i]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i]

,

T̂CF2,MSI(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i]

,(2.2)

T̂CF3,MSI(c2) =

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i]

.

The inverse probability weighting (IPW) approach weights each verified subject
by the inverse of the probability that the subject is selected for verification. Thus,
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TCF1(c1),TCF2(c1, c2) and TCF3(c2) are estimated by

T̂CF1,IPW(c1) = 1−

n∑
i=1

I(Ti ≥ c1)Viπ̂
−1
i D1i

n∑
i=1

Viπ̂
−1
i D1i

,

T̂CF2,IPW(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)Viπ̂
−1
i D2i

n∑
i=1

Viπ̂
−1
i D2i

,(2.3)

T̂CF3,IPW(c2) =

n∑
i=1

I(Ti ≥ c2)Viπ̂
−1
i D3i

n∑
i=1

Viπ̂
−1
i D3i

,

where π̂i is an estimate of the conditional verification probabilities πi = Pr(Vi =
1|Ti, Ai). Finally, the semiparametric efficient (SPE) estimators are

T̂CF1,SPE(c1) = 1−

n∑
i=1

I(Ti ≥ c1)
{
ViD1i
π̂i
− ρ̂1i(Vi−π̂i)

π̂i

}
n∑
i=1

{
ViD1i
π̂i
− ρ̂1i(Vi−π̂i)

π̂i

} ,

T̂CF2,SPE(c1, c2) =

n∑
i=1

I(c1 ≤ Ti < c2)
{
ViD2i
π̂i
− ρ̂2i(Vi−π̂i)

π̂i

}
n∑
i=1

{
ViD2i
π̂i
− ρ̂2i(Vi−π̂i)

π̂i

} ,(2.4)

T̂CF3,SPE(c2) =

n∑
i=1

I(Ti ≥ c2)
{
ViD3i
π̂i
− ρ̂3i(Vi−π̂i)

π̂i

}
n∑
i=1

{
ViD3i
π̂i
− ρ̂3i(Vi−π̂i)

π̂i

} .

Estimators (2.1)-(2.4) represent an extension to the three-classes problem of the
estimators proposed in [3]. SPE estimators are also known to be doubly robust
estimators, in the sense that they are consistent if either the ρki’s or the πi’s are
estimated consistently. However, SPE estimates could fall outside the interval
(0, 1). This happens because the quantities ViDkiπ̂

−1
i − ρ̂ki(Vi − π̂i)π̂

−1
i can be

negative.

3. NONPARAMETRIC ESTIMATORS

3.1. The proposed method

All the verification bias-corrected estimators of TCF1(c1), TCF2(c1, c2) and
TCF3(c2) revised in the previous section belong to the class of (partially) para-
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metric estimators, i.e., they need regression models to estimate ρki = Pr(Dki =
1|Ti, Ai) and/or πi = Pr(Vi = 1|Ti, Ai). In what follows, we propose a fully non-
parametric approach to the estimation of TCF1(c1),TCF2(c1, c2) and TCF3(c2).
Our approach is based on the K-nearest neighbor (KNN) imputation method.
Hereafter, we shall assume that A is a continuous random variable.

Recall that the true disease status is a trinomial random vector D =
(D1, D2, D3) such that Dk is a n Bernoulli trials with success probability θk =
Pr(Dk = 1). Note that θ1 + θ2 + θ3 = 1. Since parameters θk are the means of
the random variables Dk, we can use the KNN estimation procedure discussed in
[12] to obtain nonparametric estimates θ̂k,KNN. More precisely, we define

θ̂k,KNN =
1

n

n∑
i=1

[ViDki + (1− Vi)ρ̂ki,K ] , K ∈ {1, 2, 3, . . .},

where ρ̂ki,K =
1

K

K∑
l=1

Dki(l), and
{

(Ti(l), Ai(l), Dki(l)) : Vi(l) = 1, l = 1, . . . ,K
}

is a

set of K observed data triplets and (Ti(l), Ai(l)) denotes the l-th nearest neighbor
to (Ti, Ai) among all (T,A)’s corresponding to verified patients, i.e., patients with
V = 1.

Let βjk = Pr(T ≥ cj , Dk = 1), with j ∈ {1, 2}, k ∈ {1, 2, 3} and k ≥ j.
Then, we can define the KNN estimates of βjk as

β̂jk,KNN =
1

n

n∑
i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρ̂ki,K ] .

It follows that the KNN imputation estimators for TCFk are

T̂CF1,KNN(c1) = 1− β̂11

θ̂1

=

n∑
i=1

I(Ti < c1) [ViD1i + (1− Vi)ρ̂1i,K ]

n∑
i=1

[ViD1i + (1− Vi)ρ̂1i,K ]

,

T̂CF2,KNN(c1, c2) =
β̂12 − β̂22

θ̂2

=

n∑
i=1

I(c1 ≤ Ti < c2) [ViD2i + (1− Vi)ρ̂2i,K ]

n∑
i=1

[ViD2i + (1− Vi)ρ̂2i,K ]

,(3.1)

T̂CF3,KNN(c2) =
β̂23

θ̂3

=

n∑
i=1

I(Ti ≥ c2) [ViD3i + (1− Vi)ρ̂3i,K ]

n∑
i=1

[ViD3i + (1− Vi)ρ̂3i,K ]

.

Note that KNN estimators (3.1) can be seen as nonparametric versions of the
MSI estimators (2.2).
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3.2. Asymptotic distribution

Let ρk(t, a) = Pr(Dk = 1|T = t, A = a) and π(t, a) = Pr(V = 1|T = t, A =
a). The KNN imputation estimators of TCF1(c1), TCF2(c1, c2) and TCF3(c2) are
consistent and asymptotically normal. In fact, we have the following theorems.

Theorem 3.1. Assume the functions ρk(t, a) and π(t, a) are finite and
first-order differentiable. Moreover, assume that the expectation of 1/π(T,A)
exists. Then, for a fixed pair of cut points (c1, c2) such that c1 < c2, the KNN

imputation estimators T̂CF1,KNN(c1), T̂CF2,KNN(c1, c2) and T̂CF3,KNN(c2) are
consistent.

Proof: Since the disease status Dk is a Bernoulli random variable, its
second-order moment, E(D2

k), is finite. According to the first assumption, we can
show that the conditional variance of Dk given T and A, Var(Dk|T = t, A = a),
is equal to ρk(t, a) [1− ρk(t, a)] , which is clearly finite. Thus, by an application
of Theorem 1 in [12], the KNN imputation estimators θ̂k,KNN are consistent.

Now, observe that, for j ∈ {1, 2}, k ∈ {1, 2, 3} and k ≥ j,

β̂jk,KNN − βjk =
1

n

n∑
i=1

I(Ti ≥ cj) [ViDki + (1− Vi)ρki]

+
1

n

n∑
i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)− βjk

=
1

n

n∑
i=1

I(Ti ≥ cj)Vi [Dki − ρki] +
1

n

n∑
i=1

[I(Ti ≥ cj)ρki − βjk]

+
1

n

n∑
i=1

I(Ti ≥ cj)(1− Vi)(ρ̂ki,K − ρki)

= Sjk +Rjk + Tjk.

Here, the quantities Rjk, Sjk and Tjk are similar to the quantities R,S and T in
the proof of Theorem 2.1 in [4] and of Theorem 1 in [12]. Thus, we have that

√
nRjk

d→ N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→ N
(
0,E

[
π(T,A)δ2

jk(T,A)
])
,

where δ2
jk(T,A) is the conditional variance of I(T ≥ cj , Dk = 1) given T,A. From

proof of Theorem 1 in [12], we also get Tjk = Wjk + op(n
−1/2), where

Wjk =
1

n

n∑
i=1

I(Ti ≥ cj)(1− Vi)

[
1

K

K∑
l=1

(
Vi(l)Dki(l) − ρki(l)

)]
,
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with E(Wjk) = 0,
√
nWjk

d→ N
(

0, σ2
Wjk

)
, and

(3.2) σ2
Wjk

=
1

K
E
[
(1− π(T,A))δ2

jk(T,A)
]

+ E

[
(1− π(T,A))2δ2

jk(T,A)

π(T,A)

]
.

This leads to the consistency of β̂jk,KNN, i.e, β̂jk,KNN
p→ βjk. It follows that

T̂CF1,KNN(c1) = 1 − β̂11
θ̂1

, T̂CF2,KNN(c1, c2) = β̂12−β̂22
θ̂2

and T̂CF3,KNN(c2) = β̂23
θ̂3

are consistent.

Theorem 3.2. Assume that the conditions in Theorem 3.1 hold. We
get

(3.3)
√
n


 T̂CF1,KNN(c1)

T̂CF2,KNN(c1, c2)

T̂CF3,KNN(c2)

−
 TCF1(c1)

TCF2(c1, c2)
TCF3(c2)


 d→ N (0,Ξ),

where Ξ is a suitable matrix.

Proof: From proof of Theorem 3.1, we have

β̂jk,KNN − βjk = Sjk +Rjk +Wjk + op(n
−1/2),

√
nRjk

d→ N (0,Var [I(T ≥ cj)ρk(T,A)]) ,
√
nSjk

d→ N
(

0,E
[
π(T,A)δ2

jk(T,A)
])

and
√
nWjk

d→ N (0, σ2
Wjk

). Moreover, arguments in the proof of Theorem 2.1 in

[4] and of Theorem 1 in [12], allows to state that Wjk asymptotically behaves
as a sample mean, Sjk, Rjk and Wjk are jointly asymptotically normal, and
√
n(β̂jk,KNN − βjk)

d→ N (0, σ2
jk), with σ2

jk =
[
βjk (1− βjk) + ω2

jk

]
and

ω2
jk =

(
1 +

1

K

)
E
[
I(T ≥ cj)ρk(T,A)(1− ρk(T,A))(1− π(T,A))

]
+ E

[
I(T ≥ cj)ρk(T,A)

(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
.(3.4)

Finally, a direct application of Theorem 1 in [12] gives that
√
n(θ̂k,KNN−θk) con-

verges to a normal random variable with mean 0 and variance σ2
k =

[
θk(1− θk) + ω2

k

]
,

where

ω2
k =

(
1 +

1

K

)
E [ρk(T,A)(1− ρk(T,A))(1− π(T,A))]

+ E
[
ρk(T,A)(1− ρk(T,A))(1− π(T,A))2

π(T,A)

]
.(3.5)

Since
√
n
(
θ̂1,KNN, θ̂2,KNN, β̂11,KNN, β̂12,KNN, β̂22,KNN, β̂23,KNN

)>
is asymptotically

normally distributed with mean (θ1, θ2, β11, β12, β22, β23)> and suitable covariance
matrix Ξ∗, result (3.3) follows by applying the multivariate delta method to

h(θ̂1, θ̂2, β̂11, β̂12, β̂22, β̂23) =

(
1− β̂11

θ̂1

,
(β̂12 − β̂22)

θ̂2

,
β̂23

(1− θ̂1 − θ̂2)

)
.
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Let us denote elements in the asymptotic covariance matrix Ξ as follows

Ξ =

 ξ2
1 ξ12 ξ13

ξ12 ξ2
2 ξ23

ξ13 ξ23 ξ2
3

 .

Recall that, from proof of Theorem 3.2, σ2
k =

[
θk(1− θk) + ω2

k

]
and σ2

jk = βjk(1−
βjk) +ω2

jk, where ω2
k and ω2

jk are given in (3.5) and (3.4), respectively. In Section
S1, Supplementary Material, we show that

ξ2
1 =

β2
11

θ4
1

σ2
1 +

σ2
11

θ2
1

− β11

θ3
1

(σ2
1 + σ2

11 − ζ2
11),

ξ2
2 = σ2

2

(β12 − β22)2

θ4
2

+
λ2

θ2
2

− β12 − β22

θ3
2

(σ2
12 − σ2

22 − ζ2
12 + ζ2

22),

ξ2
3 =

β2
23σ

2
3

θ4
3

+
σ2

23

θ2
3

− β23

θ3
3

(σ2
3 + σ2

23 − ζ2
23),

ξ12 =
1

θ1θ2

[
ψ2

1212 + β11(β12 − β22)
]
− β11

θ2
1θ2

[
ψ2

1212 + θ1(β12 − β22)
]

− β12 − β22

θ2
2θ1

(
β11

θ1
σ∗12 + ψ2

112 + θ2β11

)
,(3.6)

ξ13 =
1

θ3

[
−β11

θ2
1

(ψ2
213 + θ1β23) +

ψ2
213 + β11β23

θ1

]
+

β23

θ1θ2
3

×
[
β11

θ1

(
σ2

1 + σ∗12

)
− ψ2

113 − θ3β11

]
,

ξ23 =
1

θ2θ3

[
−β23(β12 − β22) +

β12 − β22

θ2
(ψ2

223 + θ2β23)

]
+

β23

θ2θ2
3

[
ψ2

1223 + θ3(β12 − β22)− β12 − β22

θ2
(σ2

2 + σ∗12)

]
,

where ζ2
jk = γjk(1 − γjk) + η2

jk, λ2 = (β12 − β22)[1 − (β12 − β22)] + ω2
12 − ω2

22,

σ∗12 = −(θ1θ2 + ψ2
12), with γjk = Pr (T < cj , Dk = 1) and

η2
jk =

K + 1

K
E
[
I(T < cj)ρk(T,A){1− ρk(T,A)}{1− π(T,A)}

]
+ E

[
I(T < cj)ρk(T,A)

{1− ρk(T,A)}{1− π(T,A)}2

π(T,A)

]
,

ψ2
12 =

(
1 +

1

K

)
E {[1− π(T,A)]ρ1(T,A)ρ2(T,A)}

+ E
{

[1− π(T,A)]2ρ1(T,A)ρ2(T,A)

π(T,A)

}
,

ψ2
1212 =

(
1 +

1

K

)
E
{

[1− π(T,A)]I(c1 ≤ T < c2)ρ1(T,A)ρ2(T,A)

}
+ E

{
[1− π(T,A)]2I(c1 ≤ T < c2)

ρ1(T,A)ρ2(T,A)

π(T,A)

}
,
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ψ2
112 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ2(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ2(T,A)

π(T,A)

}
,

ψ2
213 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c2)ρ1(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c2)ρ1(T,A)ρ3(T,A)

π(T,A)

}
,

ψ2
113 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c1)ρ1(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c1)ρ1(T,A)ρ3(T,A)

π(T,A)

}
,

ψ2
223 =

(
1 +

1

K

)
E {[1− π(T,A)]I(T ≥ c2)ρ2(T,A)ρ3(T,A)}

+ E
{

[1− π(T,A)]2I(T ≥ c2)ρ2(T,A)ρ3(T,A)

π(T,A)

}
,

ψ2
1223 =

(
1 +

1

K

)
E
{

[1− π(T,A)]I(c1 ≤ T < c2)ρ2(T,A)ρ3(T,A)

}
+ E

{
[1− π(T,A)]2I(c1 ≤ T < c2)

ρ2(T,A)ρ3(T,A)

π(T,A)

}
.

Therefore, from (3.6), the elements of Ξ depend, among others, on quantities as
ω2
k, ω

2
jk, γjk, η

2
jk, ψ

2
1212, ψ2

112, ψ2
213, ψ2

12, ψ2
113, ψ2

223 and ψ2
1223. As a consequence,

to obtain consistent estimates of the asymptotic variances and covariances, we
ultimately need to estimate these quantities.

3.3. Choice of K and of the distance measure

The proposed method is based on nearest-neighbor imputation, which re-
quires the choice of a value for K as well as a distance measure.

In practice, the selection of a suitable distance is typically dictated by fea-
tures of the data and possible subjective evaluations; thus, a general indication
about an adequate choice is difficult to express. In many cases, the simple Eu-
clidean distance may be appropriate. Other times, the researcher may wish to
consider specific characteristics of data at hand, and then make a different choice.
For example, the diagnostic test result T and the auxiliary covariate A could be
heterogeneous with respect to their variances (in particular when the variables
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are measured on different scales). In this case, the choice of the Mahalanobis
distance may be suitable. A further discussion on this topic in the context of
medical studies can be found in [8]. Therein, we refer the reader to results rela-
tive to numerical datasets.

As for the choice of the size of the neighborhood, [12] argue that nearest-
neighbor imputation with a small value of K typically yields negligible bias of
the estimators, but a large variance; the opposite happens with a large value of
K. The authors suggest that the choice of K ∈ {1, 2} is generally adequate when
the aim is to estimate a mean. A similar comment is also raised by [1] and [2],
i.e., a small value of K, within the range 1–3, may be a good choice to estimate
ROC curves and AUC. However, the authors stress that, in general, the choice
of K may depend on the dimension of the feature space, and propose to use
cross–validation to find K. Specifically, the authors indicate that a suitable value
of the size of neighbor could be found by

K∗ = arg min
K

1

nver
‖D − ρ̂K‖1 ,

where D is a binary disease status, ‖ · ‖1 denotes L1 norm for vector and nver
is the number of verified subjects. The formula above can be generalized to our
three–class case. In fact, when the disease status has q categories (q ≥ 3), the
difference between D and ρ̂K is a nver × (q − 1) matrix. In such situation, the
selection rule could be

(3.7) K∗ = arg min
K

1

nver(q − 1)
‖D − ρ̂K‖1,1 ,

where ‖A‖1,1 denotes L1,1 norm of matrix A, i.e.,

‖A‖1,1 =

q−1∑
j=1

(
nver∑
i=1

|aij |

)
.

4. VARIANCE-COVARIANCE ESTIMATION

Consider first the problem of estimating the variances of T̂CF1,KNN(c1),

T̂CF2,KNN(c1, c2) and T̂CF3,KNN(c2). In a nonparametric framework, quantities
as ω2

k, ω
2
jk and η2

jk in Section 3.2 can be estimated by their empirical counterparts,
using also the plug–in method. Here, we consider an approach that uses a nearest-
neighbor rule to estimate the functions ρk(T,A) and the propensity score π(T,A),
that appear in the expressions of ω2

k, ω
2
jk and η2

jk. In particular, for the conditional
probabilities of disease, we can use KNN estimates ρ̃ki = ρ̂ki,K̄ , where the integer
K̄ must be greater than one to avoid estimates equal to zero. For the conditional
probabilities of verification, we can resort to the KNN procedure proposed in [1],
which considers the estimates

π̃i =
1

K∗i

K∗
i∑

l=1

Vi(l),
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where
{

(Ti(l), Ai(l), Vi(l)) : l = 1, . . . ,K∗i
}

is a set of K∗i observed triplets and
(Ti(l), Ai(l)) denotes the l-th nearest neighbor to (Ti, Ai) among all (T,A)’s. When
Vi equals 0, K∗i is set equal to the rank of the first verified nearest neighbor to the
unit i, i.e., K∗i is such that Vi(K∗

i ) = 1 and Vi = Vi(1) = Vi(2) = . . . = Vi(K∗
i −1) = 0.

In case of Vi = 1, K∗i is such that Vi = Vi(1) = Vi(2) = . . . = Vi(K∗
i −1) = 1, and

Vi(K∗
i ) = 0, i.e., K∗i is set equal to the rank of the first non–verified nearest

neighbor to the unit i. Such a procedure automatically avoids zero values for the
π̃i’s.

Then, based on the ρ̃ki’s and π̃i’s, we obtain the estimates

ω̂2
k =

K + 1

nK

n∑
i=1

ρ̃ki (1− ρ̃ki) (1− π̃i) +
1

n

n∑
i=1

ρ̃ki (1− ρ̃ki) (1− π̃i)2

π̃i
,

ω̂2
jk =

K + 1

nK

n∑
i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1

n

n∑
i=1

I(Ti ≥ cj)ρ̃ki (1− ρ̃ki) (1− π̃i)2

π̃i
,

η̂2
jk =

K + 1

nK

n∑
i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)

+
1

n

n∑
i=1

I(Ti < cj)ρ̃ki (1− ρ̃ki) (1− π̃i)2

π̃i
,

from which, along with θ̂k,KNN, β̂jk,KNN and

γ̂jk,KNN =
1

n

n∑
i=1

I(Ti < cj) [ViDki + (1− Vi)ρ̂ki,K ] ,

one derives the estimates of the variances of the proposed KNN imputation esti-
mators.

To obtain estimates of covariances, we need to estimate also the quantities
ψ2

1212, ψ2
112, ψ2

213, ψ2
12, ψ2

113, ψ2
223 and ψ2

1223. However, estimates of such quantities
are similar to those given above for ω2

k, ω
2
jk and η2

jk. For example,

ψ̂2
1212 =

K + 1

nK

n∑
i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)

+
1

n

n∑
i=1

I(c1 ≤ Ti < c2)ρ̃1iρ̃2i (1− π̃i)2

π̃i
.

Of course, there are other possible approaches to obtain variance and covari-
ance estimates. For instance, one could resort to a standard bootstrap procedure.
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5. SIMULATION STUDY

In this section, the ability of KNN method to estimate TCF1, TCF2 and
TCF3 is evaluated by using Monte Carlo experiments. We also compare the
proposed method with partially parametric approaches, namely, FI, MSI, IPW
and SPE approaches. As already mentioned, partially parametric bias-corrected
estimators of TCF1, TCF2 and TCF3 require parametric regression models to
estimate ρki = Pr(Dki = 1|Ti, Ai), or πi = Pr(Vi = 1|Ti, Ai), or both. A wrong
specification of such models may affect the estimators. Therefore, in the simula-
tion study we consider two scenarios: in the parametric estimation process,

(i) the disease model and the verification model are both correctly specified;

(ii) the disease model and the verification model are both misspecified.

In both scenarios, we execute 5000 Monte Carlo runs at each setting; we set three
sample sizes, i.e., 250, 500 and 1000 in scenario (i) and a sample size of 1000 in
scenario (ii).

We consider KNN estimators based on the Euclidean distance, with K = 1
and K = 3. This in light of the discussion in Section 3.4 and some results of a
preliminary simulation study presented in Section S5, Supplementary Material.
In such preliminary study, we compared the behavior of the KNN estimators for
several choices of the distance measure (Euclidean, Manhattan, Canberra and
Mahalanobis) and the size of the neighborhood (K = 1, 3, 5, 10, 20).

5.1. Correctly specified parametric models

The true disease is generated by a trinomial random vector (D1, D2, D3),
such that Dk is a Bernoulli random variable with success probability θk, k =
1, 2, 3. We set θ1 = 0.4, θ2 = 0.35 and θ3 = 0.25. The continuous test result T
and a covariate A are generated from the following conditional models

T,A|Dk ∼ N2 (µk,Σ) , k = 1, 2, 3,

where µk = (2k, k)> and

Σ =

(
σ2
T |D σT,A|D

σT,A|D σ2
A|D

)
.

We consider three different values for Σ, specifically(
1.75 0.1
0.1 2.5

)
,

(
2.5 1.5
1.5 2.5

)
,

(
5.5 3
3 2.5

)
,
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giving rise to a correlation between T and A equal to 0.36, 0.69 and 0.84, respec-
tively. The verification status V is generated by the following model

logit {Pr(V = 1|T,A)} = δ0 + δ1T + δ2A,

where we fix δ0 = 0.5, δ1 = −0.3 and δ2 = 0.75. This choice corresponds to a
verification rate of about 0.65. We consider six pairs of cut points (c1, c2), i.e.,
(2, 4), (2, 5), (2, 7), (4, 5), (4, 7) and (5, 7). Since the conditional distribution of T
given Dk is the normal distribution, the true parameters values are

TCF1(c1) = Φ

(
c1 − 2

σT |D

)
,

TCF2(c1, c2) = Φ

(
c2 − 4

σT |D

)
− Φ

(
c1 − 4

σT |D

)
,

TCF3(c2) = 1− Φ

(
c2 − 6

σT |D

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal
random variable.

In this set–up, FI, MSI, IPW and SPE estimators are computed under cor-
rect working models for both the disease and the verification processes. Therefore,
the conditional verification probabilities πi are estimated from a logistic model
for V given T and A with logit link. Under our data–generating process, the true
conditional disease model is a multinomial logistic model

Pr(Dk = 1|T,A) =
exp (τ0k + τ1kT + τ2kA)

1 + exp (τ01 + τ11T + τ21A) + exp (τ02 + τ12T + τ22A)

for suitable τ0k, τ1k, τ2k, where k = 1, 2.

Tables 1–3 show Monte Carlo means and standard deviations of the esti-
mators for the three true class factions. Results concern the estimators FI, MSI,
IPW, SPE, and the KNN estimator with K = 1 and K = 3 computed using
the Euclidean distance. Also, the estimated standard deviations are shown in
the tables. The estimates are obtained by using asymptotic results. To estimate
standard deviations of KNN estimators, we use the KNN procedure discussed in
Section 4, with K̄ = 2. Each table refers to a chosen value for Σ. The sample
size is 250. The results for sample sizes 500 and 1000 are presented in Section S2
of Supplementary Material.

As expected, the parametric approaches work well when both models for
ρk(t, a) and π(t, a) are correctly specified. FI and MSI estimators seem to be the
most efficient ones, whereas the IPW approach seems to provide less powerful
estimators, in general. The new proposals (1NN and 3NN estimators) yield also
good results, comparable, in terms of bias and standard deviation, to those of
the parametric competitors. Moreover, estimators 1NN and 3NN seem to achieve
similar performances, and the results about estimated standard deviations of
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KNN estimators seem to show the effectiveness of the procedure discussed in
Section 4.

Finally, some results of simulation experiments performed to explore the
effect of a multidimensional vector of auxiliary covariates are given in Section
S3, Supplementary Material. A vector A of dimension 3 is employed. The re-
sults in Table 7, Supplementary Material, show that KNN estimators still behave
satisfactorily.

Table 1:
Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations of the estimators for the true class
fractions, when n = 250 and the first value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)
True 0.5000 0.4347 0.9347
FI 0.5005 0.4348 0.9344 0.0537 0.0484 0.0269 0.0440 0.0398 0.0500
MSI 0.5005 0.4346 0.9342 0.0550 0.0547 0.0320 0.0465 0.0475 0.0536
IPW 0.4998 0.4349 0.9341 0.0722 0.0727 0.0372 0.0688 0.0702 0.0420
SPE 0.5010 0.4346 0.9344 0.0628 0.0659 0.0364 0.0857 0.0637 0.0363
1NN 0.4989 0.4334 0.9331 0.0592 0.0665 0.0387 0.0555 0.0626 0.0382
3NN 0.4975 0.4325 0.9322 0.0567 0.0617 0.0364 0.0545 0.0608 0.0372

cut points = (2, 5)
True 0.5000 0.7099 0.7752
FI 0.5005 0.7111 0.7761 0.0537 0.0461 0.0534 0.0440 0.0400 0.0583
MSI 0.5005 0.7104 0.7756 0.0550 0.0511 0.0566 0.0465 0.0467 0.0626
IPW 0.4998 0.7108 0.7750 0.0722 0.0701 0.0663 0.0688 0.0667 0.0713
SPE 0.5010 0.7106 0.7762 0.0628 0.0619 0.0627 0.0857 0.0604 0.0611
1NN 0.4989 0.7068 0.7738 0.0592 0.0627 0.0652 0.0555 0.0591 0.0625
3NN 0.4975 0.7038 0.7714 0.0567 0.0576 0.0615 0.0545 0.0574 0.0610

cut points = (2, 7)
True 0.5000 0.9230 0.2248
FI 0.5005 0.9229 0.2240 0.0537 0.0236 0.0522 0.0440 0.0309 0.0428
MSI 0.5005 0.9231 0.2243 0.0550 0.0285 0.0531 0.0465 0.0353 0.0443
IPW 0.4998 0.9238 0.2222 0.0722 0.0374 0.0765 0.0688 0.0360 0.0728
SPE 0.5010 0.9236 0.2250 0.0628 0.0362 0.0578 0.0857 0.0348 0.0573
1NN 0.4989 0.9201 0.2233 0.0592 0.0372 0.0577 0.0555 0.0366 0.0570
3NN 0.4975 0.9177 0.2216 0.0567 0.0340 0.0558 0.0545 0.0355 0.0563

cut points = (4, 5)
True 0.9347 0.2752 0.7752
FI 0.9347 0.2763 0.7761 0.0245 0.0412 0.0534 0.0179 0.0336 0.0583
MSI 0.9348 0.2758 0.7756 0.0271 0.0471 0.0566 0.0220 0.0404 0.0626
IPW 0.9350 0.2758 0.7750 0.0421 0.0693 0.0663 0.0391 0.0651 0.0713
SPE 0.9353 0.2761 0.7762 0.0386 0.0590 0.0627 0.0377 0.0568 0.0611
1NN 0.9322 0.2734 0.7738 0.0374 0.0572 0.0652 0.0342 0.0553 0.0625
3NN 0.9303 0.2712 0.7714 0.0328 0.0526 0.0615 0.0332 0.0538 0.0610

cut points = (4, 7)
True 0.9347 0.4883 0.2248
FI 0.9347 0.4881 0.2240 0.0245 0.0541 0.0522 0.0179 0.0444 0.0428
MSI 0.9348 0.4885 0.2243 0.0271 0.0576 0.0531 0.0220 0.0495 0.0443
IPW 0.9350 0.4889 0.2222 0.0421 0.0741 0.0765 0.0391 0.0713 0.0728
SPE 0.9353 0.4890 0.2250 0.0386 0.0674 0.0578 0.0377 0.0646 0.0573
1NN 0.9322 0.4867 0.2233 0.0374 0.0680 0.0577 0.0342 0.0633 0.0570
3NN 0.9303 0.4852 0.2216 0.0328 0.0630 0.0558 0.0332 0.0615 0.0563

cut points = (5, 7)
True 0.9883 0.2132 0.2248
FI 0.9879 0.2118 0.2240 0.0075 0.0435 0.0522 0.0055 0.0336 0.0428
MSI 0.9882 0.2127 0.2243 0.0096 0.0467 0.0531 0.0084 0.0388 0.0443
IPW 0.9887 0.2130 0.2222 0.0193 0.0653 0.0765 0.0177 0.0618 0.0728
SPE 0.9888 0.2130 0.2250 0.0191 0.0571 0.0578 0.0184 0.0554 0.0573
1NN 0.9868 0.2133 0.2233 0.0177 0.0567 0.0577 0.0172 0.0532 0.0570
3NN 0.9860 0.2139 0.2216 0.0151 0.0519 0.0558 0.0168 0.0516 0.0563
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Table 2:
Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations of the estimators for the true class
fractions, when n = 250 and the second value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)
True 0.5000 0.3970 0.8970
FI 0.4999 0.3974 0.8973 0.0503 0.0421 0.0362 0.0432 0.0352 0.0466
MSI 0.5000 0.3975 0.8971 0.0521 0.0497 0.0416 0.0461 0.0451 0.0515
IPW 0.4989 0.3990 0.8971 0.0663 0.0685 0.0534 0.0647 0.0681 0.0530
SPE 0.5004 0.3980 0.8976 0.0570 0.0619 0.0516 0.0563 0.0620 0.0493
1NN 0.4982 0.3953 0.8976 0.0587 0.0642 0.0537 0.0561 0.0618 0.0487
3NN 0.4960 0.3933 0.8970 0.0556 0.0595 0.0494 0.0548 0.0600 0.0472

cut points = (2, 5)
True 0.5000 0.6335 0.7365
FI 0.4999 0.6337 0.7395 0.0503 0.0436 0.0583 0.0432 0.0379 0.0554
MSI 0.5000 0.6330 0.7385 0.0521 0.0508 0.0613 0.0461 0.0469 0.0612
IPW 0.4989 0.6335 0.7386 0.0663 0.0676 0.0728 0.0647 0.0663 0.0745
SPE 0.5004 0.6333 0.7390 0.0570 0.0622 0.0682 0.0563 0.0612 0.0673
1NN 0.4982 0.6304 0.7400 0.0587 0.0645 0.0721 0.0561 0.0615 0.0672
3NN 0.4960 0.6283 0.7396 0.0556 0.0600 0.0670 0.0548 0.0597 0.0654

cut points = (2, 7)
True 0.5000 0.8682 0.2635
FI 0.4999 0.8676 0.2655 0.0503 0.0316 0.0560 0.0432 0.0294 0.0478
MSI 0.5000 0.8678 0.2660 0.0521 0.0374 0.0583 0.0461 0.0364 0.0512
IPW 0.4989 0.8682 0.2669 0.0663 0.0507 0.0698 0.0647 0.0484 0.0692
SPE 0.5004 0.8681 0.2663 0.0570 0.0476 0.0608 0.0563 0.0459 0.0600
1NN 0.4982 0.8672 0.2672 0.0587 0.0495 0.0629 0.0561 0.0458 0.0609
3NN 0.4960 0.8657 0.2671 0.0556 0.0452 0.0610 0.0548 0.0442 0.0601

cut points = (4, 5)
True 0.8970 0.2365 0.7365
FI 0.8980 0.2363 0.7395 0.0284 0.0367 0.0583 0.0239 0.0301 0.0554
MSI 0.8976 0.2356 0.7385 0.0318 0.0437 0.0613 0.0292 0.0386 0.0612
IPW 0.8975 0.2345 0.7386 0.0377 0.0594 0.0728 0.0373 0.0578 0.0745
SPE 0.8974 0.2353 0.7390 0.0364 0.0529 0.0682 0.0361 0.0522 0.0673
1NN 0.8958 0.2352 0.7400 0.0388 0.0540 0.0721 0.0373 0.0524 0.0672
3NN 0.8946 0.2350 0.7396 0.0362 0.0502 0.0670 0.0361 0.0510 0.0654

cut points = (4, 7)
True 0.8970 0.4711 0.2635
FI 0.8980 0.4703 0.2655 0.0284 0.0512 0.0560 0.0239 0.0413 0.0478
MSI 0.8976 0.4703 0.2660 0.0318 0.0561 0.0583 0.0292 0.0490 0.0512
IPW 0.8975 0.4692 0.2669 0.0377 0.0693 0.0698 0.0373 0.0679 0.0692
SPE 0.8974 0.4701 0.2663 0.0364 0.0638 0.0608 0.0361 0.0629 0.0600
1NN 0.8958 0.4719 0.2672 0.0388 0.0666 0.0629 0.0373 0.0630 0.0609
3NN 0.8946 0.4724 0.2671 0.0362 0.0627 0.0610 0.0361 0.0611 0.0601

cut points = (5, 7)
True 0.9711 0.2347 0.2635
FI 0.9710 0.2339 0.2655 0.0124 0.0407 0.0560 0.0104 0.0336 0.0478
MSI 0.9709 0.2348 0.2660 0.0166 0.0461 0.0583 0.0156 0.0412 0.0512
IPW 0.9709 0.2347 0.2669 0.0204 0.0568 0.0698 0.0202 0.0562 0.0692
SPE 0.9709 0.2348 0.2663 0.0202 0.0531 0.0608 0.0199 0.0524 0.0600
1NN 0.9701 0.2368 0.2672 0.0217 0.0549 0.0629 0.0213 0.0533 0.0609
3NN 0.9695 0.2375 0.2671 0.0200 0.0519 0.0610 0.0206 0.0517 0.0601

5.2. Misspecified models

We start from two independent random variables Z1 ∼ N (0, 0.5) and Z2 ∼
N (0, 0.5). The true conditional disease is generated by a trinomial random vector
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Table 3:
Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations of the estimators for the true class
fractions, when n = 250 and the third value of Σ is considered.
“True” denotes the true parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (2, 4)
True 0.5000 0.3031 0.8031
FI 0.5009 0.3031 0.8047 0.0488 0.0344 0.0495 0.0418 0.0284 0.0467
MSI 0.5005 0.3032 0.8045 0.0515 0.0448 0.0544 0.0460 0.0410 0.0542
IPW 0.5015 0.3030 0.8043 0.0624 0.0632 0.0649 0.0618 0.0620 0.0640
SPE 0.5007 0.3034 0.8043 0.0565 0.0576 0.0628 0.0564 0.0574 0.0614
1NN 0.4997 0.3021 0.8047 0.0592 0.0602 0.0682 0.0571 0.0584 0.0621
3NN 0.4984 0.3018 0.8043 0.0561 0.0565 0.0632 0.0556 0.0566 0.0601

cut points = (2, 5)
True 0.5000 0.4682 0.6651
FI 0.5009 0.4692 0.6668 0.0488 0.0384 0.0616 0.0418 0.0323 0.0536
MSI 0.5005 0.4687 0.6666 0.0515 0.0495 0.0658 0.0460 0.0455 0.0610
IPW 0.5015 0.4681 0.6670 0.0624 0.0671 0.0753 0.0618 0.0670 0.0743
SPE 0.5007 0.4690 0.6665 0.0565 0.0624 0.0721 0.0564 0.0622 0.0704
1NN 0.4997 0.4676 0.6668 0.0592 0.0661 0.0780 0.0571 0.0634 0.0717
3NN 0.4984 0.4670 0.6666 0.0561 0.0619 0.0729 0.0556 0.0614 0.0695

cut points = (2, 7)
True 0.5000 0.7027 0.3349
FI 0.5009 0.7030 0.3358 0.0488 0.0375 0.0595 0.0418 0.0318 0.0501
MSI 0.5005 0.7027 0.3360 0.0515 0.0474 0.0637 0.0460 0.0435 0.0563
IPW 0.5015 0.7026 0.3366 0.0624 0.0625 0.0730 0.0618 0.0618 0.0716
SPE 0.5007 0.7032 0.3362 0.0565 0.0591 0.0677 0.0564 0.0583 0.0657
1NN 0.4997 0.7024 0.3366 0.0592 0.0633 0.0712 0.0571 0.0592 0.0675
3NN 0.4984 0.7016 0.3362 0.0561 0.0590 0.0680 0.0556 0.0572 0.0660

cut points = (4, 5)
True 0.8031 0.1651 0.6651
FI 0.8042 0.1660 0.6668 0.0383 0.0277 0.0616 0.0323 0.0231 0.0536
MSI 0.8037 0.1655 0.6666 0.0415 0.0372 0.0658 0.0380 0.0333 0.0610
IPW 0.8039 0.1651 0.6670 0.0473 0.0503 0.0753 0.0473 0.0493 0.0743
SPE 0.8036 0.1655 0.6665 0.0456 0.0465 0.0721 0.0458 0.0455 0.0704
1NN 0.8032 0.1655 0.6668 0.0487 0.0481 0.0780 0.0472 0.0466 0.0717
3NN 0.8020 0.1651 0.6666 0.0460 0.0450 0.0729 0.0457 0.0451 0.0695

cut points = (4, 7)
True 0.8031 0.3996 0.3349
FI 0.8042 0.3999 0.3358 0.0383 0.0426 0.0595 0.0323 0.0349 0.0501
MSI 0.8037 0.3995 0.3360 0.0415 0.0522 0.0637 0.0380 0.0463 0.0563
IPW 0.8039 0.3996 0.3366 0.0473 0.0658 0.0730 0.0473 0.0645 0.0716
SPE 0.8036 0.3998 0.3362 0.0456 0.0618 0.0677 0.0458 0.0606 0.0657
1NN 0.8032 0.4003 0.3366 0.0487 0.0660 0.0712 0.0472 0.0619 0.0675
3NN 0.8020 0.3998 0.3362 0.0460 0.0617 0.0680 0.0457 0.0600 0.0660

cut points = (5, 7)
True 0.8996 0.2345 0.3349
FI 0.9003 0.2338 0.3358 0.0266 0.0351 0.0595 0.0224 0.0292 0.0501
MSI 0.9004 0.2340 0.3360 0.0308 0.0443 0.0637 0.0285 0.0398 0.0563
IPW 0.9005 0.2345 0.3366 0.0355 0.0555 0.0730 0.0353 0.0550 0.0716
SPE 0.9004 0.2342 0.3362 0.0349 0.0523 0.0677 0.0346 0.0517 0.0657
1NN 0.9000 0.2348 0.3366 0.0373 0.0556 0.0712 0.0361 0.0531 0.0675
3NN 0.8992 0.2346 0.3362 0.0349 0.0520 0.0680 0.0349 0.0515 0.0660

(D1, D2, D3) such that

D1 =

{
1 if Z1 + Z2 ≤ h1

0 otherwise
, D2 =

{
1 if h1 < Z1 + Z2 ≤ h2

0 otherwise
,

and

D3 =

{
1 if Z1 + Z2 > h2

0 otherwise
.

Here, h1 and h2 are two thresholds. We choose h1 and h2 to make θ1 = 0.4 and
θ3 = 0.25. The continuous test results T and the covariate A are generated to be
related to D through Z1 and Z2. More precisely,

T = α(Z1 + Z2) + ε1, A = Z1 + Z2 + ε2,
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where ε1 and ε2 are two independent normal random variables with mean 0 and
the common variance 0.25. We choose α = 0.5. The verification status V is
simulated by the following logistic model

logit {Pr(V = 1|T,A)} = −1.5− 0.35T − 1.5A.

Under this model, the verification rate is roughly 0.276. For the cut-point, we
consider six pairs (c1, c2), i.e., (−1.0,−0.5), (−1.0, 0.7), (−1.0, 1.3), (−0.5, 0.7),
(−0.5, 1.3) and (0.7, 1.3). Within this set–up, we determine the true values of
TCF’s as follows:

TCF1(c1) =
1

Φ(h1)

∫ h1

−∞
Φ

(
c1 − αz√

0.25

)
φ(z)dz,

TCF2(c1, c2) =
1

Φ(h2)− Φ(h1)

∫ h2

h1

[
Φ

(
c2 − αz√

0.25

)
− Φ

(
c1 − αz√

0.25

)]
φ(z)dz,

TCF3(c2) = 1− 1

1− Φ(h2)

∫ ∞
h2

Φ

(
c2 − αz√

0.25

)
φ(z)dz,

where φ(·) denotes the density function of the standard normal random variable.

The aim in this scenario is to compare FI, MSI, IPW, SPE and KNN
estimators when both the estimates for π̂i and ρ̂ki in the parametric approach
are inconsistent. Therefore, ρ̂ki is obtained from a multinomial logistic regression
model with D = (D1, D2, D3) as the response and T as predictor. To estimate πi,
we use a generalized linear model for V given T and A2/3 with logit link. Clearly,
the two fitted models are misspecified. The KNN estimators are obtained by
using K = 1 and K = 3 and the Euclidean distance. Again, we use K̄ = 2 in
the KNN procedure to estimate standard deviations of KNN estimators. As a
large sample size is required to guarantee that FI, MSI, IPW, SPE and KNN
estimators reach a substantial stability, we set n = 1000. For KNN estimators,
results based on smaller sample sizes are reported in Section S4, Supplementary
Material.

Table 4 presents Monte Carlo means and standard deviations (across 5000
replications) for the estimators of the true class fractions, TCF1, TCF2 and
TCF3. The table also gives the means of the estimated standard deviations
(of the estimators), based on the asymptotic theory. The table clearly shows
limitations of the (partially) parametric approaches in case of misspecified mod-
els for Pr(Dk = 1|T,A) and Pr(V = 1|T,A). More precisely, in term of bias,
the FI, MSI, IPW and SPE approaches perform almost always poorly, with high
distortion in almost all cases. As we mentioned in Section 2, the SPE estimators
could fall outside the interval (0, 1). In our simulations, in the worst case, the

estimator T̂CF3,SPE(−1.0,−0.5) gives rise to 20% of the values greater than 1.
Moreover, the Monte Carlo standard deviations shown in the table indicate that
the SPE approach might yield unstable estimates. Finally, the misspecification
also has a clear effect on the estimated standard deviations of the estimators.
On the other side, the estimators 1NN and 3NN seem to perform well in terms
of both bias and standard deviation. In fact, KNN estimators yield estimated
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values that are near to the true values. In addition, we observe that the estimator
3NN has larger bias than 1NN, but with slightly less variance.

Table 4:
Monte Carlo means, Monte Carlo standard deviations and esti-
mated standard deviations of the estimators for the true class
fractions, when both models for ρk(t, a) and π(t, a) are misspec-
ified and the sample size n = 1000. “True” denotes the true
parameter value.

TCF1 TCF2 TCF3 MC.sd1 MC.sd2 MC.sd3 asy.sd1 asy.sd2 asy.sd3

cut points = (−1.0,−0.5)
True 0.1812 0.1070 0.9817
FI 0.1290 0.0588 0.9888 0.0153 0.0133 0.0118 0.0170 0.0126 0.0423
MSI 0.1299 0.0592 0.9895 0.0154 0.0153 0.0131 0.0171 0.0144 0.0427
IPW 0.1231 0.0576 0.9889 0.0178 0.0211 0.0208 0.0174 0.0201 0.2878
SPE 0.1407 0.0649 0.9877 0.0173 0.0216 0.0231 0.0171 0.0207 0.0125
1NN 0.1809 0.1036 0.9817 0.0224 0.0304 0.0255 0.0210 0.0257 0.0180
3NN 0.1795 0.0991 0.9814 0.0214 0.0258 0.0197 0.0207 0.0240 0.0190

cut points = (−1.0, 0.7)
True 0.1812 0.8609 0.4469
FI 0.1290 0.7399 0.5850 0.0153 0.0447 0.1002 0.0170 0.0403 0.0919
MSI 0.1299 0.7423 0.5841 0.0154 0.0453 0.1008 0.0171 0.0408 0.0926
IPW 0.1231 0.7690 0.5004 0.0178 0.0902 0.2049 0.0174 0.0824 0.1844
SPE 0.1407 0.7635 0.5350 0.0173 0.0702 0.2682 0.0171 0.0646 0.2171
1NN 0.1809 0.8452 0.4406 0.0224 0.0622 0.1114 0.0210 0.0503 0.0895
3NN 0.1795 0.8285 0.4339 0.0214 0.0521 0.0882 0.0207 0.0479 0.0929

cut points = (−1.0, 1.3)
True 0.1812 0.9732 0.1171
FI 0.1290 0.9499 0.1900 0.0153 0.0179 0.0550 0.0170 0.0203 0.0440
MSI 0.1299 0.9516 0.1902 0.0154 0.0184 0.0552 0.0171 0.0206 0.0442
IPW 0.1231 0.9645 0.1294 0.0178 0.0519 0.1795 0.0174 0.0268 0.0898
SPE 0.1407 0.9567 0.1760 0.0173 0.0425 0.3383 0.0171 0.0311 0.2127
1NN 0.1809 0.9656 0.1124 0.0224 0.0218 0.0448 0.0210 0.0272 0.0544
3NN 0.1795 0.9604 0.1086 0.0214 0.0172 0.0338 0.0207 0.0262 0.0567

cut points = (−0.5, 0.7)
True 0.4796 0.7539 0.4469
FI 0.3715 0.6811 0.5850 0.0270 0.0400 0.1002 0.0244 0.0353 0.0919
MSI 0.3723 0.6831 0.5841 0.0271 0.0409 0.1008 0.0246 0.0361 0.0926
IPW 0.3547 0.7114 0.5004 0.0325 0.0883 0.2049 0.0321 0.0815 0.1844
SPE 0.3949 0.6986 0.5350 0.0318 0.0687 0.2682 0.0312 0.0637 0.2171
1NN 0.4783 0.7416 0.4406 0.0361 0.0610 0.1114 0.0310 0.0526 0.0895
3NN 0.4756 0.7294 0.4339 0.0341 0.0499 0.0882 0.0303 0.0500 0.0929

cut points = (−0.5, 1.3)
True 0.4796 0.8661 0.1171
FI 0.3715 0.8910 0.1900 0.0270 0.0202 0.0550 0.0244 0.0218 0.0440
MSI 0.3723 0.8924 0.1902 0.0271 0.0211 0.0552 0.0246 0.0226 0.0442
IPW 0.3547 0.9068 0.1294 0.0325 0.0535 0.1795 0.0321 0.0384 0.0898
SPE 0.3949 0.8918 0.1760 0.0318 0.0451 0.3383 0.0312 0.0368 0.2127
1NN 0.4783 0.8620 0.1124 0.0361 0.0349 0.0448 0.0310 0.0373 0.0544
3NN 0.4756 0.8613 0.1086 0.0341 0.0285 0.0338 0.0303 0.0355 0.0567

cut points = (0.7, 1.3)
True 0.9836 0.1122 0.1171
FI 0.9618 0.2099 0.1900 0.0122 0.0317 0.0550 0.0114 0.0263 0.0440
MSI 0.9613 0.2093 0.1902 0.0125 0.0320 0.0552 0.0116 0.0265 0.0442
IPW 0.9548 0.1955 0.1294 0.0339 0.0831 0.1795 0.0278 0.0764 0.0898
SPE 0.9582 0.1932 0.1760 0.0332 0.0618 0.3383 0.0290 0.0577 0.2127
1NN 0.9821 0.1204 0.1124 0.0144 0.0494 0.0448 0.0109 0.0449 0.0544
3NN 0.9804 0.1319 0.1086 0.0138 0.0404 0.0338 0.0108 0.0429 0.0567

6. AN ILLUSTRATION

We use data on epithelial ovarian cancer (EOC) extracted from the Pre-
PLCO Phase II Dataset from the SPORE/Early Detection Network/Prostate,
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Lung, Colon and Ovarian Cancer Ovarian Validation Study. 1

As in [16], we consider the following three classes of EOC, i.e., benign
disease, early stage (I and II) and late stage (III and IV) cancer, and 12 of
the 59 available biomarkers, i.e. CA125, CA153, CA72–4, Kallikrein 6 (KLK6),
HE4, Chitinase (YKL40) and immune costimulatory protein–B7H4 (DD–0110),
Insulin–like growth factor 2 (IGF2), Soluble mesothelin-related protein (SMRP),
Spondin–2 (DD–P108), Decoy Receptor 3 (DcR3; DD–C248) and Macrophage
inhibitory cytokine 1 (DD–X065). In addition, age of patients is also considered.

After cleaning for missing data, we are left 134 patients with benign disease,
67 early stage samples and 77 late stage samples. As a preliminary step of our
analysis we ranked the 12 markers according to value of VUS, estimated on the
complete data. The observed ordering, consistent with medical knowledge, led
us to select CA125 as the test T to be used to illustrate our method.

To mimic verification bias, a subset of the complete dataset is constructed
using the test T and a vector A = (A1, A2) of two covariates, namely the marker
CA153 (A1) and age (A2). Reasons for using CA153 as a covariate come from
the medical literature that suggests that the concomitant measurement of CA153
with CA125 could be advantageous in the pre-operative discrimination of benign
and malignant ovarian tumors. In this subset, T and A are known for all samples
(patients), but the true status (benign, early stage or late stage) is available only
for some samples, that we select according to the following mechanism. We select
all samples having a value for T , A1 and A2 above their respective medians, i.e.
0.87, 0.30 and 45; as for the others, we apply the following selection process

Pr(V = 1|T,A) = 0.05 + 0.35I(T > 0.87) + 0.25I(A1 > 0.30) + 0.35I(A2 > 45),

leading to a marginal probability of selection equal to 0.634.

Since the test T and the covariates A1, A2 are heterogeneous with respect
to their variances, the Mahalanobis distance is used for KNN estimators. Based
on the discussion in Section 3.4, we use the selection rule (3.7) to find the size K
of the neighborhood. This leads to the choice of K = 1 for our data. In addition,
we also employ K = 3 for the sake of comparison with 1NN result, and produce
the estimate of the ROC surface based on full data (Full estimate), displayed in
Figure 1.

Figure 2 shows the 1NN and 3NN estimated ROC surfaces for the test
T (CA125). In this figure, we also give the 95% ellipsoidal confidence regions
(green color) for (TCF1,TCF2,TCF3) at cut points (−0.56, 2.31). These regions
are built using the asymptotic normality of the estimators. Compared with the
Full estimate, KNN bias-corrected method proposed in the paper appears to well

1The study protocol and data are publicly available at the address: https://edrn.nci.nih.
gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation.

https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation
https://edrn.nci.nih.gov/protocols/119-spore-edrn-pre-plco-ovarian-phase-ii-validation


KNN bias-corrected ROC surfaces 23

Figure 1:
Estimated ROC surface for CA125, based on full data.

(a) 1NN (b) 3NN

Figure 2:
Bias–corrected estimated ROC surfaces for CA125, based on
incomplete data.

behave, yielding reasonable estimates of the ROC surface with incomplete data.
A closer inspection to the behavior at some chosen points can be taken by looking
at Table 5.
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Table 5:
Comparison between Full and KNN estimates of the true class
fractions for CA125, for some values of c1 and c2.

Full 1NN 3NN

(c1, c2) TCF1 TCF2 TCF3 TCF1 TCF2 TCF3 TCF1 TCF2 TCF3

(0, 0.5) 0.500 0.104 0.922 0.516 0.171 0.938 0.497 0.170 0.933
(0, 1) 0.500 0.254 0.883 0.516 0.271 0.838 0.497 0.275 0.858
(0, 2.6) 0.500 0.567 0.688 0.516 0.557 0.663 0.497 0.550 0.667
(0, 3) 0.500 0.612 0.623 0.516 0.614 0.612 0.497 0.605 0.617
(0, 4) 0.500 0.731 0.325 0.516 0.714 0.312 0.497 0.710 0.317

(0.4, 0.5) 0.694 0.030 0.922 0.688 0.043 0.938 0.670 0.040 0.933
(0.4, 1) 0.694 0.179 0.883 0.688 0.143 0.838 0.670 0.145 0.858
(0.4, 2.6) 0.694 0.493 0.688 0.688 0.429 0.663 0.670 0.420 0.667
(0.4, 3) 0.694 0.537 0.623 0.688 0.486 0.612 0.670 0.475 0.617
(0.4, 4) 0.694 0.657 0.325 0.688 0.586 0.312 0.670 0.580 0.317

(1, 2.6) 0.813 0.313 0.688 0.789 0.286 0.663 0.787 0.275 0.667
(1, 3) 0.813 0.358 0.623 0.789 0.343 0.612 0.787 0.330 0.617
(1, 4) 0.813 0.478 0.325 0.789 0.443 0.312 0.787 0.435 0.317

(2, 2.6) 0.955 0.149 0.688 0.945 0.143 0.663 0.942 0.130 0.667
(2, 3) 0.955 0.194 0.623 0.945 0.200 0.612 0.942 0.185 0.617
(2, 4) 0.955 0.313 0.325 0.945 0.300 0.312 0.942 0.290 0.317

(3.5, 4) 0.993 0.045 0.325 0.992 0.043 0.312 0.990 0.045 0.317

7. CONCLUSIONS

A general suitable strategy for reducing the effects of model misspecifica-
tion in statistical inference is to resort on fully nonparametric methods. This
paper proposes a nonparametric estimator of the ROC surface of a continuous
diagnostic test. The estimator is based on nearest-neighbor imputation and works
under MAR assumption. It represents an alternative to (partially) parametric
estimators discussed in [16]. Our simulation results and the presented illustrative
example show usefulness of the proposal.

Generally speaking, performances of our estimator depend on various in-
trinsic factors, and on some user-defined choices. Among intrinsic factors, we
mention the unknown values of parameters TCF1, TCF2 and TCF3 to be esti-
mated, the rate of verified units in the sample at hand, and the nature of the
unknown processes generating the observations. In particular, extreme values of
the true class fractions, i.e. values close to 0 or 1, are difficult to estimate in an
accurate way, especially when sample data are characterized by a low verification
rate, which limits the amount of information available. On the basis of discussions
in Section 3.3 (and in the last part of this section) and of simulation results in
Section 5 (and in Supplementary Material), we offer some recommendations for
tackling the user-defined choices. More precisely, we recommend: (a) to use the
Euclidean distance, as the first choice, and the Mahalanobis distance in case of
heterogeneity among variables; (b) to keep small, from 1 to 3, say, the number of
neighbors K. Our simulation results show satisfactory performances of the KNN
estimator of the ROC surface when about 70 verified observations are present in
the sample.
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As in [1], a simple extension of our estimator, that could be used when
categorical auxiliary variables are also available, is possible. Without loss of
generality, we suppose that a single factor C, with m levels, is observed together
with T and A. We also assume that C may be associated with both D and V .
In this case, the sample can be divided into m strata, i.e. m groups of units
sharing the same level of C. Then, for example, if the MAR assumption and first-
order differentiability of the functions ρk(t, a) and π(t, a) hold in each stratum, a
consistent and asymptotically normally distributed estimator of TCF1 is

T̂CF
S

1,KNN(c1) =
1

n

m∑
j=1

njT̂CF
cond

1j,KNN(c1),

where nj denotes the size of the j-th stratum and the quantity T̂CF
cond

1j,KNN(c1)
denotes the KNN estimator of the conditional TCF1, i.e., the KNN estimator in
(3.1) obtained from the patients in the j-th stratum. Of course, we must assume
that, for every j, ratios nj/n have finite and nonzero limits as n goes to infinity.

In our approach, the KNN method is used to estimate the probabilities
ρk(t, a) for non–verified subjects. A referee pointed out that KNN estimators
might suffer from boundary effects, i.e., increases in bias when estimates are
computed near the boundary of the support of the covariates. Indeed, near the
boundaries, any smoothing method is less accurate, as fewer observations can
be averaged, so that bias of estimators can be affected. In contrast to other
nonparametric regression methods, however, KNN estimators always involve the
same number of observations. Boundary effects, therefore, act on neighborhoods’
sizes more than on the number of observations involved in the local fitting. For
this reason, a prominent source of bias of KNN estimators is the shape at the
boundary of the functions to be estimated. Steeper functions are more likely
associated to a larger bias, an aspect pointing to small values of K as good choices
to limit boundary effects. Moreover, it is worth noting that in the domain of our
interest, i.e., evaluation of diagnostic tests, is hard to deal with test and covariate
values close to the boundary of their support. More likely, one faces sparsity of
data in some regions of the features space and, therefore, one has to deal with
situations in which, for a fixed sample size, information brought by data on those
regions is structurally low. This aspect also impacts on the neighborhoods’ sizes,
and probably amounts to a primary source of bias in our application contest.
This remark is supported by results of some simulations that we carried out
to evaluate possible bias due to boundary effects and/or sparsity of data (see
Section S5, Supplementary Material). Overall, simulation results seem to show
that the bias, when present, is driven more by sparsity of data issues than by
boundary effects and that KNN estimators have their poorest performances on
largest values of K, regardless of the position of points in the domain.
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