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1. INTRODUCTION

Collecting and publishing public data (e.g., tax data) relevant to national
interests, or to human race in a broader sense, thereby establishing transparency
in government policies and aiding socio-economic development have been primary
objectives of many statistical organizations. However, they are also responsible
for protecting survey respondents’ confidentiality since that leads to greater rates
and accuracy in responses. The aforementioned issues have collectively led to
the origin of synthetic data where sensitive values are treated like missing values
and are imputed based on the underlying data distribution. Mere elimination of
the key identifiers, e.g., name, address, unique government identification num-
ber, age, etc. may not be sufficient to provide full protection to respondent’s
identity, and hence, additional steps should be taken to this end. Synthetic data
are generated in a way that the privacy and confidentiality of general public
are not compromised, however, keeping underlying structure of the stochastic
model that generated the data, intact. The inferences drawn from synthetic data
are expected to reveal similar characteristics as the ones obtained actual data,
hence, any decisions or actions based on synthetic data remain valid. Some well
known techniques in this front involve cell suppression (method of withholding
values of the primary risky cells and secondary nearly-risky cells by some ran-
dom mechanism; [1], [2]), data swapping (a perturbation method of creating pairs
with similar attributes and interchanging sensitive values between them; [3]), top
coding/bottom coding (replacing confidential values of an attribute with the max-
imum or minimum or some other threshold values), random noise perturbation
(method of contaminating data with random noises following some known dis-
tribution and applying statistical methods to estimate the true values ignoring
the noises; [4], [5], [6]) and multiple imputation (replacing sensitive values with
some aggregated measure obtained from multiple imputed values by utilizing the
underlying stochastic nature of the data; [7],[8]) have been implemented widely
for statistical disclosure control.

In this context, application of noise perturbed data and synthetic data
have gained recognition only in the recent years. Under these techniques, ran-
dom errors or noises are generated from a well known probability distribution
and applied on quantitative data that need to be masked, either additively or
multiplicatively. Many inherent characteristics and principal features of noise-
perturbed data obtained from the actual microdata in order to protect privacy
were studied by [4], [5], [6], [9], [10], [11], to name a few. Recently, [12] in their
paper, developed a likelihood based inferential method under the assumption of
multiplicative noise where data is obtained from a parametric model.

One of the early works to implement synthetic data for statistical disclosure
control was accomplished by [13] where synthetic data is generated with a concept
similar to multiple imputation [7]. Multiple imputation provides a framework in
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which each datum is replaced by a vector of m values sampled from a known
probability distribution. In [13], the author suggested that multiple-imputation
technique results in synthetic data that do not resemble any actual sampling unit
while preserving inherent properties of the underlying distribution and confiden-
tiality of the respondents. Detailed parametric and non-parametric inferential
methods of analyses based on synthetic data were examined by [14].

An illustration on multiply imputed fully synthetic public use microdata
with respect to inferences on various descriptive and analytic estimands, and
degree of protection of confidentiality, was carried out by [15]. Modified adapta-
tions on multiple imputation based framework in context of missing data, data
confidentiality and measurement error was discussed in [16]. A likelihood-based
finite sample inference was studied by [17] for a synthetic data obtained from an
exponential distribution. Similar studies were carried out by [18] and [19] where
synthetic data are generated from a normal distribution using posterior predictive
sampling and plug-in sampling methods. Further discussions and developments
in synthetic data methodology could be found in [20], [21] and [22].

Following the line of work similar to [17], in this paper we develop a
likelihood-based inferential procedure for synthetic data using plug-in sampling
and posterior predictive sampling where the true population is a two-parameter
Pareto distribution. Define x = (x1, . . . , xn)T as the original microdata with a
probability density function (pdf) given by fθ(x) where θ is the parameter char-
acterizing the underlying population. To illustrate the mechanism of plug-in sam-
pling, let θ̂ = θ̂(x) be a point estimate of θ. Then, for a positive integer m, a syn-
thetic data is given by Y = (y1, . . . , ym) where yi = (yi1, . . . , yin)T; i = 1, . . . ,m is
a random sample generated from fθ̂(.). On the other hand, posterior predictive
sampling method assumes an appropriate prior distribution π(θ) of θ. θ∗ is chosen
randomly from the posterior distribution π(θ|x) of θ given x. A synthetic data
is given by Y = (y1, . . . , ym) where yi = (yi1, . . . , yin)T; i = 1, . . . ,m is a random
sample generated from fθ∗i (.) where θ∗i is the value of θ obtained by sampling
from π(θ|x) at ith draw.

As discussed by [20], [21] and [22], for multiple imputed data sets, one may
develop inference based on a scalar parameter Q = Q(θ). Let η = η(x) and
ν = ν(x) be point estimator of Q(θ) and estimator of variance of η, respectively.
An estimator of Q obtained from the synthetic data Y is given by

(1.1) η̄m =
1

m

m∑
i=1

ηi

and an estimator of variance of η̄m is given by

(1.2) Vm =
1

m(m− 1)

m∑
i=1

(ηi − η̄m)2 +
1

m

m∑
i=1

νi
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where ηi = η(yi) and νi = ν(yi) for i = 1, . . . ,m. For the upper γ/2th quantile
tγ/2;ν for a t-distribution with degrees of freedom

ν = (m− 1)

[
1 +

(m− 1)
∑m

i=1 νi∑m
i=1(ηi − η̄m)2

]2
,

an approximate interval estimate ofQ(θ) can be evaluated using
(
η̄m ± tγ/2;ν

√
Vm
)
.

Income data are often published by the statistical agencies as aggregates to
ensure confidentiality at the cost of huge information loss. In order to circumvent
this problem, these agencies use microdata in form of individual income data
published synthetically. Again, Internal Revenue Service (IRS) releases tax return
records of chosen individuals by masking their key identifiers because these are
important source of information for policy makers, academicians or non-profit
research organizations to analyze the influences of variation of tax policies on
revenues or burden of tax on different social strata [23]. It is widely known that
individual income can be well-modeled by Pareto distribution ([24]; [25]; [26];
[27]). The pdf of a random variable X following a Pareto distribution is given by

(1.3) fθ(x) =
ψCψ

xψ+1

where x > C, C is a scale parameter that denotes minimum threshold value for
x, ψ > 0 is a shape parameter, and θ = (C,ψ)T. In economics, ψ is known as the
Pareto index [28] which is a measure related to breadth of the income distribution.

Though synthetic or imputed data are widely used to mask income related
information of individuals [29], inferential procedures for a synthetic data gener-
ated from a Pareto model have not been studied yet, to the best of our knowledge.
Therefore, in this paper, we study and develop inferential methods based on like-
lihood function for a model-based singly imputed synthetic data using plug-in
and posterior predictive sampling methods when the original data is obtained
from a Pareto distribution. The formulation and derivations of the inferential
methodologies are mathematically more intensive, complex and challenging in
comparison to the exponential [17] or normal [19] distributions, owing to the de-
pendency between the scale parameter C and the Pareto random variable. In
particular, for posterior predictive sampling, expressions for the estimators are
either implicit or their derivations are intractable. However, the estimators that
could be derived are sufficient for the concerned parameter and mostly exact in
nature, except few which are build based on asymptotic normality of the ML
estimators. Moreover, as argued by [18], developing inferential methods based on
synthetic data requires generation of m random samples of size n with m > 1.
However, situations arise when m may not be greater than one due to stricter
privacy policies or to avoid high disclosure risks [17], and only a single synthetic
version of the original data is available for study. Thus, a major motivation of
this work is to establish valid inferential results based on a single synthetic data
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by properly utilizing the underlying model structure.

The rest of the paper is arranged as follows. In section 2, discussion on
methodology to estimate the parameters is provided. Section 3 deals with a
simulation study which is carried out to validate the performance of our proposed
method of estimation. Interpretation of the results of the simulation study are
also discussed. Finally, concluding remarks are made in section 4.

2. METHODOLOGY FOR DRAWING LIKELIHOOD BASED IN-
FERENCE

LetX = (X1, . . . , Xn)T represent the original data of size n whereX1, . . . , Xn

are independent and identically distributed (iid) according to Pareto distribu-
tion with a pdf given in 1.3. The maximum likelihood (ML) estimators of
C and ψ are, respectively, given by Ĉ = X(1) = min{X1, . . . , Xn} and ψ̂ =

n
[∑n

i=1 log
(

Xi
X(1)

)]−1
. Note that the sampling distribution of Ĉ is Pareto with

scale parameter C and shape parameter nψ. On the other hand, ψ̂ follows Inverse-
Gamma (IG) distribution with parameters n and nψ when C is known, and IG
distribution with parameters n − 1 and nψ when C is unknown [30]. Moreover,
Ĉ and ψ̂ are stochastically independent ([26]; [30]). Furthermore, Ĉ = X(1) is

sufficient for C when ψ is known, (
∏n
i=1Xi)

1/n = Ce1/ψ̂ is sufficient for ψ when

C is known, and θ̂ =
(
X(1),

∑n
i=1 log

(
Xi
X(1)

))T
= (Ĉ, n/ψ̂)T is jointly sufficient

for θ = (C,ψ)T when both C and ψ are unknown ([26]). Finally, Ĉ and ψ̂ are
both individually complete whereas (Ĉ, ψ̂)T is jointly complete [30]. With this
background, the following results are developed for synthetic data based on plug-
in sampling.

2.1. Plug-in sampling

Let Y = (Y1, Y2, ..., YN )T be a synthetic data of size N obtained by gener-
ating a random sample from a Pareto distribution with parameters Ĉ and ψ̂. For
m multiply imputed synthetic data sets, N is generally taken as nm. However,
our interest lies in the case where m = 1 to incorporate stricter confidentiality
as mentioned earlier. Hence, assuming the value of n known, N is considered
to be equal to n. Once the synthetic data Y = (Y1, Y2, ..., Yn)T is obtained, our
objective is to provide inference on θ = (C,ψ)T based on Y . In the following
subsections, we describe methodologies to draw inference on θ under three sce-
narios, viz., inference on C when ψ is known, inference on ψ when C is known,
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and inference on θ when both C and ψ are unknown.

2.1.1. Inference on ψ when C known

Under this scenario, Y is generated from Pareto distribution with the value
of C known. Let us define A = C−n

∏n
i=1 Yi.

Theorem 2.1. For i = 1, . . . , n, yi > C > 0, ψ > 0 and C known, the
pdf of Y is given by

(2.1) gψ(y) =
2(ψn)n

ACnΓ(n)
BesselK

(
0, 2
√
nψ logA

)
where BesselK (., .) is the modified-Bessel function of second kind defined as

(2.2) BesselK(n, z) =

√
π

2z

e−z

(n− 1
2)!

∫ ∞
0

e−ttn−1/2
(

1− t

2z

)n−1/2
dt

for n ∈ R and z ∈ C.

Proof: For yi > C > 0, i = 1, . . . , n, ψ > 0 and known C, the condi-
tional pdf of Y given ψ̂ is given by

g1(y|ψ̂) = ψ̂nCnψ̂
(∏

yi

)−ψ̂−1
and the conditional pdf of ψ̂ given ψ is given by

g2(ψ̂|ψ) =
ψnnn

Γ(n)
ψ̂−n−1 exp(−ψn/ψ̂).

Thus,

gψ(y) = g1(y|ψ̂)× g2(ψ̂|ψ)

=
ψnnn

Γ(n)

∫ ∞
0

Cnψ̂(
∏

yi)
−ψ̂−1 exp (−nψ/ψ̂)ψ̂−1dψ̂

=
ψnnn

Γ(n)Cn

∫ ∞
0

ψ̂−1A−ψ̂−1 exp (−nψ/ψ̂)dψ̂.

Many well known distributions can be expressed in the form of Bessel function.
This special function, namely, modified Bessel function of second kind expressed
in (2.2) can be computed for specified values of its argument using Mathematica
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version 12.2 [31].

Uniformly minimum variance unbiased estimator and exact confidence in-
terval for ψ

As discussed in ([26]), A is sufficient for ψ and complete. Let us define

(2.3) ψ̃ =
n∑n

i=1 log (Yi/C)
= n[log(A)]−1.

ψ̃ is also sufficient for ψ and complete. Hence,

E{ψ̃} = E{E{ψ̃|ψ̂}} = E

{
nψ̂

n− 1

}
=

n2

(n− 1)2
ψ.(2.4)

An unbiased estimator of ψ is ψu = (n−1)2
n2 ψ̃. ψu is also a sufficient and com-

plete statistic. Further, Lehmann Scheffé theorem ([32, Chapter 6]), implies that
ψu is the uniformly minimum variance unbiased estimator (UMVUE) of ψ ([32,
Chapter 7]). The variance of ψu is given by

V (ψu) = V (E{ψu|ψ̂}) + E{V (ψu|ψ̂)}

=

(
n− 1

n

)4 [
V (E{ψ̃|ψ̂}) + E{V (ψ̃|ψ̂)}

]
=

(
n− 1

n

)4
[
V

(
nψ̂

n− 1

)
+ E

{
n2ψ̂2

(n− 1)2(n− 2)

}]

=

{
2n− 3

(n− 2)2

}
ψ2.(2.5)

An estimate V̂ (ψu) of V (ψu) is obtained using (2.5) by replacing ψ with ψ̃.

To find an exact CI for ψ, we construct a pivotal quantity based on the suf-
ficient statistic ψ̃. Recall that ψ̃ follows IG distribution with parameters (n, nψ̂)
when C is known. Then the conditional pdf of ψ̃ is

(2.6) g2(ψ̃|ψ̂) =
ψ̂nnn

Γ(n)
ψ̃−n−1 exp

(
− ψ̂n
ψ̃

)
.

Again, the conditional pdf of ψ̂ given ψ is given by

(2.7) g2(ψ̂|ψ) =
ψnnn

Γ(n)
ψ̂−n−1 exp

(
−ψn
ψ̂

)
.

Combining (2.6) and (2.7), we obtain

(2.8) hψ(ψ̃) =
ψnn2n

[Γ(n)]2

∫ ∞
0

ψ̂−1ψ̃−n−1 exp

(
−n

[
ψ

ψ̂
+
ψ̂

ψ̃

])
dψ̂.
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Taking substitution ψa = ψ̂
ψ , (2.8) can be written as

(2.9) hψ(ψ̃) =
ψnn2n

[Γ(n)]2
ψ̃−n−1

∫ ∞
0

ψ−1a exp

(
−n
[

1

ψa
+
ψψa

ψ̃

])
dψa.

Further, considering a transformation of variable ψ̃ →W where W = ψ̃
ψ we obtain

(2.10) h(w) =
n2n

[Γ(n)]2
w−n−1

∫ ∞
0

ψ−1a exp

(
−n
[

1

ψa
+
ψa
w

])
dψa

which is independent of ψ. Hence, W = ψ̃
ψ = n(logA)−1

ψ is a pivot for ψ. For a
given level of significance γ ∈ (0, 1), we may obtain κ2 > κ1 > 0 such that

(2.11)

∫ κ2

κ1

h(w)dw = 1− γ.

Therefore, an exact (1− γ)100% CI for ψ is given by

(2.12)

(
n(logA)−1

κ2
,
n(logA)−1

κ1

)
.

κ1 and κ2 are chosen such that the CI in (2.12) has the shortest length. For
achieving that, we define the length of the CI in (2.12) as

Lψ = n(logA)−1

[
1

κ1
−

1

κ2

]
= ψ̃

[
1

κ1
−

1

κ2

]
.

The objective is to find κ1 and κ2 such that the expected value of Lψ is minimum
subject to (2.11). Applying Lagrangian multiplier technique, the Lagrangian
function Lψ(κ1, κ2, λ) is obtained as

(2.13) Lψ(κ1, κ2, λ) =

[
1

κ1
−

1

κ2

]
+ λ (HW (κ2)−HW (κ1)− (1− γ))

where λ is the Lagrangian multiplier and HW (w) =
∫ w
0 h(u)du. On taking partial

derivatives of Lψ(κ1, κ2, λ) in (2.13) with respect to κ1, κ2 and λ we solve (2.14)
for κ1 and κ2 where

κ21h(κ1)− κ22h(κ2) = 0

HW (κ2)−HW (κ1)− (1− γ) = 0.(2.14)

Maximum likelihood estimator and asymptotic confidence interval for ψ

The ML estimator of ψ is obtained as usual by taking the partial derivative
of the (2.1) and equating to zero. That is, solving

(2.15) ψ − n

logA

(
BesselK[0, 2

√
nψ logA]

BesselK[1, 2
√
nψ logA]

)2

= 0
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for ψ, the ML estimator ψ̃syn of ψ can be obtained. It is well known that un-
der certain regularity conditions ψ̃syn follows an asymptotic normal distribu-
tion ([33, Chapter 6.3]) with mean ψ and variance σ2(ψ̃syn) = I(ψ)−1 where

I(ψ) = −E
[{

∂2 log gψ(y)

∂ψ2

}]
is the information at the true value of ψ. Since

σ2(ψ̃syn) depends on unknown ψ, an estimate of σ2(ψ̃syn) is given by σ̂2(ψ̃syn) =

−
{
∂2 log gψ(y)

∂ψ2

} ∣∣∣
ψ=ψ̃syn

([34, Chapter 35]). Therefore, an asymptotic 100(1−γ)%

CI for ψ is given by
(
ψ̃syn ± zγ/2σ̂2(ψ̃syn)

)
.

2.1.2. Inference on C when ψ is known

Under this scenario, a synthetic data y is generated from Pareto distribu-
tion with the scale parameter Ĉ = X(1) and the shape parameter as ψ. The
goal is to derive inference on C based on y. Central to this goal is the joint pdf
gC(y) which can be used to obtain the likelihood function L(C|y). Let us define
C̃ = Y(1) = min{Y1, . . . , Yn} and B =

∏n
i=1 yi.

Theorem 2.2. The joint pdf of Y is given by

(2.16) gC(y) =
nψn+1Cnψ

Bψ+1
× log

(
C̃

C

)
where yi > C > 0 for i = 1, . . . , n, C̃ > C and ψ > 0.

Proof: Note that C̃ > Ĉ > C. Let g3(y|Ĉ) and g4(Ĉ|C) be the con-
ditional pdfs of y given Ĉ and Ĉ given C respectively. Also, g4(Ĉ|C) is Pareto
with parameters C and nψ. For C̃ > C, the joint pdf of Y is expressed as

gC(y) =

∫ C̃

C
g3(y|Ĉ)g4(Ĉ|C)dĈ

=

∫ C̃

C

ψnĈnψ

(
∏
yi)

ψ+1
× nψCnψ

Ĉnψ+1
dĈ =

nψn+1Cnψ

(
∏
yi)

ψ+1

∫ C̃

C

dĈ

Ĉ

=
nψn+1Cnψ

Bψ+1
× log

(
C̃

C

)
.(2.17)

Uniformly minimum variance unbiased estimator and exact confidence in-
terval for C
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Since C̃ = Y(1) is a complete sufficient statistic for C when ψ is known,

Cu = (nψ−1)2
(nψ)2

C̃ is an unbiased estimator of C as shown below.

E
{
C̃u

}
= E

{
E
{
C̃u|Ĉ

}}
=

(nψ − 1)2

(nψ)2
E
{
E
{
C̃|Ĉ

}}
=

(nψ − 1)2

(nψ)2
E

{
nψĈ

nψ − 1

}
= C.

(2.18)

By Lehmann Scheffé theorem ([32, Chapter 6]), C̃u is the UMVUE of C when ψ
is known. The variance of C̃u is given by

V
{
C̃u

}
= V

{
E
{
C̃u|Ĉ

}}
+ E

{
V
{
C̃u|Ĉ

}}
=

(nψ − 1)4

(nψ)4
×
[
V
{
E
{
C̃|Ĉ

}}
+ E

{
V
{
C̃|Ĉ

}}]
=

(nψ − 1)4

(nψ)4
×

[
V

{
nψĈ

nψ − 1

}
+ E

{
nψĈ2

(nψ − 1)2(nψ − 2)

}]

=

{
2− 1

(nψ − 1)2

}
C2

(nψ)2
.(2.19)

The development of an exact confidence interval for C involves construction
of a pivot for C from its sufficient statistic C̃ = Y(1). For C̃ > C, the pdf of C̃ is
given by

hC(C̃) =

∫ C̃

C
g4(C̃|Ĉ)g4(Ĉ|C)dĈ =

∫ C̃

C

nψĈnψ

C̃nψ+1
× nψCnψ

Ĉnψ+1
dĈ

=
n2ψ2Cnψ

C̃nψ+1
× log

(
C̃

C

)
.(2.20)

Let T = log
(
C̃
C

)
, then the pdf of T as

h̃(t) = n2ψ2te−nψt, for t > 0

and h̃(t) is independent of C. For some κ2 > κ1 ≥ 1 and γ ∈ (0, 1), we obtain∫ κ2

κ1

h̃(t)dt = 1− γ.

Therefore, an exact 100(1 − γ)% CI for C is given by
(
C̃e−κ2 , C̃e−κ1

)
. Define

H̃C(c) =
∫ c
0 h̃(u)du. Following the steps as discussed in section 2.1.1, the shortest

length 100(1− γ)% for C is obtained by solving

eκ1 h̃(κ1)− eκ2 h̃(κ2) = 0

H̃C(κ2)− H̃C(κ1)− (1− γ) = 0(2.21)
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for κ1 and κ2.

Maximum likelihood estimation of C

The usual method of derivative based ML estimation cannot be applied
here to obtain the ML estimate of C. However, noting

∂L(C|y)

∂C
=
∂gC(y)

∂C
= −nψ

n+1C−(n+1)

Aψ+1

{
1 + log

(
C̃

C

)}
< 0,

i.e., L(C|y) is decreasing in C with 0 < C < C̃, the ML estimator of C is obtained
as C̃ = Y(1). The exact distribution of C̃ is given by equation (2.20). An estimate

of the variance of C̃ can be derived from (2.19) as

V̂ (C̃) =

[
(nψ)2

(nψ − 1)4

{
2− 1

(nψ − 1)2

}]
C̃2.

2.1.3. Inference on θ = (C,ψ)T when both C and ψ are unknown

To develop inference on θ, the joint pdf of y given θ in Theorem 2.3, where
y = (y1, . . . , yn)T is a synthetic data obtained from Pareto distribution with
parameters Ĉ and ψ̂. Define ψ∗ = n∑n

i=1 log(Yi/Y(1))
. ψ∗ follows IG with parameters

n− 1 and nψ̂.

Theorem 2.3. The joint pdf of Y is given by

(2.22) gθ(y) =
(nψ)nCnψ

Γ(n− 1)

∫ ∞
0

(
C̃n(ψ̂−ψ) − Cn(ψ̂−ψ)

n(ψ̂ − ψ)

)
exp

{
−nψ

ψ̂

}
(
∏n
i=1 yi)

ψ̂+1
dψ̂

where C̃ = min{y1, . . . , yn} > C > 0 and ψ > 0.

Proof: The conditional pdf of y given θ̂ = (Ĉ, ψ̂)T is expressed as

(2.23) g5(y|θ̂) =
ψ̂nĈnψ̂

(
∏n
i=1 yi)

ψ̂+1

where yi > Ĉ > C > 0 for i = 1, . . . , n and ψ̂ > 0. Again, the conditional pdf of
θ̂ given θ is

(2.24) g6(θ̂|θ) =
(nψ)nCnψ exp

{
−nψ

ψ̂

}
Ĉnψ+1ψ̂nΓ(n− 1)



12 Nutan Mishra and Sandip Barui

for 0 < C < Ĉ < C̃, ψ̂ > 0 and ψ > 0. Equation (2.24) is obtained using the fact
that Ĉ and ψ̂ are stochastically independent where Ĉ follows Pareto distribution
with scale C and shape nψ, and ψ̂ follows IG distribution with parameters n− 1
and nψ. Finally, the pdf of y is given by

gθ(y) =

∫ ∞
0

∫ C̃

C
g5(y|θ̂)× g6(θ̂|θ)dĈdψ̂

=
(nψ)nCnψ

Γ(n− 1)

∫ C̃

C

(
Ĉn(ψ̂−ψ)−1

)∫ ∞
0

exp
{
−nψ

ψ̂

}
(
∏n
i=1 yi)

ψ̂+1
dψ̂dĈ(2.25)

which can be further simplified to

gθ(y) =
(nψ)nCnψ

Γ(n− 1)

∫ ∞
0

(
C̃n(ψ̂−ψ) − Cn(ψ̂−ψ)

n(ψ̂ − ψ)

)
exp

{
−nψ

ψ̂

}
(
∏n
i=1 yi)

ψ̂+1
dψ̂.(2.26)

Construction of a pivot for θ

Let us define θ̃ = (C̃, ψ∗)T. The pdf of θ̃ is given by

hθ(θ̃) =

∫ ∞
0

∫ C̃

C
g6(θ̃|θ̂)× g6(θ̂|θ)dĈdψ̂

=

∫ ∞
0

∫ C̃

C

(nψ̂)nĈnψ̂ exp
{
−nψ̂
ψ∗

}
C̃nψ̂+1ψ∗nΓ(n− 1)

×
(nψ)nCnψ exp

{
−nψ

ψ̂

}
Ĉnψ+1ψ̂nΓ(n− 1)

dĈdψ̂

=
n2nCnψψn

{Γ(n− 1)}2ψ∗n

∫ ∞
0

∫ C̃

C

Ĉn(ψ̂−ψ)−1

C̃nψ̂+1
exp

[
−n

{
ψ̂

ψ∗
+
ψ

ψ̂

}]
dĈdψ̂.(2.27)

Substituting t = ψ̂
ψ , we obtain

hθ(θ̃) =
n2nCnψψn

{Γ(n− 1)}2ψ∗n

∫ ∞
0

∫ C̃

C

Ĉnψ(t−1)−1

C̃nψt+1
exp

[
−n
{
ψt

ψ∗
+

1

t

}]
dĈ × ψdt

=
n2nCnψψn+1

{Γ(n− 1)}2ψ∗n

∫ ∞
0

1

C̃nψt+1
exp

[
−n
{
ψt

ψ∗
+

1

t

}]
×
∫ C̃

C
Ĉnψ(t−1)−1dĈdt

=
n2nCnψψn+1

{Γ(n− 1)}2ψ∗n

∫ ∞
0

1

C̃nψt+1
exp

[
−n
{
ψt

ψ∗
+

1

t

}]
×

[
C̃nψ(t−1) − Cnψ(t−1)

nψ(t− 1)

]
dt.

(2.28)

Considering a bivariate transformation (C̃, ψ∗)→ (U, V ) where

U =

(
C̃

C

)ψ
and V =

ψ∗

ψ
(2.29)
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we obtain pdf of (U, V ) which is independent of θ. The Jacobian of the transfor-

mation is Cu
1
ψ
−1

. From (2.28), the joint pdf of (U, V ) is

hU,V (u, v) =
n2n−1

{Γ(n− 1)}2vn

∫ ∞
0

exp

[
−n
{
t

v
+

1

t

}]
×

[
un(t−1) − 1

unt+1(t− 1)

]
dt, u > 1 and v > 0

(2.30)

which is independent of θ. The marginal pdfs of U and V are obtained from
(2.30) as follows:

hU (u) =
nn

Γ(n− 1)

∫ ∞
0

{un(t−1) − 1} exp (−n/t)
unt+1tn−1(t− 1)

dt, u > 1(2.31)

and

hV (v) =
n2n−2

{Γ(n− 1)}2vn

∫ ∞
0

t−1 exp

[
−n
{
t

v
+

1

t

}]
dt, v > 0.(2.32)

The marginal cdfs U and V are, respectively, HU (u) =
∫ u
0 hU (a)da and HV (v) =∫ v

0 hV (a)da. Now, we proceed as follows.

Estimation of ψ when C is unknown

The expected value of ψ∗ is derived as

E{ψ∗} = E{E{ψ∗|θ̂}} = E

{
nψ̂

n− 2

}
=

n2

(n− 2)2
ψ.(2.33)

Hence, an unbiased estimator ψ∗u of ψ is (n−2)2
n2 ψ∗. The variance of ψ∗u is

V (ψ∗u) = V (E{ψ∗u|ψ̂}) + E{V (ψ∗u|ψ̂)} =
(2n− 5)

(n− 3)2
ψ2.(2.34)

An estimate V̂ (ψ∗u) of V (ψu) is obtained by replacing ψ with ψ∗ in (2.34). Mim-
icking steps in section 2.1.1, a 100(1 − γ)% CI for ψ has the following form:

(2.35)

(
ψ∗

κ2
,
ψ∗

κ1

)
where κ1 and κ2 are the roots of

κ21hV (κ1)− κ22hV (κ2) = 0

HV (κ2)−HV (κ1)− (1− γ) = 0.(2.36)

Estimation of C when ψ is unknown
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For C < C̃, we derive the marginal pdf of C̃ from (2.28) as

qθ(C̃) =

∫ ∞
0

hθ(θ̃)dψ
∗

=
nnCnψψ

Γ(n− 1)

∫ ∞
0

exp{−n/t}
(t− 1)tn−1

×

[
C̃nψ(t−1) − Cnψ(t−1)

C̃nψt+1

]
dt.(2.37)

Note that U in (2.29) is not independent of ψ. Hence, in an effort to construct
CI for C, we further take the transformation:

W ∗ = V logU = ψ∗ log
C̃

C

where the pdf of W ∗ is

(2.38) hW ∗(w∗) =
n(n−1)(n− 1)

Γ(n− 1)

∫ ∞
0

exp (−n/t)
(t− 1)

[(t+ w∗)−n − (t(w∗ + 1))−n]dt

for w∗ > 0. Therefore, a 100(1− γ)% CI for C is calculated using the following:

(2.39)
(
C̃ exp{−κ2/ψ∗}, C̃ exp{−κ1/ψ∗}

)
.

κ1 and κ2 are calculated from
∫ κ1
0 hW ∗(w∗)dw∗ = γ/2 and

∫∞
κ2
hW ∗(w∗)dw∗ =

γ/2.

2.2. Posterior Predictive Sampling

This is the second method of sampling to draw synthetic data based on
original data. Under a Bayesian setting, the synthetic data z = (z1, . . . , zn)T

comes from the posterior predictive distribution of θ given x. Here, we discuss
the method of drawing inference on ψ when C is known.

2.2.1. Inference on ψ when C is known

We utilize the fact that the posterior distribution of ψ given U is Gamma
with parameters (n+ c0, u+ d) as given by [35]. Here, c0 > 0 and d > 0 are the
hyper parameters obtained using a Gamma prior with parameters c0 and d, and
U =

∑n
i=1 log(Xi/C). Below we discuss the procedure for posterior predictive

sampling.

Step 1: Draw ψ∗ from the posterior distribution of ψ given u.
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Step 2: Given value of ψ∗ in Step 1, draw z = z1, ..., zn as iid from the

Pareto density fθ(zi) = ψ∗Cψ
∗

zψ
∗+1

i

.

For the purpose of analysis based on z, we develop the joint pdf of z in Theorem
2.4. In order to prove the theorem, the following three facts are used.

- zi|ψ∗, i = 1, . . . , n are iid with each following Pareto distribution with pa-
rameters C and ψ∗.

- ψ∗|u follows Gamma distribution with parameters (n+ c0, u+ d).

- U |ψ is Gamma distribution with parameters (n, ψ).

Theorem 2.4. The joint pdf of z is given by

fψ(z) =
ψn

ΓnΓ(n+ c0) (
∏n
i=1 zi)

×
∫ ∞
0

[∫ ∞
0

ψ∗(2n+c0−1)
{

cn

(
∏n
i=1 zi)

e−(u+d)
}ψ∗

dψ∗

]
un−1(u+ d)n+c0e−uψdu

(2.40)

where ψ > 0 and zi > C, i = 1, . . . , n.

Proof: The above theorem can be proved by considering

fψ(z) =

∫ ∞
0

∫ ∞
0

f(z|ψ∗)× f(ψ∗|u)× f(u|ψ)dψ∗du

where f denotes the corresponding pdfs as usual.

Define ψ̃ =
n∑

log(Zi/C)
as an estimator of ψ and ψ̃|ψ∗ follows IG distribution

with parameters n and nψ∗. The expected value of ψ̃ is obtained as

E{ψ̃} = E{E{ψ̃|ψ∗}} = E

{
n

(n− 1)
ψ∗

}
=

n

(n− 1)
E

{
n+ c0

u+ d

}

=
n(n+ c0)ψ

n

(n− 1)Γn

∫ ∞
0

un−1e−uψ

(u+ d)
du =

n(n+ c0)ψ
n

(n− 1)Γn
M1(ψ, n, d)

where the term

M1(ψ, n, d) =

∫ ∞
0

un−1e−uψ

(u+ d)
du.

Further, the variance of ψ̃ is computed follows:

V (ψ̃) = V (E{ψ̃|ψ∗}) + E{V (ψ̃|ψ∗)}
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where

V (E{ψ̃|ψ∗}) =
n2(n+ c0)(n+ c0 + 1)ψn

(n− 1)2(n− 2)Γn

∫ ∞
0

un−1 exp(−uψ)

(u+ d)2
du

=
n2(n+ c0)(n+ c0 + 1)ψn

(n− 1)2(n− 2)Γn
M2(ψ, n, d)

with

M2(ψ, n, d) =

∫ ∞
0

un−1e−uψ

(u+ d)2
du,

and

E{V (ψ̃|ψ∗)} =
n2(n+ c0)ψ

n

(n− 1)2Γn

[
(n+ c0 + 1)M2(ψ, n, d)−

(n+ c0)

Γn
ψnM2

1 (ψ, n, d)

]
.

Hence, we can express the variance of ψ̃ as
(2.41)

V (ψ̃) =
n2(n+ c0)ψ

n

(n− 1)2Γn

[
(n− 1)(n+ c0 + 1)

(n− 2)
M2(ψ, n, d)−

(n+ c0)

Γn
ψnM2

1 (ψ, n, d)

]
.

Shortest confidence interval for ψ

Applying the same concept used in Theorem 2.4 and considering ψ̃|ψ∗ fol-
lows IG distribution with parameters n and nψ∗, the pdf of ψ̃ is given by

(2.42) fψ(ψ̃) =
nnψnΓ(2n+ c0)

(Γn)2Γ(n+ c0)ψ̃n+1

∫ ∞
0

un−1e−uψ(u+ d)n+c0

(n/ψ̃ + u+ d)2n+c0
du.

For computational convenience, we consider d = 0 which leads to the prior
density of the parameter ψ to be a Jeffreys prior. However, the posterior density of
ψ still follows a Gamma distribution. For a detailed discussion, refer to section 2.1
in [35]. Henceforth, we assign d = 0. For ω > 0, considering the transformations

t = u
[
n
ψ̃

+ u
]−1

and ω =
ψ̃

ψ
sequentially in (2.42), we get the pdf

(2.43) fW (ω) =
nnΓ(2n+ c0)

(Γn)2Γ(n+ c0)ωn+1

∫ 1

0

t2n+c0−1 exp{− 1
ω [n−t1−t ])}

t− 1
dt

independent of ψ. Hence, ω is a pivotal quantity and the shortest distance (1−
γ)100% CI for ψ is

(2.44)
(
ψ̃ω−12 , ψ̃ω−11

)
where ω1 and ω2 are obtained by solving

ω2
1fW (ω1)− ω2

2fW (ω2) = 0

FW (ω2)− FW (ω1)− (1− γ) = 0(2.45)
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and FW (ω) =
∫ ω
0 fW (u)du. The discussion on constructing the shortest CI can

be found in section 2.1.1.

Remark: In practice, it is unrealistic to assume that the shape parameter
ψ is known and C is not known. Once we have data then the minimum value in
the data is sufficient for C. As per [35] the posterior distribution of C given the
original data is a power function distribution with two hyper parameters namely
δ ≥ 0 and σ0 > 0. One of the parameters of the posterior distribution of C de-
pends on min{σ0, x(1)}. While computing the unconditional pdf of C̃, an explicit
expression could not be obtained since the integrals involved in the derivation of-
ten have limits depending on the original data x. Hence we do not discuss this
case here. On the other hand, the case of joint posterior distribution when both
parameters are unknown, becomes extremely complex due to the same issue, and
hence, it is not discussed either in this paper.

3. SIMULATION STUDY AND RESULTS

To study the performance of the proposed estimation methods, we carry out
an extensive simulation study. For all scenarios, viz. only ψ unknown (Scenario
1), only C unknown (Scenario 2), both C and ψ unknown (Scenario 3) in case of
plug-in sampling, and only ψ unknown in case of posterior predictive sampling
(Scenario 4), few candidate true values of C and ψ are chosen. True values of
C are taken as 1 and 100, while true values of ψ are selected to be 1.5 and 3.
To study the effect of smaller and larger sample sizes on estimation, n = 50 and
n = 100 are considered. Under these parameter settings, we examine the perfor-
mance and robustness of our estimation methods with respect to singly imputed
synthetic data based on one thousand Monte-Carlo simulation runs. Mathemat-
ica 12.2 and R-4.0.1 [36] software packages are employed for coding.

For these settings, parameter estimate (EST), empirical standard error
(ESE), average model based standard error (ASE), average bias of the estimator
(BIAS), average root mean squared error (RMSE), and coverage rate (CR) of
90 % and 95% nominal level are provided in Tables 1 - 6. Based on simulation
results, estimates are found to be accurate with low bias and low standard errors
in all cases. As one would expect, increasing sample size results in more precise
estimates with improved coverage probabilities, and with noticeable reduction
in BIAS, ASE and RMSE. Estimates are less precise for estimating C when ψ
is unknown, and for estimating ψ when C is unknown than their corresponding
known counterparts. This can be attributed to the fact that estimating associ-
ated parameter instead of using their known values introduces more variability to
the data, resulting in less accuracy in estimation of the primary parameter. ASE
and RMSE obtained for estimating C are high when the true value of C = 100
than when the true value of C = 1. A similar trend is observed for estimating ψ
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as well; ASE and RMSE are high when true ψ = 3 as compared to the case when
true ψ = 1.5.

c ψ n 1− γ EST ESE ASE BIAS RMSE ECR

1 1.5 50 0.90 1.001 0.020 0.019 −0.001 0.020 0.893
1 1.5 50 0.95 1.000 0.019 0.019 0.000 0.019 0.948
1 1.5 100 0.90 0.999 0.008 0.009 0.001 0.009 0.911
1 1.5 100 0.95 1.001 0.009 0.009 −0.001 0.010 0.948
1 3.0 50 0.90 1.000 0.009 0.009 0.000 0.009 0.892
1 3.0 50 0.95 1.000 0.009 0.009 0.000 0.009 0.946
1 3.0 100 0.90 1.000 0.004 0.004 0.000 0.005 0.899
1 3.0 100 0.95 1.000 0.004 0.004 0.000 0.004 0.948

100 1.5 50 0.90 99.950 1.818 1.962 0.050 2.673 0.913
100 1.5 50 0.95 100.011 1.948 1.963 −0.011 2.764 0.948
100 1.5 100 0.90 99.950 0.917 0.961 0.050 1.326 0.904
100 1.5 100 0.95 100.011 0.982 0.962 −0.011 1.371 0.952
100 3.0 50 0.90 100.044 0.968 0.962 −0.044 1.363 0.892
100 3.0 50 0.95 99.992 0.941 0.961 0.008 1.345 0.949
100 3.0 100 0.90 100.020 0.501 0.476 −0.020 0.685 0.892
100 3.0 100 0.95 100.009 0.475 0.476 −0.009 0.670 0.951

Table 1:
EST, ASE, ESE, BIAS, RMSE, ACR and ECR for C when ψ
is known.

c ψ n 1− γ EST ESE ASE BIAS RMSE ECR

1 1.5 50 0.90 1.001 0.018 0.019 0.001 0.026 0.909
1 1.5 50 0.95 1.002 0.019 0.019 0.002 0.027 0.954
1 1.5 100 0.90 1.000 0.010 0.009 0.000 0.014 0.897
1 1.5 100 0.95 1.000 0.009 0.009 0.000 0.013 0.951
1 3.0 50 0.90 1.000 0.009 0.009 0.000 0.013 0.902
1 3.0 50 0.95 1.000 0.009 0.009 0.000 0.013 0.951
1 3.0 100 0.90 1.000 0.005 0.005 0.000 0.007 0.904
1 3.0 100 0.95 1.000 0.005 0.005 0.000 0.007 0.952

100 1.5 50 0.90 100.096 1.963 1.888 0.096 2.753 0.904
100 1.5 50 0.95 100.026 1.886 1.883 0.026 2.692 0.951
100 1.5 100 0.90 100.034 0.958 0.943 0.034 1.350 0.910
100 1.5 100 0.95 100.008 0.960 0.938 0.008 1.349 0.950
100 3.0 50 0.90 100.010 0.900 0.922 0.010 1.301 0.910
100 3.0 50 0.95 100.078 0.956 0.919 0.079 1.341 0.949
100 3.0 100 0.90 100.011 0.486 0.468 0.011 0.678 0.901
100 3.0 100 0.95 100.015 0.480 0.467 0.015 0.673 0.947

Table 2:
EST, ASE, ESE, BIAS, RMSE, ACR and ECR for C when ψ
is unknown.
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c ψ n 1− γ EST ESE ASE BIAS RMSE ECR

1 1.5 50 0.90 1.486 0.291 0.305 0.014 0.426 0.857
1 1.5 50 0.95 1.494 0.309 0.307 0.006 0.440 0.953
1 1.5 100 0.90 1.497 0.212 0.214 0.003 0.303 0.917
1 1.5 100 0.95 1.494 0.217 0.214 0.006 0.306 0.966
1 3.0 50 0.90 3.020 0.604 0.620 -0.020 0.874 0.860
1 3.0 50 0.95 3.009 0.610 0.617 -0.009 0.877 0.952
1 3.0 100 0.90 2.999 0.427 0.429 0.001 0.609 0.910
1 3.0 100 0.95 3.018 0.439 0.432 -0.018 0.619 0.965

100 1.5 50 0.90 1.488 0.285 0.305 0.012 0.422 0.868
100 1.5 50 0.95 1.482 0.298 0.304 0.018 0.430 0.953
100 1.5 100 0.90 1.498 0.215 0.215 0.002 0.306 0.910
100 1.5 100 0.95 1.497 0.227 0.214 0.003 0.314 0.963
100 3.0 50 0.90 2.988 0.573 0.613 0.012 0.847 0.864
100 3.0 50 0.95 3.011 0.596 0.618 -0.011 0.867 0.958
100 3.0 100 0.90 2.988 0.427 0.428 0.012 0.608 0.903
100 3.0 100 0.95 3.019 0.448 0.432 -0.019 0.626 0.968

Table 3:
EST, ASE, ESE, BIAS, RMSE, ACR and ECR for ψ when C is
known.

c ψ n 1− γ EST ESE ASE BIAS RMSE ECR

1 1.5 50 0.90 1.494 0.307 0.310 0.006 0.440 0.852
1 1.5 50 0.95 1.506 0.313 0.312 -0.006 0.447 0.955
1 1.5 100 0.90 1.490 0.202 0.214 0.010 0.296 0.913
1 1.5 100 0.95 1.505 0.231 0.217 -0.005 0.318 0.952
1 3.0 50 0.90 2.997 0.587 0.621 0.003 0.863 0.859
1 3.0 50 0.95 3.027 0.656 0.628 -0.027 0.918 0.949
1 3.0 100 0.90 2.994 0.430 0.431 0.006 0.612 0.907
1 3.0 100 0.95 3.013 0.450 0.434 -0.013 0.628 0.959

100 1.5 50 0.90 1.500 0.289 0.311 0.000 0.429 0.860
100 1.5 50 0.95 1.498 0.306 0.311 0.002 0.441 0.953
100 1.5 100 0.90 1.508 0.216 0.217 -0.008 0.308 0.899
100 1.5 100 0.95 1.493 0.217 0.215 0.007 0.307 0.958
100 3.0 50 0.90 2.996 0.617 0.621 0.004 0.884 0.855
100 3.0 50 0.95 3.004 0.615 0.623 -0.004 0.884 0.951
100 3.0 100 0.90 2.983 0.421 0.429 0.017 0.605 0.900
100 3.0 100 0.95 2.986 0.446 0.430 0.014 0.623 0.956

Table 4:
EST, ASE, ESE, BIAS, RMSE, ACR and ECR for ψ when C is
unknown.



20 Nutan Mishra and Sandip Barui

C ψ n 1− γ UEST ESE ASE BIAS RMSE ECR

1 1.5 50 90 1.540 0.379 0.409 0.040 0.345 0.905
1 1.5 50 95 1.544 0.394 0.410 0.044 0.359 0.947
1 1.5 100 90 1.513 0.266 0.273 0.013 0.152 0.895
1 1.5 100 95 1.521 0.265 0.274 0.021 0.153 0.952
1 3 50 90 3.086 0.794 0.820 0.086 1.445 0.908
1 3 50 95 3.048 0.755 0.810 0.048 1.356 0.959
1 3 100 90 3.000 0.515 0.541 0.000 0.585 0.907
1 3 100 95 3.035 0.522 0.547 0.035 0.601 0.963

100 1.5 50 90 1.554 0.385 0.413 0.054 0.355 0.926
100 1.5 50 95 1.549 0.401 0.411 0.049 0.367 0.946
100 1.5 100 90 1.513 0.257 0.273 0.013 0.147 0.908
100 1.5 100 95 1.494 0.261 0.269 -0.006 0.148 0.951
100 3 50 90 3.061 0.807 0.813 0.061 1.368 0.920
100 3 50 95 3.116 0.809 0.827 0.116 1.441 0.955
100 3 100 90 3.053 0.546 0.550 0.053 0.646 0.891
100 3 100 95 2.997 0.537 0.540 -0.003 0.593 0.951

Table 5:
Inference for ψ when C is known, under Bayesian predictive
sampling with hyper parametric values d = 0 and c0 = 0.

C ψ n 1− γ UEST ESE ASE BIAS RMSE ECR

1 1.5 50 90 1.535 0.367 0.408 0.035 0.334 0.918
1 1.5 50 95 1.543 0.387 0.410 0.043 0.353 0.953
1 1.5 100 90 1.514 0.267 0.273 0.014 0.153 0.909
1 1.5 100 95 1.524 0.264 0.275 0.024 0.153 0.955
1 3 50 90 3.062 0.755 0.813 0.062 1.365 0.904
1 3 50 95 3.060 0.766 0.813 0.060 1.382 0.950
1 3 100 90 3.032 0.522 0.547 0.032 0.601 0.904
1 3 100 95 3.021 0.531 0.545 0.021 0.607 0.949

100 1.5 50 90 1.521 0.369 0.404 0.021 0.331 0.921
100 1.5 50 95 1.537 0.379 0.408 0.037 0.344 0.960
100 1.5 100 90 1.521 0.268 0.274 0.021 0.154 0.904
100 1.5 100 95 1.518 0.278 0.274 0.018 0.160 0.953
100 3 50 90 3.065 0.775 0.814 0.065 1.368 0.909
100 3 50 95 3.055 0.774 0.811 0.055 1.449 0.947
100 3 100 90 3.046 0.539 0.549 0.046 0.647 0.898
100 3 100 95 3.013 0.538 0.543 0.013 0.601 0.948

Table 6:
Inference for ψ when C is known, under Bayesian predictive
sampling with hyper parametric values d = 0 and c0 = 1.
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The coverage rates are mostly close to the nominal level throughout all
scenarios, further suggesting the estimation method is robust and the estimates
are accurate. More specifically, CRs corresponding to C behave quite well for
both cases when ψ is known or unknown. However, though rare, there are some
instances of slight under-coverage for ψ when employing our estimation method,
specifically when C is unknown (see Table 4). A probable reason can be the
mathematical dependence of the estimator of ψ on C (known or unknown). But,
we would like emphasize that this under-coverage reduces as the sample size in-
creases, validating that for large enough sample size confidence intervals provided
by our estimation method are quite precise and reliable.

In Tables 5 and 6, we list the estimation results on ψ when C is known
under posterior predictive sampling. Throughout, we assign d = 0 that results in
unbiased estimates of ψ. Simulation results corresponding to c0 = 0 and c0 = 1
are presented in Tables 5 and 6, respectively. The bias in the estimates are of the
order of 10−2 and coverage rates are close to the specified values of confidence
level. Impact of increase in sample size can be seen in the reduction of BIAS and
RMSE.

4. CONCLUDING REMARKS

In this paper, we have derived likelihood based methods of inference for
synthetic data when the original data comes from a two parameter Pareto model.
To this end, synthetic data were generated by two different methods, viz. plug-in
sampling and posterior predictive sampling. For the plug-in sampling method,
we have developed unbiased estimators for the parameters, and obtained the ex-
pressions of the corresponding variances and shortest distance CIs under three
possible scenarios (inference on ψ when C is known, inference on C when ψ is
known and inference on θ when both parameters are unknown). On the other
hand, under posterior predictive sampling, inference has been drawn only for the
shape parameter ψ when C is known. The methods have been discussed based
on a single synthetic data set.

Results from the simulation study have shown that the plug-in sampling
exhibits less bias, ASE and RMSE than posterior predictive sampling. A similar
observation has been reported by [17] for a synthetic data from exponential dis-
tribution.

The developed estimators are unbiased in nature, and have been developed
based on sufficient statistics. Exact shortest distance confidence intervals for pa-
rameters have been constructed for all methods of sampling, except for C when ψ
is unknown in plug-in sampling. The primary strength of these methods is that
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they are based on a single synthetic data set, which is advantageous when release
of multiple data sets is not allowed due to privacy concerns.

Despite observing actual microlevel data, the methodologies developed in
this paper would allow researchers and policy makers to gain insights into the
extent of financial burden tax payers face by filing income tax, or distribution of
income or wealth across various strata of the society. The mathematical expres-
sions provided in the paper would enable them to estimate the key parameters of
the distribution relatively accurately, thereby, necessitating appropriate economic
policy changes, or identifying gaps in a financial program or strategy. Computa-
tions of confidence intervals may require evaluating implicit integrals or solving
non-linear simultaneous equations. However, these can be carried out easily by
any established statistical software. It is recommended that users should carry
out proper hypothesis test to verify whether a Pareto model fits data for a par-
ticular location or period. For researchers in government agencies, who have the
access to actual data, could verify the precision of our estimates, and assess mer-
its in our techniques. Future work may include developing estimation procedures
in case of posterior predictive sampling with different informative priors.
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