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Abstract:

• Irregularly spaced time series are commonly encountered in the analysis of time series.
A particular case is that in which the collection procedure over time depends also on
the observed values. In such situations, there is stochastic dependence between the
process being modeled and the times at which the observations are made. Ignoring
this dependence can lead to biased estimates and misleading inferences. In this paper,
we introduce the concept of preferential sampling in the temporal dimension and we
propose a model to make inference and prediction. The methodology is illustrated
using artificial data as well a real data set.
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1. INTRODUCTION

Analysis of experimental data that have been observed at different points
in time leads to specific problems in statistical modeling and inference. In tradi-
tional time series the main emphasis is on the case when a continuous variable is
measured at discrete equispaced time points, [22]. There is an extensive body of
literature on analyzing equally spaced time series data, see for example [3] and
[5]. However, unevenly spaced (also called unequally or irregularly spaced) time
series data naturally occurs in many scientific domains. Natural disasters such
as earthquakes, floods, or volcanic eruptions typically occur at irregular time
intervals. In observational astronomy, for example, measurements of properties
such as the spectra of celestial objects are taken at irregularly spaced times de-
termined by seasonal, weather conditions, and availability of observation time
slots. In clinical trials (or more generally, longitudinal studies), a patient’s state
of health may be observed only at irregular time intervals, and different patients
are usually observed at different points in time.

It must be noted that sometimes equally spaced time series are treated as
irregularly spaced time series, namely time series with missing observations and
multivariate data sets that consist of time series with different frequencies, even
if the observations of each time series are reported at regular intervals. One of
the first to treat evenly sampled gene expression time series with missing values
as unevenly sampled data is [19].

There are few methods available in the literature for the analysis of irreg-
ularly spaced series. Some authors, such us [10], [12], [2] and [6] have suggested
an embedding into continuous diffusion processes, with the aim of using the well
established tools for univariate autoregressive moving average (ARMA) processes.

Observations with irregularly spaced sampling times are much harder to
work with, partly because the established and efficient algorithms developed for
equally spaced sampling times are no longer applicable [15]. A common ap-
proach to perform parametric estimation is to construct a log-likelihood function
in terms of the unknown parameter [4]. When the sampling times are consid-
ered deterministic, the traditional approach is to build the classical Gaussian
log-likelihood function. However, because the inversion of the covariance matrix
has to be performed, numerical evaluation of this Gaussian log-likelihood func-
tion is in general very expensive [14]. One way to overcome this computational
effort is to regulate the sampling scheme, using some form of interpolation, and
consider it as being equally spaced. Under the assumption of equally spaced sam-
pling times, the Gaussian log-likelihood function can be approximated, at least
for a sufficiently large sample, by the Whittle log-likelihood function [24]. This
approach has been successfully applied to irregularity caused by missing values,
[16]. While, it may be reasonable to use this methodology, to deal with the mi-
nor irregularities in sampling times caused by missing values, the interpolation
procedure will typically change the dynamic of the underlying process, leading to
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biased estimates for the parameters [9]. Moreover, there is little understanding
of which particular interpolation method is the most appropriate on a given data
set. Alternatively, a convenient continuous time domain dynamic model may
be assumed for the underlying continuous time stationary process such as the
Continuous time ARMA (CARMA) model. The application of Kalman recursion
techniques to the parametric estimation of CARMA processes is reviewed in [22].
Additionally, [13] estimate the parameters of an irregularly sampled CARMA
process using a Bayesian framework.

A particular case of irregularly spaced data is that in which the collection
procedure along time depends also, for practical constraints, on the observed
values. For example, a certain health indicator for an individual may be measured
at different time points and with different frequencies depending on his health
state. In a completely different setting, the times of occurrence of transactions
in the financial markets depend largely on the value of the underlying asset. In
environmental monitoring applications, or in the context of smart cities if it is
decided to monitor more frequently when a value considered critical to human
health is exceeded. Therefore, additional information on the phenomena under
study is obtained from the frequency or time occurrence of the observations. In
such situations, there is stochastic dependence between the process being modeled
and times of the observations, which may be coined as temporal preferential
sampling following [7] in the context of spatial statistics.

In this work, we propose a model-based approach to analyze a time series
observed under preferential sampling. The suggested framework considers the
observed time points as the realization of a time point process stochastically
dependent on an underlying latent process (e.g. an individual health indicator or
the underlying asset). This latent process is assumed as Gaussian without loss
of generality.

The paper is organized as follows. Section 2 describes our proposed model
for preferential sampling in time dimension, namely to make inference and predic-
tion. In Section 3 we describe the Monte Carlo Maximum Likelihood Estimation.
In section 4 we conduct a numerical illustration, in an artificial data set, to an-
alyze the quality of the proposed model. We then show the application of the
previously described methodology to a real data set related to monitoring the
level of a biomedical marker, after a cancer patient undergoes a bone marrow
transplant. Section 5 is devoted to make some concluding remarks.

2. A MODEL FOR PREFERENTIAL SAMPLING

In time series, data are obtained by sampling a phenomenon S(t) : t > 0
at a discrete set of times ti, i = 1, . . . , n. Admiting the possibility that the
sampling design may be stochastic, T = (t1, . . . , tn) denotes a stochastic process
of observation times. In many situations, S(t) cannot be measured without error,
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hence, if Y (ti) denotes the measured value at time ti, a model for the data takes
the form:

(2.1) Y (t) = µ+ S(t) +N(0, τ2), t > 0

where µ is a constant mean effect and S(·) is a stationary Gaussian process with
E[S(t)] = 0. An equivalent formulation is that conditional on S(·), the Y (ti) are
mutually independent, normally distributed with mean µ + S(ti) and common
variance τ2.

We consider S(·) as a continuous time autoregressive process of order 1,
CAR(1), that satisfies the differential equation dS(t) +α0S(t)dt = dW (t) where,
α0 is the autoregressive coefficient, S(·) is asymptotically stationary if an only if
α0 > 0 and W (t) is a Brownian motion with variance parameter σ2w. For notation
simplification let us denote Yi = Y (ti). Then Y = (Y1, . . . , Yn) is multivariate

Gaussian with mean µ1 and covariance matrix ΣY = σ2
w

2α0
Ry(α0) + τ2In, where

1 is a n-length vector of ones, In is the n × n identity matrix and Ry(α0) has
elements rij = ρ (|ti − tj | ;α0) defined by

(2.2) ρ(h) =
γ(h)

γ(0)
= exp(−α0 |h|)

being γ(·) the covariance function.

Admitting that the sampling times are stochastic, a complete model needs
to specify the joint distribution of S, T and Y . Considering the stochastic depen-
dence between S and T , the model to deal with preferential sampling is defined
through [S, T, Y ] written as:

(2.3) [S][T |S ][Y |S(T ) ]

where [·] means ”the distribution of”, S = {S(t) : t > 0}, T = (t1, . . . , tn) and
S(T ) represents {S(t1), . . . , S(tn)}.

We define a specific class of models through the additional assumptions:
conditional on S, T is an inhomogeneous Poisson process with intensity λ (t) =
exp {a+ βS (t)} and unconditionally T is a log-Gaussian Cox process. The log-
Gaussian Cox process is a flexible class of point pattern models that allows con-
ditioning the sampling times to the variable of interest. β is the parameter
that controls the degree of preferentiality, for example, β = 2 corresponds to
a situation when the sampling times are concentrated, predominantly, near the
maximum of the observed values and β = 0 corresponds to the situation of an
homogeneous, non-preferential, sampling. Conditional on S and T , Y is a set
of mutually independent Gaussian variates with τ2 being the measurement error
variance.

The predicted value of S(·) at an unsampled time point tni < t0 < tnj ,
S(t0|T ), is given by S(t0|T ) = E

[
S(t0)|Y (T ). Considering that the process CAR(1)

is Markovian, [5, p.358] shows that the conditional mean of S(t0) given Y (T ) is
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S(t0|T ) = E
[
S(t0)|Y (T )

]
(2.4)

= exp (−α0(t0 − tni))Y (T ) + µ (1− exp (−α0(t0 − tni)))

The variance of the prediction is

(2.5) σ2(t0) = V ar
[
S(t0)|Y (T )

]
=

σ2w
2α0

(1− exp (−2α0(t0 − tni)))

3. MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

We consider a discretization of the S process with N points and a partition
of S into S = {S0, S1}, where S0 denotes the values of S at each of n times ti ∈ T ,
and S1 are the values of S at the remaining (N − n).

The likelihood function for data T and Y can be expressed as

(3.1) L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS =

∫
S

[S][T |S][Y |T, S]dS

where θ = (µ, σw, α0, τ, β) represents all the model parameters.
An algebraic simplification of [Y |T, S] is [Y |S0] so, we can rewrite the integral as

(3.2) L(θ) =

∫
S

[S][T |S][Y |S0]
[S|Y ]

[S|Y ]
dS

Considering that [S] = [S1, S0] = [S1|S0][S0] and replacing the term [S|Y ]
in the denominator of expression (3.2) by [S|Y ] = [S0, S1|Y ] = [S1|S0, Y ][S0|Y ] =
[S1|S0][S0|Y ], equation (3.2) becomes

L(θ) =

∫
S

[S1|S0][S0][T |S][Y |S0]
[S|Y ]

[S1|S0][S0|Y ]
dS

=

∫
S

[T |S]
[Y |S0]
[S0|Y ]

[S0][S|Y ]dS

= ES|Y

[
[T |S]

[Y |S0]
[S0|Y ]

[S0]

]
(3.3)

Taking into account that the above conditional expectation can be approx-
imated by Monte Carlo, MLE’s are obtained by maximizing the Monte Carlo
likelihood

(3.4) LMC(θ) = m−1
m∑
j=1

[T |Sj ]
[Y |S0j ]
[S0j |Y ]

[S0j ]
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where Sj are assumed as realizations of the distribution of S conditional on
Y . S0j denotes the values of Sj restricted to the n observed time points. We
may notice that j takes a value from 1 to m, the total number of Monte Carlo
replicates. With this purpose, we use a technique known as conditioning by
kriging [18] and we use the following construction. The new sample Sj = U +

ΣSA
T
(
AΣSA

T + τ2In
)−1

(V −AU) where A is the n×N matrix whose ith row
consists of N − 1 0s and a single 1 to identify the position of ti within T =

(t1, . . . , tn); U = Σ
1/2
S u ∼ MVN(0,ΣS) with u ∼ N(0, 1) and Σ

1/2
S is obtained

from the Cholesky decomposition and V ∼ MVN(y,ΣY ). Then Sj has the
required multivariate Gaussian distribution of S given Y = y. In practice, we use
antithetic pairs of realizations to reduce Monte Carlo variance [7].

T |Sj in (3.4) is an inhomogeneous Poisson process with intensity

(3.5) λ(t) = exp {a+ βSj(t)}

For computational reasons, we work with logarithm and thus,

(3.6) log([T |Sj ]) =
n∑
i=1

(a+ βSj(ti))− n log

(∫ T

0
exp(a+ βSj(t))dt

)

As the Sj replicate is not known in [0, T ] domain, we can not calculate the
integral presented in expression (3.6), so, we approximate the integral using the
composed trapezium formula for unequally spaced data.

[S0j ] in (3.4) is multivariate Gaussian with mean 0 and covariance matrix

ΣS0j = σ2
w

2α0
RS0j (α0), where RS0j (α0) is the n×n correlation matrix with elements

rij = ρ (|ti − tj | ;α0) defined by (2.2).

[S0j |Y ] in (3.4) is multivariate Gaussian with mean µS0j |Y = ΣS0jΣ
−1
Y (y − µ1)

and covariance matrix ΣS0j |Y = ΣS0j−ΣS0jΣ
−1
Y Σt

S0j
. For more details about con-

ditional distribution see for e.g. [1].

Obtained the Maximum Likelihood Estimates (MLE’s), we can plug them
into (2.4) and (2.5), treating them as known. We are in position of doing the
so-called plug-in predictions.

4. NUMERICAL ILLUSTRATION

In this section we document the performance of the model with time series
simulated under preferential and non preferential (irregular and regular sampling)
scenarios. The simulation allows control the degree of preferentiality. In addition,
we apply our modeling procedure to a time series related to the biomedical marker
level of platelet after a cancer patient undergoes a bone marrow transplant. Taken
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together, these examples suggest that our model is effective at detecting potential
preferential sampling situations, estimating an adequate model and obtaining
predictions for the process. We compare the results from our model with the
traditional Kalman filter approach to irregularly spaced data (cts package [23]).
We begin by describing the procedure to simulate a time series under preferential
sampling.

4.1. ARTIFICIAL DATA

To generate a time series under preferential sampling we first generate a
realization of S from model (2.1) with α0 = 0.2 and σ2w = 1, discretized in 400

equally spaced time points. These values correspond to V ar[S(.)] = σ2 = σ2
w

2α0
=

(1.581)2 and φ = 1
α0

= 5, being the latter related to the lag beyond which there
is no correlation for practical purposes. To generate Y from model (2.1), we
consider µ = 0 and τ = 0.1, conducting three separate sampling procedures over
the realization of S

• preferential sampling: conditional on the values of S, we obtain n = 70 sam-
pling times T following an inhomogeneous Poisson process with intensity
function defined in (3.5) and β = 2;

• irregular sampling: we obtain n = 70 sampling times T from (3.5) and with
β = 0, illustrating the situation without preferential sampling;

• regular sampling: we obtain n = 70 sampling times with equidistant obser-
vations.

To illustrate the results of these sampling schemes, we represent in Figure
1 a realization of the process S (gray line) and the three resulting data sets.
We have 70 sampling times (black points), considering β = 2 in the process
intensity function, in which the preferential nature of the sampling process results
in sample times falling predominantly near the maxima. For 70 sampling times
(white points), we consider β = 0, the situation without preferential sampling
and with irregularly sampling points. For the remaining 70 points (star points),
we have the situation of regular spaced sampling times.

The parameters µ, σ, φ, τ and β are the target of estimation. The esti-
mates are obtained under (3.4), henceforward denoted by MCMLE’s and from
the Kalman filter, denoted by MLE’s. For the maximization of our Monte Carlo
log-likelihood function we considered a total of grid points N = 400 and a total
number of M replicates m = 1000. Mean and standard errors for the estimates
obtained from 250 independent simulated samples are summarized in Table 1.

Analysing Table 1 we conclude that the model for Temporal Preferential
Sampling presents estimates for the parameters less biased, even when the prefer-
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Figure 1: Sample times with preferential sampling nature (black points),
without preferential sampling and irregularly spaced time points
(white points), regular spaced time points (star points) and un-
derlying process S (gray line).

PS Data set (β = 2) Irregularly Sampling (β = 0) Regular sampling
True PS model CTS PS Model CTS PS Model CTS

µ̂ 0 0.13 (0.18) 0.38 (0.31) 0.04 (0.12) 0.26 (0.34) 0.02 (0.22) 0.71 (0.62)
σ̂ 1.58 1.53 (0.21) 0.99 (0.18) 1.64 (0.11) 1.52 (0.21) 1.60 (0.13) 1.45 (0.24)

φ̂ 5 5.71 (1.01) 3.17 (2.55) 5.20 (0.48) 5.52 (1.96) 5.12 (0.89) 6.78 (2.93)
τ̂ 0.1 0.12 (0.04) 0.27 (0.13) 0.11 (0.01) 0.30 (0.18) 0.11 (0.02) 0.55 (0.28)

β̂ 2 or 0 1.76 (0.39) 0.00 (0.07) 0.00 (0.02)

Table 1: Maximum likelihood estimates, under PS model (MCMLE’s)
and by cts package (MLE’s), mean (standard errors) obtained
from a total of 250 independent samples.

ability degree is null, with regular and irregularly sampling.

To analyse the impact of ignoring preferential sampling on the quality of
predictions, we conducted a second simulation study. We simulated 250 realiza-
tions of S and for each we constructed a preferential sampling data set. Then,
the proposed MCMLE’s and the MLE’s from the Kalman filter approach were
obtained and plugged-in equation (2.4) to predict S(t) at 50 equally spaced time
points. These together with the corresponding standard errors, in (2.5), allowed
us to calculate prediction 95% confidence intervals and estimate their coverage.

Figure 2 represents one simulation of S(t) (black line), the correspond-
ing preferential sampling data (black points) and the predictions acquired from
MCMLE’s (white points) and MLE’s (gray points). MLE’s which do not take into
account the preferential character of the data lead to predictions with larger bias
(overestimation of the observations) and smaller variance than that of MCMLE’s.
In fact, in the overall simulation results confidence intervals from MCMLE’s
present an estimated coverage of 88% while the MLE’s provide an estimated cov-
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erage of just 73%. Thus, the proposed model leads to estimates that are less
biased but with larger variance, reflecting the uncertainty associated with the
observations.

Further studies with β taking non-integer and negative values (sampling
times are concentrated, predominantly, near the minima of the observed values)
lead to similar conclusions.

0 50 100 150 200

-4
-2

0
2

4

time

obs

Figure 2: Predictions acquired from MCMLE’s (white points) and MLE’s
(gray points), dashed line are confidence bands, black points are
the preferential sampling data and black line is the underlying
process S .

4.2. BIOMEDICAL MARKER

We consider the problem of monitoring the level of a biomedical marker,
platelet, after a cancer patient undergoes a bone marrow transplant. The data
in Figure 3, studied in [21] as missing data problem, are 91 measurements made
different days on variable log(platelet) [PLT]. In the first 35 days the data were
observed daily and then irregularly, once the indicator began to show better
results. According to [11], ”Platelet count at about 100 days post transplant has
previously been shown to be a good indicator of subsequent long term survival”.
This data is available in the package astsa [20] with the name of ”blood”.

The MCMLE’s for model parameters are: µ̂ = 1.99, φ̂ = 66.18, σ̂ = 0.72,
τ̂ = 0.11 and β̂ = −2.01. The estimated value for β with its negative sign indi-
cates that the data was, in fact, observed under a preferential framework whereby
the patient is observed more frequently when the biomarker shows lower val-
ues. Predictions of the biomarker within the period of observations are obtained
plugging-in the estimated parameters in equations (2.4) and (2.5). Figure 4 top
panel shows the 95% prediction intervals for (log of) the biomarker while the bot-
tom panel represents the 95% prediction intervals obtained from the MLE’s from
the Kalman filter approach, with µ̂ = 1.57, φ̂ = 53.94, σ̂ = 0.42 and τ̂ = 0.13. As
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Figure 3: Measurements of the log(platelet) [PLT] .

expected in view of the simulation results, the predictions obtained from MCMLE
present larger variance reflecting the uncertainty associated with the preferential
data under analysis.

This kind of study is important, for example, to analyse when a new mea-
surement of the patient’s health indicator should be taken.

5. CONCLUDING REMARKS AND FUTURE WORK

We propose, in this work, a methodology to deal with irregularly spaced
time series but also a methodology that takes into account the frequency or
time occurrence of the observations. The proposed model not only provides
good estimates for model parameters but also reveals quite satisfactory results
for prediction. A key aspect of this methodology is that it provides a tool, for
example in the context of clinical trials, supporting a better knowledge of the
underlying stochastic process, goal of study.

In their work, [8] affirm that the use of a single parameter in (3.5) to
capture both the strength of the preferentiality and the amount of non-uniformity
in sampling locations is somewhat inflexible. Alternatively, a more flexible and
computational more efficient class of models, based on the proposal of [17], is
discussed. These authors suggest an extension to the model proposed by [7],
by adding a second Gaussian process and use of stochastic partial differential
equation models. For future investigation we intend to adapt those suggestions
to the time dimension.
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Figure 4: Prediction 95% confidence intervals using predictions acquired
from MCMLE’s (top) and MLE’s (bottom).
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