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Abstract:3

� Many ecological processes are measured as proportions and are spatially sampled. In4

all these cases the standard procedure has long been the transformation of propor-5

tional data with the arcsine square root or logit transformation, without considering6

the spatial correlation in any way. This paper presents a robust regression model to7

analyse this kind of data using a beta regression and including a spatially correlated8

term within the Bayesian framework. As a practical example, we apply the proposed9

approach to a spatio-temporally sampled fishery discard dataset.10

Key-Words:11
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1. Introduction

Many ecological processes are spatially sampled and measured as propor-14

tions; one example is, sea-grass coverage in a area. The traditional approach in15

ecology has been to, first transform proportional data to approximate normality,16
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and then analyse them using Gaussian linear models, such as analysis of variance17

or linear regression.18

A very common transformation is the arcsine square root transformation.19

This transformation can be useful to stabilise variances and normalise the data20

but there are several reasons why it should be avoided. Firstly, model parameters21

cannot be easily interpreted in terms of the original response [Warton and Hui,22

2011, Ferrari and Cribari-Neto, 2004]. Secondly, the efficacy of the arcsine trans-23

formation in normalising proportional data is heavily dependent on the sample24

size, and does not perform well at extreme ends of the distribution [Warton and25

Hui, 2011, Wilson and Hardy, 2002]. Thirdly, measures of proportions typically26

display asymmetry, and hence inference based on the normality assumption can27

be misleading [Ferrari and Cribari-Neto, 2004].28

An alternative that is becoming more prevalent in ecological analyses is the29

logistic regression, an analytical method designed to deal with binomial propor-30

tional data [Steel et al., 1997, Wilson and Hardy, 2002, Warton and Hui, 2011],31

i.e. proportions measured as x out of n. The logistic regression provides a more32

biologically and ecologically interpretative analysis and is not sensitive to sample33

size. Nonetheless, such binomial data is prone to overdispersion, resulting in an34

incorrect quantification of the uncertainty when applying the proposed binomial35

generalised linear model (GLM). In these cases, the inclusion of a random in-36

tercept term using generalised linear mixed models (GLMMs) may improve the37

assessment of uncertainty [Wilson and Hardy, 2002].38

When data are non-binomial, that is, observations do not follow the x39

out of n pattern, the logistic regression is no longer applicable. As an alterna-40

tive approach, Warton and Hui [2011] suggested the logit transformation of the41

data, which overcomes the problems of interpretability and range of the confi-42

dence/credible intervals using the arcsine square root transformation. However,43

any transformation of the data (yt) implies that regression parameters are only44

interpretable in terms of the transformed mean of yt and not the mean of the45

original data.46

The beta distribution is a well known distribution that satisfies the char-47

acteristics of proportions, bounded to the [0, 1] interval with asymmetric shapes.48

It has long been used in a wide range of applications involving proportions and49

probabilities [Gupta and Nadarajah, 2004]. However, only recently has it been50

applied to linear regression modelling [Ferrari and Cribari-Neto, 2004, Smithson51

and Verkuilen, 2006, Liu and Kong, 2015] and time-series analysis [Da-Silva and52

Migon, 2016], allowing bounded estimates and intervals with model parameters53

that are directly interpretable in terms of the mean of the response.54

Aside from the likelihood function, it is well known that changes in ecologi-55

cal processes in time and space are driven by a set of factors and interactions. Un-56

derstanding these drivers is very often the ultimate goal among scientists seeking57

to manage natural resources effectively. However, the immeasurable complexity58

of ecological spatial processes often means that the spatial variability of the data59
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exceed the variability explained by the explanatory variables. This phenomenon60

usually results in spatially autocorrelated model residuals that can yield incorrect61

results and a restricted predictive capacity of the models [Fortin and Dale, 2009,62

Legendre et al., 2002].63

A good solution to improve model fit and prediction is to introduce spatial64

terms in our models. Spatial terms are based on the principle that close obser-65

vations have more in common than distant observations [Tobler, 1970]. Conse-66

quently, by applying a distance-based function, these terms are capable of improv-67

ing fine scale predictions and identifying hidden spatial hot and/or cold spots that68

may be important for management purposes. In addition, from a management69

perspective it is crucial to address the uncertainty associated with our predic-70

tions and estimates. In this respect, the Bayesian hierarchical approach is able71

to accommodate complex systems and obtain a proper uncertainty assessment by72

relying on quite straightforward probability rules [Clark, 2005].73

The reminder of this article goes as follows. First, we summarise the charac-74

teristics of the hierarchical spatial beta regression. Then, we introduce the princi-75

ples of the Integrated Nested Laplace Approximation (INLA from now on) using76

the Stochastic Partial Differential Equations (SPDE) approach (http://www.r-77

inla.org) [Rue et al., 2009] as an effective way to deal with spatially sampled78

proportional data. As an example, we apply this approach to a fishery dis-79

cards database to identify discard proportion high-density areas in the Western80

Mediterranean Sea. Finally, we end up with some conclusions.81

2. Hierarchical spatial beta regression

Traditionally the beta distribution is denoted by two scaling parameters82

Be(a, b). In order to apply regression it is necessary to reparametrize its density83

distribution in terms of its mean µ = a
a+b and a dispersion φ = a+ b, so that:84

π(y) =
Γ(φ)

γ(µφ)γ(φ(1− µ))
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1(2.1)

where Γ is the gamma function, E(y) = µ and V ar(y) = µ(1−µ)
1+φ . Note that here,85

as opposed to the Gaussian distribution, the variance depends on the mean, which86

translates into maximum variance at the centre of the distribution and minimum87

at the edges, to support the truncated nature of the beta distribution.88

It is also important to note that the probability density (2.1) does not89

provide a satisfactory description of the data at both ends of the distribution,90

zero and one. An ad hoc solution may be to add a small error value to the91

observations to satisfy this criterion [Warton and Hui, 2011]; otherwise zero and92

one inflated models are required [Liu and Kong, 2015].93

Following theBe(µ, φ) reparametrisation, a given set of observations y1, ..., yn,94
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that represent proportions, can be related to a set of covariates and functions us-95

ing a similar approach to the generalised linear model:96

Logit(µi) = ηi(2.2)

ηi = α+

nβ∑
j=1

βjzji +

nk∑
k=1

fk(uki) + vi

where ηi enters the likelihood through a logit link, α is the intercept of the model,97

βj are the fixed effects of the model, fk() denote any smooth effects (including98

spatial dependence effects) and vi are unstructured error terms (random vari-99

ables).100

At the time of writing, a handful of R packages allow beta regression:101

betareg [Grün et al., 2011], mgcv [Wood, 2011] and gamlss [Stasinopoulos and102

Rigby, 2007] in the frequentist field and Bayesianbetareg [Marin et al., 2014],103

zoib Liu and Kong [2015] and R-INLA (the implementation of INLA in R [Martins104

et al., 2013]) in the Bayesian counterpart. zoib allows zero/one inflated beta105

regression but only R-INLA allows a wide range of flexible hierarchical models to106

be fitted at a user-friendly and computationally efficient environment, as we will107

show in the following Section.108

Indeed, Bayesian hierarchical methods are becoming very popular in many109

fields due to the complexity of the relationships involved in natural systems110

[Clark, 2005]. Modelling these relationships often requires specifying sub-models111

inside the additive predictor that allow a suspected hidden or latent effect to be112

inferred that characterise these relationships.113

A good example may be the use of spatial latent fields that apply distance-114

based functions to model the spatial dependence of the data. In these cases, the115

main intensity of the process is driven by a set of covariates Xβ, also called large-116

scale variation, to which a spatial term is added based on a correlation function117

fw() that describe the unobserved small-scale variation. Consequently, we end up118

with a spatial correlation model, which depends on its own hyperparameters, as119

part of a broader model that characterises the intensity of the process; in other120

words, we have a hierarchical model with a spatial latent variable.121

A popular point-referenced spatial model, the geostatistical model, has the122

characteristic that the spatial covariance function fw() is continuous over the123

range of the spatial effect. Based on this function, it is customary to assume a124

Gaussian latent field W ∼ N(0, Q(κτ)) with covariance matrix Q that depends125

on two hyperparameters, in the case of R-INLA, κ and τ . These hyperparame-126

ters determine the range and the variance of the spatial latent field. When we127

include this in the additive predictor of a beta distributed process Y , we obtain128

a hierarchical model with at least three stages:129

� First stage: Y |β,W ∼ Be(Xβ +W,ρ)130

where Y are conditionally independent given W .131
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� Second stage: W |κ, τ ∼ N(0, Q(κτ))132

where W is a Gaussian latent spatial model.133

� Third stage: priors on (β, ρ, κ, τ)134

A common problem with this kind of hierarchical model is that there is no135

closed expression for the marginal posterior distributions of the parameters and136

hyperparameters, so numerical approximations are needed. The typical approach137

to approximate these posteriors is to use MCMC simulation methods. Unfortu-138

nately, MCMC can get very computationally inefficient when applied to complex139

models such as spatial models.140

3. The INLA approach for geostatistical models

Performing inference and prediction under a geostatistical Gaussian field141

W entail the so-called “big n problem” [Banerjee et al., 2003]. This problem is142

related to the dense covariance matrix Q, which traduces into very high MCMC143

computational costs. In this vein, the stochastic partial differential equations144

(SPDE) approach in R-INLA allows reducing the required number of computations145

from O(n3) [Stein et al., 2004] to O(n3/2) [Cameletti et al., 2013] in the two146

dimensional spatial domain. In what follows, we first present the INLA method147

followed by the SPDE approach.148

The INLA algorithm, proposed by Rue et al. [2009], is a numerical approx-149

imation method to perform Bayesian inference. The most remarkable feature of150

INLA, as opposed to MCMC, is that it allows the posterior distributions of latent151

Gaussian models to be accurately approximated through Laplace approximations152

[Laplace, 1986, Tierney and Kadane, 1986], even for complex models without be-153

coming computationally prohibitive. INLA exploits the fact that latent Gaussian154

models admit conditional independence properties [Rue and Held, 2005], which155

allows expressing them as computationally efficient Gaussian Markov random156

fields (GMRFs) with a sparse precision matrix [Rue and Held, 2005].157

The estimation of the latent components, collected in a set of parameters158

θ = {β,W } and hyperparameters Ω = {ρ, κ, τ} in R-INLA, is computed in159

three steps. First, the posterior marginal distribution of the hyperparameters is160

approximated by using the Laplace integration method161

p(Ω|Y ) ≈ p(Y |θ,Ω)p(θ|Ω)p(Ω)

p̃(θ|Ω, Y )

∣∣∣∣
θ=θ∗(Ω)

= p̃(Ω|Y ),(3.1)

where p̃(θ|Ω, Y ) is the Gaussian approximation, given by the Laplace method, of162

p(θ|Ω, Y ) and θ∗(Ω) is the mode for a given Ω.163
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Then, R-INLA approximates p(θi|Ω, Y ) by using again the Laplace integra-164

tion method165

p(θi|Ω, Y ) ≈ p(θ|Ω, Y )

p̃(θ−i|θi,Ω, Y )

∣∣∣∣
θ−i=θ∗

−i(θi,Ω)

= p̃(θi|Ω, Y ),(3.2)

where p̃(θ−i|θi,Ω, Y ) is the Laplace Gaussian approximation to p(θ−i|θi,Ω, Y )166

and θ∗−i(θi,Ω) is its mode. This strategy can be very computationally expensive167

since p̃(θ−i|θi,Ω, Y ) has to be recomputed for each value of θ and Ω. See section168

3.2 in Rue et al. [2009] for a more detailed text on the different approximation169

approaches available in R-INLA.170

Finally, R-INLA approximates the marginal posterior distributions based on171

the previous two steps172

p(θi|Y ) ≈
∫
p̃(θi|Ω, Y )p̃(Ω|Y )dΩ

,

(3.3)

where the integral can be numerically solved through a finite weighted sum ap-173

plied in certain integration points and then interpolating in between. For a more174

detailed text on the selection of integration points see section 3.1(c) in Rue et al.175

[2009].176

As mentioned above, INLA exploits the good computational properties of177

GMRFs to perform fast Bayesian inference. Nevertheless, continuous GFs (like178

the ones involved in geostatistical models) are continuously indexed, thus, in179

principle, not applicable in INLA. In this regard, Lindgren et al. [2011] provided180

a clever approximation of a GF with Matérn covariance function (3.4) to a GMRF181

using a fractional stochastic partial differential equation.182

Lindgren et al. [2011]’s approximation of a GF requires that its covariance183

function is of the Matérn family. Following Lindgren et al. [2011]’s notation, the184

Matérn covariance function for an stationary and isotropic GF is185

C(d) =
σ2

2ν−1Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||),,(3.4)

where κ is a scaling parameter that determines the effective range r of the spatial186

effect.187

The approximation by Lindgren et al. [2011] fall on the fact that a GF z(s)188

with Matérn covariance function is a solution to the linear fractional SPDE189

(κ2 −∆)α/2z(τs) =W(s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0,(3.5)

where ∆ is the Laplacian, d is the dimension of the GF z(s), ν is the smoothness190

parameter of the Matérn function and W is the Gaussian spatial white noise191

process.192
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Finally, the solution to the SPDE can be approximated using the Finite193

Element Method [Zienkiewicz et al., 1977] through a deterministic basis function194

representation defined on a triangulation of the domain D (see Figure 1 for the195

triangulation used in the case study of the following Section). The triangulation,196

so-called mesh, of the study area is based on Delaunay triangulations [Delaunay,197

1934], which, as opposed to a regular grid, allows a flexible partition of the region198

into triangles that can satisfy different types of constraints to better accommodate199

different characteristics of the study area.200

Figure 1:
Triangulation of the study area. The outer ring of sparse tri-
angles allows us avoid having a border effect inside the study
area.

4. Application to trawl discard proportions

The modelling approach proposed to tackle spatially sampled proportions201

was applied to a trawl fishery discard database in the Spanish Mediterranean.202

Fishery discards, i.e. the part of the catch that is thrown back to the sea dead,203

constitute an unnecessary biomass loss from the marine systems. A repeatedly204

proposed discard mitigation measure is the spatial management of fishery re-205

sources [Kelleher, 2005, Bellido et al., 2011, Pennino et al., 2014]. In this regard,206

spatial beta regression is specially important to the fishery discards framework207

since it allows the spatial assessment of discard proportions, which allows assess-208

ing the economic benefit of a fishing operation against its ecological impact due209

to the discard portion of the catch.210
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4.1. Data

Trawl discard data were collected according to European Comission [2009]211

regulation, which establishes a métier-based discard sampling programme. Specif-212

ically this study was based on bottom trawl data for the south-eastern part of213

the Spanish Mediterranean Sea (Figure 2) [see Pennino et al., 2014, for a more214

detailed description of the métiers].215

Figure 2:
Map of the study area with bathymetric contours in meters.
Black dots represent the centroids of the 391 sampled hauls and
size plotted according to the observed discard proportion.

The database, provided by the Instituto Español de Oceanograf́ıa (IEO,216

Spanish Oceanographic Institute), contains a total of 391 hauls collected between217

2009 and 2012, including catch and discard data disaggregated by species. The218

characteristics of each fishing operation (date, geolocation and depth) were also219

extracted directly from this database.220

A discard proportion response variable of regulated species was created as221

the fraction of discarded biomass of the total catch. Unlike total discards, discard222

proportions represent benefit versus loss, and are therefore a better indicator to223

assess whether or not discards are disproportionate to the catch.224
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4.2. Modelling trawl discard proportions

Variable Description Unit Effect

Total catch Total catch of the haul Kilograms Linear

Location Geolocation UTM Geostatistical

Depth Mean depth of the haul Meters Non-linear effect

Vessel Sampled vessel ID - Random noise effect

Table 1:
List of covariates included in the analysis and the effect assigned
to them.

The analysis of trawl discard proportions included the total catch of each225

fishing haul, the mean bathymetry of the haul, a geostatistical term and a vessel226

effect as predictors (Table 1). Therefore, assuming that the discard proportion227

Yi at location i follows a beta distribution, the final model can be expressed as:228

Yi ∼ Be(µi, φi), i = 1, . . . , n

logit(µi) = βcci + di +Wi

βc ∼ N(0, 0.001)

∆2dj = dj − 2dj+1 + dj+2 ∼ N(0, ρd), j = 1, . . . ,m

logρD ∼ LogGamma(0.5, 0.00005)(4.1)

W ∼ N(0,Q(κ, τ))

2logκ ∼ N(µκ, ρκ)

logτ ∼ N(µτ , ρτ )

where the mean of discard proportions enters the model through the logit link, i229

indexes the location of each haul and j indexes different depths (dj , representing230

the different values of bathimetry starting at d1 = 40 metres till dm=30 = 720231

metres). In the last two rows µ stands for the mean of the normal distributions232

while ρ denotes its corresponding precision.233

Based on the work by Rochet and Trenkel [2005], who found that discard234

proportions are not fully proportional to the catch, the total catch of each haul235

C = (c1, . . . , cn) was introduced as a linear effect with vague normal prior distri-236

butions as implemented by default in R-INLA. The exploratory analysis revealed237

non-linear relationships between depth and the discard proportion, so a second238

order random walk (RW2) latent model was applied based on constant depth239

increments dj . These RW2 models, which perform as Bayesian smoothing splines240

[Fahrmeir and Lang, 2001], can be expressed as a computationally efficient GMRF241

[Rue and Held, 2005], and are therefore applicable in INLA. The smoothing of242

the bathymetric effect was selected visually by subsequently changing its prior243

distribution while models were scaled to have a generalized variance equal to one244

[Sørbye and Rue, 2014].245
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The two dimensional geostatistical latent model W , introduced to identify246

fine-scale hot-spots, depends on two hyperparameters κ and τ that define the247

variance and the range of the spatial effect. Specifically, and with the smoothing248

parameter of the Matérn (3.4) fixed (ν = 1), the range of the spatial terms is249

approximately
√

8/κ and the variance 1/(4πκ2τ2). The priors for κ and τ are250

specified over the logτ and 2logκ. Default R-INLA prior distributions were used,251

where µκ is specified so that the range of the field is 20% of the longest distance252

in the field and µτ is chosen so that the mean variance of the field is one. The253

rest of the prior distributions in use are described in (4.1).254

4.3. Results

Figure 3 shows the posterior mean and the standard deviation of the spatial255

component, which represents the intrinsic spatial variability of the data without256

the rest of the independent variables. This effect highlights (in blue), high dis-257

card proportion areas or hot-spots. Similarly, two cold-spots were found (in red),258

one in the coastal shallow waters in front of the lagoon and another in the mid-259

northern part of the 150-300 meter strata. These hot-spots characterise the areas260

where more discards are expected as compared to other areas with similar envi-261

ronmental conditions. As a consequence, a marine spatial planning framework262

could consider these areas for protection so that discarded/wasted biomass is263

minimised.264

As expected, the total catch of the haul had a positive effect on the expected265

discard proportions (posterior mean = 0.038; 95% CI = [0.0027, 0.0049]), i.e. the266

discard proportion increases with total catch increments. The bathymetric effect267

showed a negative relationship of discard proportions to depth, suggesting that268

the highest discard proportions are located in shallow waters and decrease with269

depth (Figure 4).270

Finally, no vessel effects was identified in the study area suggesting that271

discard proportions are reasonably homogeneous across vessels.272

5. Conclusions

In this paper, we use a Bayesian hierarchical spatial beta model to analyse273

spatially sampled proportion data. To this end, we use a simple reparametrisation274

of the beta distribution to apply regression on the mean of the process. The275

Bayesian approach allows a straightforward quantification of uncertainty, which276

is important for decision making, while the hierarchical structure allows a more277

natural model specification, especially when including complex latent models such278

as geostatistical terms.279



Bayesian spatial beta regression 11

(a) Mean (b) Standard deviation

Figure 3:
Posterior predictive mean and standard deviation maps of the
spatial component of discard proportions.

Figure 4:
Marginal effect of the bathymetry in the linear predictor. The
continuous line represents the mean effect and dashed lines their
95% credible intervals.

Beta regression overcomes all the drawbacks of the traditional data trans-280

formations [Warton and Hui, 2011, Ferrari and Cribari-Neto, 2004]. First, it281

allows a direct interpretation of model parameters in terms of the original data;282

second, the analysis is not sensitive to the sample size; and lastly, posterior distri-283

butions are expected to concentrate well within the bounded range of proportions.284
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It is only when observations on the extremes of the distribution are present, i.e.285

0 and 1, that the beta distribution does not provide a satisfactory description of286

the data. A possible solution to this problem is to add some small value to the287

proportion, which introduces minimal bias while still satisfying the above crite-288

ria [Warton and Hui, 2011]; otherwise, zero and/or one inflated models may be289

required [Ospina and Ferrari, 2012], now available in the zoib package [Liu and290

Kong, 2015] for R.291

The incorporation of spatial random effects in beta regression models can292

be very useful in a wide range of disciplines. For example mapping plant coverage293

in ecology; mapping budget allocation in econometrics; mapping the percentage294

of retirees in sociology, mapping sex-ratios in species, etc. Furthermore, combin-295

ing the Bayesian spatial hierarchical modelling approach [Banerjee et al., 2003]296

and the temporal extension of Da-Silva and Migon [2016], the beta regression297

framework can be extended to the spatio-temporal domain. Consequently, it is298

possible to tackle problems such as the evolution of plant epidemics [Stein et al.,299

1994], the spatio-temporal evolution of temperature [Hengl et al., 2012] or the un-300

derstanding of the spatial dynamism of species over time, as in Paradinas et al.301

[2015]. It must be taken into account that the computational burden of these302

models can be even more demanding than in the purely spatial domain, making303

R-INLA and its SPDE module two almost necessary tools to deal with them.304

The Bayesian analysis of fisheries distribution is a very important field of305

research in marine ecology [Muñoz et al., 2013, Quiroz et al., 2015]. The case306

study presented here applies spatial beta regression to identify fishery discard307

hot-spots based on discard proportions, which, as opposed to total discard units,308

assess the biomass benefit against the amount of wasted biomass that constitute309

discards. Our results have identified at least one high discard proportion hot-310

spot in the study area. Under a marine spatial planning framework that seeks311

to minimise the ecological impact of the fishing activity, the characterisation of312

hot-spots could be specially useful for policy makers, as it would allow them to313

protect those hot-spots as areas of special interest.314

To conclude, we would like to mention that the geostatistical beta regres-315

sion approach proposed here to analyse proportions is not only applicable to316

non-binomial proportional data but also to binomial proportional data, i.e. pro-317

portions measured as x out of n. In fact, applying beta regression in these cases318

may be an easier and more natural approach to avoid the usual problem of overdis-319

persion in logistic regression than that proposed in Wilson and Hardy [2002] using320

GLMMs.321
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