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Abstract:

� Trees are the main sources of paper production, in most of the cases, as far as the
intellectual usages are concerned. However, our planet is lacking in that particular
natural resource due to rapid growth of population, urbanization, and increased pollu-
tion, more importantly non-judicial utilization of such kind. Indian education sectors
(schools, colleges, universities) utilize a major part in consumption of papers as a clas-
sical practice for conducting examinations and other documentation activities. Our
attempt in this article is to investigate and provide an optimal estimate of the number
of pages actually required in answer booklet in higher education sector. Truncated
Poisson distribution is found to be the best fit for the data on number of pages left
blank in an answer booklet after conduction of semester end examinations. To pre-
dict the outcome based on various factors such as, lines per pages, words per line,
types of examinations etc. suitable regression modelling is performed. A real data
set, collected over a period of one month, is been analysed to illustrate the methods
and conclusion is accomplished in the direction of cost reduction, saving of papers,
and in turn, logical uses of natural resource to protect environmental interests.
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1. INTRODUCTION

It goes without saying that trees are the main sources of producing papers,
until alternatives are proven to be exactly similar, that are utilized for many
possible activities in day to day execution of us. Most of the paper mills are in
existence for a long time and hence present technologies fall in a wide spectrum
ranging from oldest to the most modern. In Indian scenario, the mills use a
variety of raw material viz., wood, bamboo, recycled fibre, bagasse, wheat straw,
rice husk, etc. In terms of share in total production, approximately 25% are
based on wood, 58% on recycled fibre and 17% on agro-residues. India’s share
in global paper demand is gradually growing as domestic demand is increasing
at a steady pace while demand in the western nations is contracting. According
to Indian Paper Mill Association, the domestic demand in India grew from 9.3
million tonnes in financial year 2008-09 to 17 million tonnes in financial year
2017-18 at a compound annual growth rate (CAGR) of 6.9%. The futuristic view
is that growth in paper consumption would be in multiples of gross domestic
product and hence an increase in consumption by one kg per capita would lead
to an increase in demand of one million tonnes. Among five important demand
drivers, a likely pick-up from the education sector is prominent one. Printing
and writing segment demand is expected to grow at a CAGR of 4.2% and reach
5.7 million tonnes in financial year 2020-21 on the back of an anticipated pick-up
from the education sector with improving literacy rates and growing enrolment
as well as increasing number of schools and colleges.
Therefore, caring nature by reducing the usage of papers is obvious one can easily
do, if not striving for a proper alternative that fulfil our need in every possible
sense (see Skog and Nicholson [13]; Manzardo et al. [8]). Although there are
regular plantation of trees required to produce paper products (Rudel [11]), there
are several alternatives of non-judicial and unstructured ways of misutilization of
the same.
The caring nature in paper usage is an indirect approach of caring by scientifically
fulfilling our classical need of papers for examination systems. However, the
following two facts are noted in connection to the improper paper utilization
in examination systems at the different academic institutions in India. Firstly,
students are gradually losing the capacity of writing in case of broad answer
type questions, and secondly, the number of pages provided in the main answer
scripts during examination are not scientifically matched with actual demand or
requirement.
Our objective in the current investigation is three-fold:

(a) To identify the distribution of unutilized papers in examination at higher
education and to find an optimal setting for number of papers should be
provided in an answer script.

(b) To find out possible effects due to other variables to the leaving papers
blank in examination answer scripts who take the examination in a classical
pattern.
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(c) To address the utilization maximization in view of cost constraints related
to answer scripts used.

For the purpose of fulfilling the above objectives, truncated Poisson distribution
along with count regression procedure are applied for modelling supported by a
real data illustration. A multiple linear discriminant analysis is also performed
in view of grouping into important categories with the help of a real data. The
rest of the article is organized as follows. Truncated Poisson is described with its
possible applications in section 2. Section 3 deals with count regression models
with emphasis given in right truncated Poisson model with mixed effects. In
section 4, a real data set on the pages left blank at a semester end examination
in a higher education institute in India is been analysed as per the objectives
of the research mentioned above and the corresponding results are discussed in
dedicated subsections. Section 5 discusses about maximization of a linear utility
function of pages in answer scripts subject to certain cost constraints. Finally,
the section 6 concludes.

2. TRUNCATED POISSON DISTRIBUTION

The Poisson distribution is a discrete probability distribution usually ap-
plied to the number of events occurring within a specified period of time or space.
Theoretically, the possible values of a Poisson random variate is non-negative in-
tegers (including 0) and there is no upper limit a Poisson random variate can
stop for. The Poisson distribution is characterized by a single parameter, usually
denoted by λ(> 0).

Definition 2.1. A random variable X is said to have a Poisson distri-
bution with parameter λ if its probability mass function (pmf) is of the form

Pr[X = x] =
λxe−λ

x!
forx = 0, 1, 2, . . . .(2.1)

Numerous applications of Poisson distribution can be found in literature.
Some well known applications could be, number of arrivals in a service queue
during a specific time interval, number of accidents per month in a city, number
of order received per week for a particular product, number of defects in a quality
inspection, and number of printing mistakes per page in a book. The wide ap-
plicability of Poisson distribution, however, does not lower down its importance,
rather newer applications and characterizations are found out in recent years, see
Ahmed [1], Johnson et al. [5], for more details. Nevertheless, the Poisson distri-
bution is successfully used for situations where some kind of counting is involved.
Truncation in Poisson distribution arises when some specified values are not pos-
sible to record (in terms of process and not in terms of availability) either initially
or at the end of a Poisson variate range. The former is known as left truncation,
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while the later is known as right truncation. The theoretical truncated Poisson
distribution was introduced by Plackett [10].
Right truncation (omission of values exceeding a specified value r) can occur if
the counting mechanism is unable to deal with large numbers or the counting
process under consideration is bounded by a finite number.

Definition 2.2. A random variable X is said to have a right truncated
Poisson distribution, right truncated at r i.e. the realized values of X is bounded
at a specified positive integer r, with parameter λ if its pmf is of the form

Pr[X = x] =
λx

x!

 r∑
j=1

λj

j!

−1 , x = 0, 1, 2, . . . , r.(2.2)

If X1, X2, . . . , Xn are n independent and identically distributed random
variables from right truncated Poisson, then the maximum likelihood estimator
(MLE) λ̂ of λ satisfies the following equation:

(2.3)

r∑
j=1

(x̄− j) λ̂j

j!
= 0

The simple estimator (Moore [9]) is λ∗ =
∑

j
xj
m ,

where m is the number of values of x that are less than r− 1; this is an unbiased
estimator of λ.

3. THE COUNT REGRESSION MODELS

Count data regression models are used for special cases in which the re-
sponse variable takes count values. It represents the number of events that occur
in a given time period. Winkelmann [15] studied the number of live births over
a specified age interval of the mother, where the interest was to analyse the vari-
ation in terms of the mother’s schooling, age, and household income. Another
example of count modelling is studied by Cameron et al. [2], where they studied
the number of times that individuals utilize a health service, such as visits to
a doctor or days in the hospital in the past year. The most popular methods
to model count data are Poisson and negative binomial regression (Saffari and
Adnan [12]). Poisson regression is the more popular of the two and is applied to
various fields.

3.1. Poisson regression model

In many situations of practical interest the response variable in an exper-
iment or observational study is a count that is assumed to follow the Poisson
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distribution. Therefore, a more suitable way to deal with count data is to use
the Poisson distribution. The regression model that uses these kinds of option
is called the Poisson regression or the Poisson log-linear regression model. For
more details use of Poisson regression, one could refer to Frome [4], Lawless [7],
Consul and Famoye [3]), Lambert [6] and references therein.

3.2. Truncated Poisson regression models

When the response variable follows a right truncated Poisson distribution,
we use right truncated Poisson regression model. In our investigation, to model
the number of pages left blank in the main answer booklet in semester end ex-
aminations, right truncated Poisson distribution is utilized owing to the fact that
counting is restricted by the total number of available pages in main answer book-
let.
There could be three different varieties for right truncated Poisson regression,
namely, fixed effect model, random effect model, and mixed effect model. We
concentrate in right truncated Poisson regression model for fixed effect on the
predictors and random effects for clusters of explanatory variables. Moreover,
the random effects to follow a normal distribution with mean 0 and variance σ2.

3.2.1. Method of estimation

Suppose that we have a sample of n observations Y1, Y2, ..., Yn which can
be treated as realizations of independent Poisson random variables, with Yi ∼
Poi(λi) right truncated at Yi ≤ r, and suppose that we want to let the mean
λi depend on a vector of explanatory variables xi and random effects. For the
Poisson probability function, a model for count data truncated on the right at
value r can be expressed as

Pr(Yi = yi|Yi ≤ r) =
Pr(Yi = yi)

Pr(Yi ≤ r)
=

λyii(∑r
k=0

λki
k!

)
yi!
, i = 1, 2, . . . ,m,(3.1)

where m is the number of observation after truncation.
The standard assumption is to use the exponential mean parametrization,

λi = exp(xi
Tβ + zi

Tui), i = 1, 2, . . . , n.

In this expression, xi is a vector of covariates and β is a vector of parameters
(fixed effect coefficients). The coefficient β can be interpreted as average propor-
tionate change in the conditional mean E[Yi|xi] for a unit change is xi. Z is a
design matrix of random effects clusters and u is a vector of random effects for
that.
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In general matrix notation, we can write it as

λ = exp(Xβ +Zu),(3.2)

where,
X: Design matrix of order n× p for fixed effect explanatory variables
β: Vector of fixed effect coefficients
Z: Design matrix of order n × q for random effect explanatory variables (clus-
ters/groups)
u: Vector of random effect coefficients
The method of hierarchical likelihood method of estimation (h-Likelihood) is used
to obtain the values of regression coefficients. Let Yij (i = 1, ...,m; j = 1, ..., ni)
be the observations of the response variable. Let ui be the unobserved random
effect on the ith individual. We consider the model

(3.3) Pr (Yij = yij |ui, yij ≤ r) =
λ
yij
ij(∑r

k=0

λkij
k!

)
yij !

such that

(3.4) λij = exp(xij
Tβ + zij

Tui), i = 1, 2, . . . , n.

We assume a normal distribution for the random effects

(3.5) ui ∼ Normal
(
0, σ2

)
Therefore, the h-likelihood (h) is defined by

(3.6) h = L1 (β; y|u) + L2

(
σ2,u

)
where L1 (β; y|u) is the logarithm of the conditional Poisson density function for
the response Y given u with parameter λ = exp(Xβ + Zu), and L2

(
σ2,u

)
is

the logarithm of the Normal density function for the random effect u. Thus,

L1 (β; y|u) =
∑
ij

[
yij ln (λij)− log (yij !)− ln

r∑
k=0

λkij
k!

]

=
∑
ij

[
yij
(
xij

Tβ + zij
Tui
)
− ln

r∑
k=0

(
exp(xij

Tβ + zij
Tui)

)k
k!

− log (yij !)

]
(3.7)

and

(3.8) L2

(
σ2,u

)
= −

∑
i

[
ln (2π)

2
+

ln (σ2)

2
+
ui

2

2σ2

]
The maximum h-likelihood estimators (MHLEs) are obtained by solving the fol-
lowing equations,

∂h

∂βl
=
∑
ij

yij − 1∑r
k=0

(exp(xijT β+zijTui))
k

k!

∑
k

(
exp(xij

Tβ + zij
Tui)

)k
(k − 1)!

xijl = 0

for l = 1, . . . , p(3.9)
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and

∂h

∂ui
=
∑
j

yij − 1∑r
k=0

(exp(xijT β+zijTui))
k

k!

∑
k

(
exp(xij

Tβ + zij
Tui)

)k
(k − 1)!

 zij
− ui
σ2

= 0 for i = 1, . . . ,m.(3.10)

Iterative techniques like, Fisher scoring or Newton-Raphson method can be used
to obtain the estimators of the parameters. For more details on the method
of estimation for truncated Poisson regression with normal random effects, one
could refer to Suaiee [14].

4. APPLICATION WITH REAL LIFE DATA

This section illustrates the methods, described above, with the help of a real
data analysis. For the purpose, a sample of 200 students appeared for semester
end examination (SEE) are collected from a leading higher education institute
in India during November-December, 2018. Students from various courses and
subjects are been considered for balancing possible bias in sampling procedure.
However, convenience sampling scheme were applied with adjustments in courses
and paper types (quantitative and non-quantitative) for which SEE is taken by
the students. Information on the following variables are collected:

1. Course type (under graduate and post graduate).

2. Type of paper written (quantitative and non-quantitative).

3. Number of pages left blank1.

4. Number of lines written per page2.

5. Number of words written per line.

For the last three variables, three random observations are taken to ensure unbi-
asedness and their average is considered.
Statistical software R (version 3.6.0) is utilized for calculations and we see that
there are 24% post graduate and 76% undergraduate students in the sample.
Quantitative paper was for 56% and non-quantitative for 44%. From Figure 1,
we see that the variable pages left blank is normally distributed whereas words
written per line is positively skewed. The scatter plots for response variable and
predictors are displayed in Figure 2.

1The total number of pages in main answer booklet is 25 in the sample collected, excluding
front cover page-its immediate back page and one back cover page.

2Number of lines per page is 29 in the sample collected.
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Figure 1: Histograms for response variable and predictors

(a) 2D Scatter plot
(b) 3D scatter plot

Figure 2: Scatter plots for response variable and predictors

4.1. Justification for using truncated Poisson

Before going to have certain model building on the response variable ”pages
left blank”, let us have the justification for using truncated Poisson distribution
(right truncated at 25, the maximum pages in an answer script). We fit the
observations on the number of pages left blank with Poisson distribution (with-
out truncation) and right truncated Poisson distributions, respectively. We use
maximum likelihood (ML) method of estimation and fitted the Poisson and right
Truncated Poisson distributions for the data on the variable “number of pages
left blank”. As a model selection criteria, the following measures are considered.
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(i) Akaike information criteria (AIC): AIC = 2k − 2 ln(loglikelihood)

(ii) Bayesian information criteria (BIC): BIC = k ln(n) + 2 ln(loglikelihood)

Here, n: number of observations and k: number of parameters estimated. Lower
the values of AIC and BIC, better is the fit. From Table 1, we observe that,
right truncated (truncated at 25) Poisson distribution is better for the purpose
of modeling. We obtain (refer Table 1) expected number of pages left blank=
11.969 ≈ 12. From Figure 3, we see that the pages left blank data is fitted with
right truncated Poisson distribution.

Table 1: ML estimates and model section measures

Distribution λ̂(Std. Error) AIC BIC

Poisson 11.965(0.24459) 1215.955 1219.253
Right truncated Poisson 11.969(0.24527) 1214.035 1217.333

Figure 3: Data fitted with right truncated Poisson and normal curve

4.2. Truncated Poisson regression with different clusters

In this section we consider response variable as “number of pages left
blank”. The predictors or explanatory variables are taken as “lines written per
page” and “number of words written per line” along with a general mean effect
(intercept). We develop three right truncated Poisson regression models consid-
ering normal random effects for three different cluster types.



10 Suman K. Ghosh and Subhradev Sen

4.2.1. Model-A: Course types as clusters

We consider course type classified as “under-graduate” and “post-graduate”
as different clusters having normal random effect. The predictors or explanatory
variables are taken as “lines written per page” and “number of words written per
line” along with a general mean effect (intercept).
Applying right truncated Poisson regression with normal random effects for course
types as clusters, the result obtained is given in Table 2. The log-likelihood, AIC,
and BIC values for the model are obtained as −786.5943, 1579.189, and 1589.084,
respectively.

Table 2: Regression analysis table: Random effects for course type clusters

Coefficients Estimate (Std. Error) t-value P-value

Intercept 2.03723(0.10307) 19.766 < 0.0001
Lines per page 0.01666(0.00378) 4.408 0.00010
Words per line 0.00502(0.01106) 0.454 0.65000

4.2.2. Model-B: Each individual as cluster

Next, we have considered each individual/student as different clusters hav-
ing normal random effect. The predictors or explanatory variables are taken as
“lines written per page” and “number of words written per line” along with a
general mean effect (intercept).
Applying right truncated Poisson regression with normal random effects for indi-
vidual clusters, the result obtained is given in Table 3. The log-likelihood, AIC,
and BIC values for the model are obtained as −711.2469, 1428.494, and 1438.389,
respectively.

Table 3: Regression analysis table: Random effects for individual clusters

Coefficients Estimate (Std. Error) t-value P-value

Intercept 2.10554(0.10326) 20.392 < 0.0001
Lines per page 0.01349(0.00378) 3.570 0.00036
Words per line 0.00650(0.01105) 0.588 0.55683

4.2.3. Model-C: Types of paper written as clusters

We next consider type of paper written (classified as quantitative and non-
quantitative) as two different clusters having normal random effect. The predic-
tors or explanatory variables are taken as “lines written per page” and “number
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of words written per line” along with a general mean effect (intercept).
Applying right truncated Poisson regression with normal random effects for clus-
ters, the result obtained is given in Table 4. The log-likelihood, AIC, and BIC
values for the model are obtained as −702.2191, 1410.438, and 1420.333, respec-
tively. According to AIC and BIC values, Model-C (types of paper written as

Table 4: Regression analysis table: Random effects for paper type clusters

Coefficients Estimate (Std. Error) t-value P-value

Intercept 2.13408(0.10324) 20.670 <0.0001
Lines per page 0.00768(0.00377) 2.036 0.0418
Words per line 0.01012 (0.01104) 0.916 0.3595

Table 5: Model comparison and information measures

Coefficients -Log-likelihood AIC BIC

Model-A -786.5943 1579.189 1589.084
Model-B -711.2469 1428.494 1438.389
Model-C -702.2191 1410.438 1420.333

clusters) comes out as improved model (refer Table 5). However, for each of the
model words written per line is insignificant predictor.

4.3. A linear discrimination approach of grouping

In this section, our objective is to determine whether the variables i.e.,
pages left blank, lines written per page, and words written per line, will dis-
criminate between quantitative and non-quantitative type paper. Discriminant
analysis is a useful multivariate classification technique to predict membership
in two or more mutually exclusive groups. We have used paper type (quantita-
tive, non-quantitative) as grouping variable and pages left blank, lines per page,
and words per line as independent variables. We have conducted Box’s test of
homogeneity of covariance matrices and obtained Box’s M value as 13.592 which
is significant with p-value, p = 0.038, to conclude that the groups do differ in
their covariance matrices. Wilks’ lambda, a measure of how well the discriminant
function separates cases into groups, is obtained as 0.543 which is highly signif-
icant (p << 0.05). The small significance value indicates that the discriminant
function does better than chance at separating the groups. The discriminant
function is obtained as (considering standardized canonical discriminant function
coefficients)

Di = 0.390×Bi + 0.923× Li − 0.288×Wi,(4.1)

where
Di: Discriminant score for the ith student.
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Bi: Number of pages left blank by the ith student.
Li: Number of lines written per page by the ith student.
Wi: Number of words written per line by the ith student.

Table 6: Classification results

Predicted membership
Actual membership ↓ Quantitative Non-quantitative

Quantitative 86 26
(72%) (23%)

Non-quantitative 12 76
(14%) (86%)

The cut-off value of discriminant score is calculated by taking average of
group centroids (mean discriminant score for each group) and is obtained as
18.79. The model will classify any paper as quantitative if the discriminant score
is less than 18.79 and non-quantitative otherwise. For example, if we take a
random observation i.e. an answer script having 9 pages left blank, 22 lines
written per page and 7 words written per line; the discriminant score is obtained
as 0.390 × 9 + 0.923 × 22 − 0.288 × 7 = 21.8, which means this answer script
would be classified as a non-quantitative paper type. The classification result
(i.e. actual versus predicted group membership) is shown in Table 6, where the
overall 81.5% actual group cases are correctly classified.
The following important findings along with specific recommendations are noted
in this section.

1. The expected number of pages left blank in main answer script is 12, i.e.,
expected number of pages written is 13. We recommend to utilize the resid-
ual pages that are not used in main answer scripts for producing additional
answer sheets (each with 4 pages composition). The benefit in doing so is
that there could be a reduction in making cost and wastage of pages would
be minimized as additional sheets can be used whenever required.

2. Types of paper written came out as an important predictor for the response
variable, pages left blank, and hence is a meaningful grouping in discrimi-
nation.

3. A cut off score of 18.79 discriminates an answer script in two non-overlapping
categories if certain minimal information is provided.

This next section discusses about a possible maximization of utility of pages in
a single semester of any particular year.
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5. DISCUSSION ON UTILITY MAXIMIZATION

The main objective in this section is to discuss about a maximization aspect
of the difference of page utility from current to the modified page numbers, subject
to costs incurred for such modification and to identify the optimal reduction
required in number of pages in answer script. An utility maximization problem
can be framed as below:
We define,
X: Number of pages currently used in a main answer script.
N1: Number of main answer script used in any examination.
c11: Making cost per page for an answer script with X number of pages.
X1: Number of pages should be used (after reduction following the procedure
described in section 4) in a main answer script.
c12: Making cost per page for an answer script with X1 number of pages.
c21: Making cost per page for an additional answer script with 4 number of pages.
N2: Number of additional answer script used in any examination.
c22: Per unit cost for making additional (X−X1)/4 number of additional answer
script.

Assuming a linear function, let us now define the current and revised utility
in terms of total pages that can be utilized in the whole process.
Current utility: (N1X + 4N2)

Revised utility: N1X1 + 4N2 + N1(X−X1)
4

We want to

Maximize U(X,X1) = (N1X + 4N2)−
[
N1X1 + 4N2 +

N1(X −X1)

4

]
+ k

=
3N1(X −X1)

4
+ k,(5.1)

where k is an integer constant and N1(X −X1) ≡ k (mod 4).
Subject to the constraints,

N1Xc11 −N1X1c12 ≥ A0(5.2)

(surplus cost inequation for main answer script)

4N2c21 +
N1(X −X1)

4
c22 ≤ A0(5.3)

(cost inequation for additional answer script)

with X,X1 ≥ 0.(5.4)

Here, A0 is amount of threshold benefit which is known or specified.
Now, for given values of c′ijs; i = 1, 2, j = 1, 2 and known N1, N2, one can easily
optimize (an integer programming problem) the function in (5.1) for X and X1.
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6. CONCLUDING REMARKS

This article provides a scientific way of allocating pages in main answer
scripts in classical examination system in higher education sector. The study is
restricted to one particular higher education institute in India. However, scope for
investigations are open for multi-centric observations in the different educational
institute in the same country and/or foreign institutes. Estimate for the number
of pages blank will be an important investigation for multi-centric study as all the
higher education institutes do not provide same number of pages in main answer
scripts. We hope this article shall provide the authorities, all stake holders, and
the student community, an alarming consciousness about the proper utilization of
the pages used for education and thereby shall protect the environment thinking
the large scale impact of the same to the environment.
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