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1. INTRODUCTION

Let X be a lifetime random variable with distribution function F and sur-
vival function F̄ = 1−F such that E(X) < ∞. The residual life random variable
at age t, denoted by Xt = X − t|X > t, is simply the remaining lifetime beyond
that age. The mean residual life (MRL, also known as the mean remaining life)
function is defined formally as µ(t) = E(X − t|X > t). In industrial reliability
studies of repair and replacement strategies, the MRL function may prove to be
more relevant than the failure (hazard) rate function. The former summarizes
the entire residual life distribution, whereas the latter relates only to the risk of
immediate failure. In studies of human populations, demographers often refer the
MRL under the names of life expectancy or expectation of life. Obviously, the
MRL is of vital importance to actuarial work relating to life insurance policies.
For a comprehensive literature review about the MRL see Lai and Xie [21].

Another function which has also generated some interest in the recent years
is the variance residual life function defined as σ2(t) = V ar(X − t|X > t), see
for example, Launer [23] and Gupta et al. [11]. An alternative expression for the
residual variance in above is given by

σ2(t) = E[(Xt−µ(t))2] =
1

F̄ (t)

∫ ∞

t
(x−t−µ(t))2dF (x) =

2
F̄ (t)

∫ ∞

t
F̄ (x)µ(x)dx−µ2(t),

where µ(t) is the mean residual life function.

Numerous research works reveal the importance of the VRL function as a
reliability function useful in inference procedures and characterizations, and as
a means to classify lifetime distribution using its mathematical behaviour. σ2(t)
appears in the formula for V ar(µ̂n(t)), where µ̂n(t) is an estimator of the MRL
function, see Hall and Wellner [15]. It also appears in the expression of weights
assigned for censored observations, see Schmee and Hahn [29]. Launer [23] used
σ2(t) to define certain new classes of life distributions and to provide bounds
for the reliability function for certain specified class of distributions. Gupta et
al. [11] shew that the bihaviour of the VRL function is intimately connected to
the behaviour of the mean residual life function of the equilibrium distribution.
Lynn and Singpurwalla [25] viewed the burn-in concept as a process of reduc-
tion of uncertainty of the lifetime of a component. One approach to this is to
minimize the VRL. Combining this with maximizing the MRL leads Block et al.
[5] to consider balancing mean and variance residual life through minimizing the
residual coefficient of variation (CV). Characterizations of distributions using the
VRL function can be found in Huang and Su [16] and references therein.

The role and properties of the variance residual life and the residual coef-
ficient of variation in reliability have been discussed considerably for continuous
lifetime random variables by various authors such as Gupta and Kirmani [12],
[13], [14], El-Arishi [8], Al-Zahrani and Stoyanov [4] and Abu-Youssef [1], [2],
[3]. Gupta [9], [10] studied the VRL, its monotonicity and the associated aging
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classes of lifetime distributions. Karlin [19] has studied the monotonic behaviour
of σ2(t) when the density is log-convex(log-concave). Kanwar and Madhu [18]
gave a test for the VRL. Khorashadizadeh, et al. [20] studied properties of the
VRL in discrete case. Some stochastic orders have also been defined based on
the VRL function (cf. Lai and Xie, [21], p. 61).

Empirical Likelihood (EL) method was originally introduced by Thomas
and Grunkkemeier [31] and Owen [26] as a method for constructing nonparamet-
ric confidence intervals. During the past decades, the EL method has developed
as a very competitive nonparametric test procedure for quite general settings,
including the test of a parameter defined by

∫
g(t)dF (t) with censored survival

data (see, e.g., Owen, [27]; Zhao and Qin, [33]; Zhou and Jeong, [34] and the
references therein). Inference based on EL has many attractive properties: typi-
cally, it does not require estimation of any variance, the range of the parameter
space is automatically respected, confidence regions have greater accuracy than
those based on the normal approximation approach, furthermore, it inherits all
the good properties of the likelihood ratio test and can handle more general types
of censored data.

Empirical likelihood has been widely utilized in many settings. However,
there exist a lot of computational difficulties when applied to complicated nonlin-
ear functional. To overcome the computational difficulties, a modified EL method
was proposed by Jing et al. [17], which was called jackknife empirical likelihood
(JEL). The main idea of the JEL is to turn the statistic of interest into a sample
mean based on jackknife pseudo-values (see Quenouille, [28]). The goal of this
paper is to develop the jackknife empirical likelihood (JEL) method for interval
estimation of the VRL function.

The rest of the paper is organized as follows. A U-statistic based estimator
of the VRL, the asymptotic normality of the estimator and the corresponding
confidence interval/band are given in Section 2. In this Section, we also propose
a jackknife empirical likelihood, an adjusted jackknife empirical likelihood for the
VRL function, finding better interval estimators of the VRL function. In Section
3, performance of the jackknife empirical likelihood ratio confidence intervals
is compared with the normal approximation based ones in terms of coverage
probability and average length through a simulation study. Section 4 looks at a
real data example illustrating the methods and finally, some concluding remarks
are given in Section 5.

2. INFERENCE METHODS

In this section we give the normal approximation based interval for the VRL
function. We also develop new interval estimator using jackknife EL methods.
In order to overcome the potential undercoverage problem that the JEL methods
may encounter as observed in Jing et al. [17], we further propose the adjusted
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jackknife empirical likelihood by adding one more pseudo-value.

2.1. Normal approximation method

First, note that σ2(t) can be rewritten as

σ2(t) =
1

F̄ 2(t)
[F̄ (t)

∫ ∞

t
x2dF (x)− (

∫ ∞

t
xdF (x))2].

Then, given a random sample X1, . . . , Xn from the population of X with distribu-
tion function F , the VRL function can be estimated as a ratio of two U-statistics

U (1)
n =

1(
n
2

) ∑
1≤i<j≤n

φ
(1)
t (Xi, Xj)

and
U (2)

n =
1(
n
2

) ∑
1≤i<j≤n

φ
(2)
t (Xi, Xj)

with the symmetric kernels φ
(1)
t (X1, X2) = [0.5(X2

1+X2
2 )−X1X2]I(X1 > t)I(X2 >

t) and φ
(2)
t (X1, X2) = I(X1 > t)I(X2 > t), that is

σ̂2
n(t) =

U
(1)
n

U
(2)
n

,

where, I(.) is the indicator function. The following theorem gives the asymptotic
distribution of σ̂2

n(t).

Theorem 2.1. Assume that E(X4) < ∞. Then

√
n(σ̂2

n(t)− σ2(t)) d→ N(0, υ2(t)),

(
d→ represents convergence in distribution). N(0, υ2(t)) represents the normal

random variable with mean 0 and variance

υ2(t) = 4[
µ4(t)

4F̄ 2(t)
+

2µ2
1(t)µ2(t)
F̄ 4(t)

− µ4
1(t)

F̄ 5(t)
− µ1(t)µ3(t)

F̄ 3(t)
− µ2

2(t)
4F̄ 3(t)

],

where µi(t) =
∫∞
t xidF (x), i = 1, 2, 3, 4.

Proof: The result immediately follows from Theorem 6.1.6 in Lehmann
([24], p. 376) and the standard delta method.

It is obvious that υ2(t) can be consistently estimated by its empirical coun-
terpart,

υ̂2
n(t) = 4[

µ̂4(t)
4F̄ 2

n(t)
+

2µ̂2
1(t)µ̂2(t)
F̄ 4

n(t)
− µ̂4

1(t)
F̄ 5

n(t)
− µ̂1(t)µ̂3(t)

F̄ 3
n(t)

− µ̂2
2(t)

4F̄ 3
n(t)

]I(X(n) > t),
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where Fn(t) = 1
n

∑n
i=1 I(Xi ≤ t) is the empirical distribution function, F̄n =

1− Fn,

µ̂i(t) =
∫ ∞

t
xidFn(x) =

1
n

n∑
j=1

Xi
jI(Xj > t), i = 1, 2, 3, 4,

and X(n) = max{X1, . . . , Xn}. Thus, an asymptotic 100(1 − α)% confidence
interval for σ2(t) at fixed time t based on the above normal approximation can
be given by

{σ2(t) : n(σ̂2
n(t)− σ2(t))2 ≤ υ̂2(t)χ2

1−α(1)},
where χ2

1−α(1) is the 100(1−α)-percentile of the chi-square distribution with one
degree of freedom.

The following theorem gives the weak convergence of the stochastic process
based on σ̂2

n(t) which can be used to construct a simultaneous confidence band
for σ2(t). Let b < ∞ and b ∈ [0, τ ], where τ = inf{t : F (t) = 1} and denote

ρ(s, t) = E[(X − s− µ(s))2(X − t− µ(t))2I(X > t)],

ν(s, t) =
∫ ∞

t
(x− s− µ(s))2dF (x).

Theorem 2.2. Suppose that E(X4) < ∞. Then the process
√

n(σ̂2
n(t) −

σ2(t)) for t ∈ [0, b] converges in distribution to a Gaussian process U(t) with
mean zero and covariance function

Γ(s, t) =
1

F̄ (s)F̄ (t)
[ρ(b, b)− ρ(t, b)− ρ(s, b) + ρ(s, t)− F̄ 4(b)σ4(b)

+ F̄ (s)F̄ (b)σ2(s)σ2(b) + F̄ (t)F̄ (b)σ2(t)σ2(b)− σ2(t)ν(s, t)],

where 0 ≤ s ≤ t ≤ b.

Proof: First note that the estimator σ̂2
n(t) can also be given by

σ̂2
n(t) =

1
nF̄n(t)

n∑
i=1

(Xi − t− µn(t))2I(Xi > t)

=
1

nF̄n(t)

n∑
i=1

(Xi − t− µ(t))2I(Xi > t)− [µn(t)− µ(t)]2,

where µn(t) = 1
F̄n(t)

∫∞
t F̄n(x)dx is the empirical estimator of the mean residual

life function. Then
√

n(σ̂2
n(t)− σ2(t)) =

1
F̄n(t)

{Vn(t)− σ2(t)
√

n[F̄n(t)− F̄ (t)]} −
√

n[µn(t)− µ(t)]2,

where

Vn(t) = n−
1
2

n∑
i=1

[(Xi − t− µn(t))2I(Xi > t)− σ2(t)F̄ (t)].
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Applying the same procedure of proof of Lemma 3 in Yang [32] follows that Vn(t)
weakly converges to a Gaussian process V (t) with E[V (t)] = 0 and

E[V (s)V (t)] = ρ(b, b)− ρ(t, b)− ρ(s, b) + ρ(s, t)− F̄ 4(b)σ4(b)
+ F̄ (s)F̄ (b)σ2(s)σ2(b) + F̄ (t)F̄ (b)σ2(t)σ2(b)− σ2(s)σ2(t)F̄ (s)F̄ (t),

where 0 ≤ s ≤ t ≤ b. On the other hand, Theorem 1 in Yang [32] implies that√
n[µn(t)−µ(t)]2 = op(1), uniformly in t ∈ [0, b]. The result now follows from the

fact that
√

n[F̄n(t)− F̄ (t)] converges to a Brownian bridge and F̄−1
n (t) → F̄−1(t)

uniformly in t ∈ [0, b] with probability one.

Theorem 2.2 can be used to obtain the following confidence band for σ2(t).
By the continuous mapping theorem we have

sup
0≤t≤b

{
√

n(σ̂2
n(t)− σ2(t))} d→ sup

0≤t≤b
U(t).

Now, we can define the asymptotic 100(1 − α)% simultaneous confidence band
for σ2(t) in t ∈ [0, b] as follows,

{σ2(t) :
√

n(σ̂2
n(t)− σ2(t)) ≤ cα},

where cα is the upper α-percentile of the distribution of sup0≤t≤b U(t).

2.2. Jackknife empirical likelihood method

In this subsection, we construct a confidence interval for the true σ2(t) via
jackknife empirical likelihood (JEL). Let X1, . . . , Xn(n ≥ 2) be a random sample
from a distribution function F . We define a one-sample U-statistic of degree 2

Un(σ2(t)) =
1(
n
2

) ∑
1≤i<j≤n

φt(Xi, Xj ;σ2(t)),

with symmetric kernel

φt(X1, X2;σ2(t)) = [σ2(t) + X1X2 − 0.5(X2
1 + X2

2 )]I(X1 > t)I(X2 > t).

It is easy to check that E[Un(σ2(t))] = 0, for the true σ2(t). To apply the JEL,
we define our jackknife pseudo-values by

V̂i(σ2(t)) = nUn(σ2(t))− (n− 1)U (−i)
n−1 (σ2(t)),

where U
(−i)
n−1 is the U-statistic after deleting the ith observation Xi. It can be

easily shown that E[V̂i] = 0 and

Un(σ2(t)) =
1
n

n∑
i=1

V̂i(σ2(t)).
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Then, one can apply the standard EL method to V̂i. Let p = (p1, . . . , pn) be the
probability vector over V̂i. The jackknife empirical likelihood ratio at true value
σ2(t) is defined by

R(σ2(t)) = max{
n∏

i=1

npi : pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = 1,
n∑

i=1

piV̂i(σ2(t)) = 0}.

By using the standard Lagrange multiplier method, we know that R(σ2(t)) is
maximized when

pi =
1
n
{1 + λV̂i(σ2(t))}−1, i = 1, . . . , n,

where λ = λ(σ2(t)) satisfies

1
n

n∑
i=1

V̂i(σ2(t))
1 + λV̂i(σ2(t))

= 0.

Let g(x) = E[φt(x,X2;σ2(t))] and σ2
g = V ar(g(X1)). Now we have Wilks theo-

rem for the JEL as follows.

Theorem 2.3. Assume that E(X4) < ∞ and σ2
g > 0. Then, as n →∞

−2 log R(σ2(t)) d→ χ2
1,

where χ2
1 is a chi-distribution with one degree of freedom.

Theorem 2.3 is a special case of Theorem 1 in Jing et al. [17] with m = 2.
Instead of the regularity condition E[φ2

t (X1, X2;σ2(t))] required by Theorem 1
in Jing et al. [17], Theorem 2.3 requires existence of the forth moment because
of the specific form of the VRL function.

Following this, an asymptotic 100(1− α)% confidence interval for σ2(t) at
time t can be given by

{σ̃2(t) : −2 log R(σ̃2(t)) ≤ χ2
1−α(1)},

where χ2
1−α(1) is the is 100(1− α)-percentile of the chi-square distribution with

one degree of freedom.

From practical point of view, the function el.cen.EM2 inside the package
emplik, which is an extension package to be used with the R software, carries
out calculating the above confidence interval.

Remark 2.1. Using the same procedure as the proof of Theorem 2.2 of
Zhao and Qin [33] and following Theorem 2.1 of Jing et al. [17], the above
Theorem 2.2 implies that

−2 log R(σ2(t)) d→ W (t)
4σ2

g

,
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where W (t) is a Gaussian process with mean zero and covariance function

Cov(W (s),W (t)) = F̄ (s)F̄ (t)Γ(s, t).

Thus, an JEL-based asymptotic 100(1 − α)% simultaneous confidence band for
σ2(t) in t ∈ [0, b] can be given by

{σ̃2(t) : −2 log R(σ̃2(t)) ≤ kα},

where kα is the upper α-percentile of the distribution of sup0≤t≤b
W (t)
4σ2

g
.

2.3. Adjusted Jackknife empirical likelihood method

Chen et al. [7] developed an adjusted empirical likelihood method, which
significantly improves the performance of the empirical likelihood method in
terms of coverage probability when the sample size is not large. We adapt their
approach to the JEL for σ2(t) by adding one more jackknife pseudo-value

V̂n+1(σ2(t)) = −an

n

n∑
i=1

V̂i(σ2(t)),

for constant an = max{1, 1
2 log(n)}. The adjusted jackknife empirical likelihood

(AJEL) ratio of σ2(t) is given by

Rad(σ2(t)) = max{
n+1∏
i=1

(n+1)pi : pi ≥ 0, i = 1, . . . , n+1,

n+1∑
i=1

pi = 1,

n+1∑
i=1

piV̂i(σ2(t)) = 0}.

With the same conditions given by Jing et al. [17], Wilks theorem of the AJEL
has been established by Chen and Ning [6]. Thus, as a special case, the following
theorem holds for the above AJEL ratio. For the proof, we refer the reader to
Chen and Ning [6].

Theorem 2.4. Assume that E(X4) < ∞ and σ2
g > 0. Then, as n →∞

−2 log Rad(σ2(t)) d→ χ2
1.

A 100(1 − α)% confidence interval for σ2(t) by the adjusted JEL method
can be developed similarly.

3. SIMULATION STUDY

Simulation exercises were undertaken to assess the performance of the nor-
mal approximation (NA) based confidence interval, comparing with the jackknife
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empirical likelihood (JEL) and adjusted jackknife empirical likelihood (AJEL)
confidence intervals in terms of the average length and coverage probability. In
the simulation, we considered the following two models for the underling lifetime
distribution of X:

(i) X is uniformly distributed on (0, 1),

(ii) X has a Weibull distribution with survival function F̄ (x) = e−
1
2
x2

.

One can readily show that in case (i)

σ2(t) =
1

3(1− t)
(1− 3t + 3t2 − t3)− 1

4
(1− t)2,

and in case (ii)

σ2(t) = 2[1− tΦ̄(t)
φ(t)

]− 2πet2Φ̄2(t),

where φ(t) and Φ̄(t) refer to the standard normal density and survival function,
respectively. In each case, we ran 2000 simulation trials of different sample sizes
n = 50, 100 and 150 to obtain confidence intervals with nominal confidence level
of 0.95. We compute the average length of intervals and coverage probabilities,
i.e. the proportion of intervals which cover the true value σ2(t) for different values
of t.

Table 1 - Table 2 summarize the results of the 2000 simulation trials for
both models. From the tables, as the sample size n increases, all methods improve
in terms of coverage probabilities. It is also evident from the tables that, specially
in Weibull model, the coverage probability of the NA confidence interval is not
satisfied when the sample size is small and moderate. However, JEL and AJEL
produce slightly better coverage probabilities for the same sample size. When
the sample size is large, NA, JEL and AJEL methods have similar performance
in terms of coverage probability. We can see coverage probability for AJEL is
very close to nominal level 0.95, and AJEL has better performance than JEL for
the small sample size. Though, for large values of t, the coverage probability of
all the methods is slightly far from the nominal level.

For all the methods, the length of confidence interval becomes shorter when
the sample size becomes larger. When the sample size increases from moderate
to large, the length of confidence interval for all the methods are very close. It
seems that, for large values of t, the length of the NA confidence intervals is
slightly shorter than JEL and AJEL confidence intervals.
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n Method t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8
NA 0.930 0.935 0.923 0.906 0.822

(0.041) (0.029) (0.019) (0.010) (0.003)
50 JEL 0.929 0.935 0.924 0.888 0.908

(0.040) (0.029) (0.018) (0.010) (0.068)
AJEL 0.940 0.946 0.937 0.908 0.946

(0.042) (0.030) (0.019) (0.011) (0.089)
NA 0.939 0.936 0.930 0.928 0.900

(0.029) (0.021) (0.013) (0.007) (0.002)
100 JEL 0.935 0.930 0.930 0.922 0.919

(0.028) (0.020) (0.013) (0.007) (0.003)
AJEL 0.941 0.938 0.935 0.931 0.932

(0.029) (0.021) (0.013) (0.007) (0.003)
NA 0.941 0.936 0.944 0.938 0.920

(0.024) (0.017) (0.011) (0.006) (0.002)
150 JEL 0.937 0.932 0.943 0.940 0.947

(0.022) (0.016) (0.011) (0.006) (0.002)
AJEL 0.941 0.937 0.947 0.942 0.950

(0.022) (0.017) (0.011) (0.006) (0.002)

Table 1: Empirical coverage probabilities (average length) for σ2(t), uni-
form model

n Method t = 0 t = 0.25 t = 0.5 t = 1 t = 1.7
NA 0.887 0.878 0.864 0.834 0.679

(0.328) (0.316) (0.300) (0.277) (0.250)
50 JEL 0.909 0.903 0.894 0.862 0.870

(0.304) (0.306) (0.302) (0.296) (0.426)
AJEL 0.924 0.910 0.908 0.873 0.896

(0.315) (0.318) (0.314) (0.310) (0.480)
NA 0.913 0.924 0.908 0.886 0.778

(0.239) (0.236) (0.223) (0.214) (0.207)
100 JEL 0.925 0.929 0.919 0.917 0.834

(0.240) (0.240) (0.167) (0.154) (0.241)
AJEL 0.935 0.935 0.928 0.923 0.845

(0.245) (0.246) (0.170) (0.157) (0.251)
NA 0.927 0.926 0.923 0.909 0.811

(0.200) (0.193) (0.185) (0.179) (0.187)
150 JEL 0.929 0.938 0.929 0.926 0.859

(0.200) (0.144) (0.132) (0.184) (0.201)
AJEL 0.934 0.940 0.934 0.930 0.865

(0.203) (0.146) (0.134) (0.187) (0.205)

Table 2: Empirical coverage probabilities (average length) for σ2(t),
Weibull model
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4. REAL DATA ANALYSIS

In this section, we use a real data coming from reliability engineering to
illustrate applications of the NA-based and JEL-based confidence intervals for
the VRL function. Since the variance estimator υ̂2(t) is unstable, the NA-based
confidence interval for the VRL contains negative values. In the following com-
putation results, the values outside of the positive range of the VRL are removed
and the negative lower bounds of the confidence intervals are replaced with zero.

Lawless [22] used the breaking strengths of single carbon fibers of different
to fit a parametric regression model. We use the data set consisting of breaking
strengths of 57 single carbon fibers with unit length taken from Lawless [22] to
estimate σ2(t). Table 3 gives the estimated VRL function and corresponding
95% lower bound (LB), upper bound (UB) and length based on the NA, JEL
and AJEL methods at different time points t. We can see from the table that
the lengths of confidence intervals for the NA is longer than one for the JEL and
AJEL methods. Also, there is no big difference among the lengths of the JEL
and AJEL confidence intervals.

NA JEL AJEL
t VRL LB UB Length LB UB Length LB UB Length

0.5 0.697 0 2.503 3.612 0.477 0.998 0.521 0.472 1.015 0.543
2.5 0.637 0 2.232 3.189 0.443 0.901 0.458 0.433 0.911 0.477
3.5 0.432 0 1.627 2.389 0.291 0.643 0.352 0.284 0.654 0.370
4.5 0.250 0 1.057 1.615 0.145 0.413 0.268 0.138 0.423 0.285
5.0 0.130 0 0.620 0.979 0.001 1.129 1.128 0.328 1.129 0.801

Table 3: Estimated variance residual lifetimes, 95% confidence intervals
and lengthes, carbon fiber data

5. CONCLUSION

In this paper, we have considered an estimator of the VRL function. The
estimator was shown to converge in distribution to a normal random variable.
Furthermore, a confidence interval for the VRL function at time t was constructed
by using the normal approximation (NA) method. As alternative methods, we
have also considered constructing confidence interval/band for the VRL function
using the jackknife empirical likelihood (JEL) and adjusted jackknife empirical
likelihood (AJEL) approaches. A major advantage of the EL-based method is no
need for nonparametric estimation of any kind of variance for statistical inference.
A simulation exercise was undertaken to compare between the performance of the
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NA-based and El-based confidence intervals in terms of coverage probabilities
and the average lengthes. As shown from the simulation study, the coverage
probability for the NA method is far away from our expectation when the sample
size is small. However, the coverage probability of confidence intervals for JEL
and AJEL methods is very close to nominal level. The length of confidence
interval for all the methods is very close when the sample size increases from
moderate to large. Finally, using a numerical example, the application of the
methods for constructing confidence intervals was illustrated.
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