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shown to be robust, consistent, and more efficient in multiple linear regression models
with arbitrary error distributions. Also, it is seen that the proposed estimator reduces
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observed that the proposed estimator improves the outcome of the multivariate Theil-
Sen estimator. In addition, we support with the aid of numerical examples to these
results.
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1. INTRODUCTION

Regression analysis; including the cause-result relationship examines the re-
lationship between dependent (response) and independent (predictor) variables.
Parametric regression analysis is based on certain assumptions. The most im-
portant of these assumptions, the mathematical form of the relationship between
the dependent and independent variable is known in advance. The least squares
method is proposed to be the most useful for solving such problems. The esti-
mator of slope by this method is referred as the least squares estimator (LSE),
which is the best linear estimator under the means of minimum variance if the
variance of the error term is finite. However, LSE is vulnerable to gross errors
and is also inefficient for distributions with heavy tails. In this case, in order to
make better estimations, regression methods which allow the linearity assump-
tion in the parametric regression to be stretched are needed. These methods are
non-parametric regression models known as regression models. Nonparametric
regression analysis, is the method that is successful for some of the assumptions
used in case of failure in order to provide valid parametric regression methods.
Several non-parametric methods were explored in the last century, such as the
Theil-Sen estimator (TSE) [41]; [37], and various M-estimators [21]; [18]; [42].

We consider a multiple linear regression model,

(1.1) Y = βX + ε

where (X,Y) is observable but ε is not. β is an unknown parameter and ε has an
unknown cdf, F. The mean of ε may not be zero. X and ε are independent. Let
(x1, y1), . . . , (xn, yn) be independent random observations from the above model.
In the literature, some researchers assumed that xi s are random variables [3] and
others assumed that the distribution of Yi is

Fi(y) = F (y − βxi), i = 1, 2, . . . , n

where xis i = 1, 2, . . . , n are known non-identical constant [37].

Since β is a slope parameter, under the assumption that all xi s are distinct,
Theil [41] proposed an estimator of β defined as

(1.2) β̂ = med

[
(sij�sij =

yj − yi
xj − xi

, 1 ≤ i ≤ j = 1, . . . , n)

]
where med stands for median. The estimator was referred to as Theil’s estimator
in literature. Theil’s estimator was not defined if there exist ties among xi s, and
was extended by Sen [37] as

(1.3) β̂n = med

[
(sij�sij =

yj − yi
xj − xi

, ifxi 6= xj1 ≤ i ≤ j = 1, . . . , n)

]
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The new estimator was referred to as TSE.

Consider a multiple linear regression with p ≥ 1.

(1.4) Yj = β0 +XT
j β + εj ; j = 1, 2, . . . , n

Following the above procedure, first, ϕ = (β0, β
T )T can be found as the

solution of equation 1.4

(1.5) Yj − β0 −XT
j β = 0, lk+1 = {j1, . . . , jk+1}

where, lk+1 is a (k + 1) subsets of {1, . . . , n}. That is to say, if matrix (k + 1)×
(k + 1) matrix (Xl : l ∈ lk+1), is invertible. This estimation is described with
ϕ̂lk+1

to emphasize dependency to k + 1 observations. Later, natural expanding
of TSE from a simple linear regression model to a multivariate regression model
becomes multivariate median as following:

(1.6) ϕ̂n = Mmed
{
ϕ̂lk+1

: ∀lk+1

}
where, it should be pointed out that ϕ̂lk+1

is at the same time the least squares
estimator of ϕ based on k+ 1 observations {(Xj , Yj) : j ∈ lk+1}. In this perspec-
tive, t different arbitrary combination of {(Xj , Yj) : j ∈ l t} can be chosen which
means, here, k+ 1 ≤ t ≤ n and it construct least squares estimator of ϕ̂l t . Then,
multivariate TSE ϕ̂n of the parameter ϕ is naturally will be multivariate median
of all possible least square estimators and is described as below:

(1.7) ϕ̂n = Mmed {ϕ̂lt : ∀l t}

Least squares estimation is as follows:

(1.8) ϕ̂l = (XT
l Xl )

−1XT
l Yl

In multivariate Theil-Sen estimator (MTSE), regression coefficients through
the application of combination as

(
n
t

)
is estimated with least squares method

[10]. After every combination, spatial median belonging of obtained regression
coefficient is computed. Regression coefficients belonging of MTSE are estimated
by calculating as the spatial median obtained.

TSE is, with 0.293 breakdown point, robust and has a limited effect function
and high asymptotic efficiency. For this reason, it is competes well with other
slope estimators [37, 11, 44]. When we explore the literature for asymptotic
characteristics of TSE, Sen [37] examined the asymptotic normality of estimation
when cumulative probability function is continuous and showed that it is super-
efficient for discrete error term. Even though most of its good characteristics are
interpreted clearly and a lot of statisticians tried to expand on it [29, 50]. Since
TSE is formulated only for a simple linear model, it is underdeveloped and rarely
used. While for TSE to be expanded to a multiple linear model is obvious and
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attractive, this is technically hard and is a case which slows down the general-
ization and exploration processes. Oja and Niinimaa [29] generalized Theil-Sen
estimation, which is in simple linear regression, to multiple linear regression us-
ing Oja [29] median. Oja’s median is a special case of spatial median. These
studies about Theil-Sen estimation are important for future studies. Peng et al.
[32] established the asymptotic distribution and robust consistency of Theil-Sen
estimation when cumulative probability function of the error term comes arbi-
trarily from both continuous and discrete distribution. Asymptotic distribution
and robust consistency of Theil-Sen estimation can be examined as follows. In
literature, there are various studies about TSE. See, e.g., regression estimation
with Theil-Sen regression under the measurement errors, Fernandes and Leblanc
[15]; inverse regression estimation with the help of Theil-Sen regression, Lavagnini
et al. [23]; multivariate regional estimations using Theil-Sen estimator, Zhou and
Serfling [50]; and asymptotic multiple linear regression estimation using Theil-Sen
regression, Shen [38]. The Theil-Sen estimator has been widely acknowledged in
several popular textbooks on nonparametric statistics and robust regression, see,
e.g., Sprent [39], Hollander and Wolfe [19, 20], and Rousseeuw and Leroy [35],
Wilcox [46]. It also has been extensively studied in the literature. Sen [37] and
Wilcox [44] investigated its asymptotic relative efficiency to the least squares esti-
mator. Akritas et al. [1] applied it to astronomy and Fernandes and Leblanc [15]
to remote sensing. Wilcox [45] investigated some results on extensions and mod-
ifications of the Theil-Sen regression estimator. Wang [43] studied its asymptotic
properties for model 1.1 with a random covariate. Wang [43] showed that TSE
is strongly consistent, and obtain its asymptotic distribution, which may not be
a normal distribution if F is not absolutely continuous. Many of its extensions
can be found in the literature, for example, in censored data; for details, see,
e.g., Akritas et al. [1], Jones [22], and Mount and Netanyahu [27]. Dang et al.
[10] proposed the Theil-Sen estimators of parameters in a multiple linear regres-
sion model based on a multivariate median, generalizing the Theil-Sen estimator
in a simple linear regression model. The sample mean of the bootstrap sample
is known as the bagging estimator or smoothed bootstrap estimator. Empiri-
cally, bootstrapping with the bagging estimator often outperforms bootstrapping
with the original estimator, especially when the asymptotic distribution is non-
normal. See Breiman [5], Yang [48], and Efron [13]. See Büchlmann and Yu [6]
and Friedman and Hall [16] for theory and references for the bagging estimator.
Pelawa Watagoda and Olive [31] show that if

√
n (Tn − β)→ Np (0,Σ), then then

under regularity conditions,
√
n
(
T
∗ − Tn

)
→ 0,

√
n (T ∗i − Tn) → Np (0,Σ) and

√
n
(
T
∗ − β

)
→ Np (0,Σ). We are using a similar idea to bagging with the jack-

knife to produce the jackknife multivariate Theil-Sen estimator (JMTSE) estima-
tor. In this paper, following Dang et al. [10], jackknife method which is one of the
resampling methods is integrated in the multivariate Theil-Sen method (MTSE)
and by doing this, a new estimator named jackknife multivariate Theil-Sen esti-
mator (JMTSE) is offered. Robustness property of MTSE and is improved and
became attractiveness for accomplishing well. In order to compare the proposed
estimator with MTSE and LSE methods, various simulation studies are designed
and results of multiple Theil-Sen estimation in multiple linear regression analysis
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are improved. Also, behaviors of these estimators are examined with two original
data sets.

The remainder of the paper is organized as follows. In Section 2, we describe
the properties of Theil-Sen estimator and spatial median. In Sections 3 and 4, we
present jackknife method which is one of the resampling methods and we present
some theoretical results of the jackknife method. In Section 5, we suggest a new
estimator using jackknife method. In Section 6, we introduce the results for both
simulations and real data set examples. In final section, we made conclusions
about the obtained results.

2. STRONG CONSISTENCY AND ASYMPTOTIC NORMALITY
PROPERTIES OF THEIL−SEN ESTIMATORS

In this section, it is stated the results on the strong consistency and the
asymptotic distribution of TSE β̂n (ϕ) under the assumption that Xis are random
variables with V ar (X) > 0.

Let, ζ0,
{
ϕ : β̂n (ϕ) = β

}
, (for all big n) be an event. That is to say, when

ϕ ∈ ζ0 is n > nϕ for each, β̂n (ϕ) = β is so that there is a nϕ. The following
theorem establishes an interesting property of the estimator

If F is continuous, then TSE β̂nis strongly consistent, that is β̂n → β [43].

In this section, we study the asymptotic distribution of the Theil−Sen
estimator for both discontinuous and continuous error cdf F

Firstly, F is assumed discontinuous. Then,

(2.1) P
(
nυ
(
β̂n − β

)
→ 0

)
= 1, v ≥ 0

It has gotten the asymptotic behavior of β̂n [43].

Now supposed that F is continuous. Denote the cdf of X1 by G, the cdf
of X1 −X2 by G2 and the cdf of ε1 − ε2 by F2. Then G2 and F2 are symmetric
distribution function. Let

(2.2) µ (t) =

∫
[1− 2F2 (xt)] dG2 (x)

and

(2.3) σ2 =
1

3
E
[
(1−G (X1)−G (X1))

2
]

When G is continuous, σ2 = 1
9 ([43, 32]. Also, for further information



6 Tolga Zaman and Kamil Alakuş

about strong consistency and asymptotic distribution belonging of TSE estima-
tion, please look into Wang [43]. Let’s make statements about the spatial median.

Let W be a p−variate random vector with cdf F, p > 1. The spatial median
(sm) of W minimizes the objective function:

(2.4) DF (w) =
1

n

n∑
i=1

{‖Wi − w‖ − ‖Wi‖} ;w ∈ Rd

where ‖.‖ is the Euclidean form. Let S (w) = w/ ‖w‖ (w 6= 0) be the spatial
sign function. The sample statistical spatial depth

(2.5) DF (w) = 1−

∥∥∥∥∥ 1

n

n∑
i=1

S (w −Wi)

∥∥∥∥∥ ;w ∈ Rd

The spatial median is the multivariate median defined by the spatial depth,
which is any value that maximizes the sample depth,

(2.6) ˆsm = argsupDF (x) ;x ∈ Rd

The estimate ˆsm is unique if the observations do not fall on a line. The
spatial median has good efficiency properties. Möttönen et al. [28] for exam-
ple calculated the asymptotic relative efficiencies. For the strong consistency
and asymptotic normality of the spatial median (for see in detail information,
Chaudhuri [9] and Bose [4].

3. JACKKNIFE METHOD

Jackknife method is defined as the method which minimizes sample er-
ror used to estimate population parameter. First definition of this method is
made by Quenouille [33] and it is improved by Tukey using confidence inter-
val approach [17]. Efron [12] contributed to the estimation of standard error and
bias of the method. Martin and Roberts [25] proposed jackknife−after−bootstrap
method which is developed in order to determine efficient observations. Jackknife
method gives confidence intervals and decreases bias of estimation when known
approaches are having hard time. Jackknife method is a resampling method in
estimation of population parameters and developed in order to minimize sample
error related to obtaining narrow confidence intervals. This method is considered
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as a statistical process that aims to reveal the relationship between variables in
the data set in many fields that require parameter estimation [40]. Jackknife
method does not consider the distribution belonging to variables in the data set
and in this regard, it is known as a non−parametric statistical process. In pa-
rameter estimation process with this method, estimation is made by throwing out
one observation in the sample each time. Thus, effect of deviated values is tried
to be eliminate. The fundamental logic of the Jackknife method is to produce
n different sample (sub−sample), each (n−1) sized, by excluding each sample
observation from the data set. The fundamental logic of the method bases on
calculating sampling statistics from remaining observations through excluding an
observation in data set. Thus, n different observations from n observations can
be formed.

Let be X = (x1, x2, . . . , xn) sample and θ̂ = s(X) our estimator. According
to jackknife methods, when i. observation are excluded, new sample is defined
as;

(3.1) x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn) ; i = 1, 2, . . . , n

Because of this, its estimator is also defined as;

(3.2) θ̂(−i) = s
(
x(i)
)

where θ̂(.) is the estimate of θ and calculated through the equation, θ̂(.) =∑n
i=1 θ̂(−i)

n . Jackknife estimate of standard error is calculated as

(3.3) ŝeJackk =

√√√√∑n
i=1

(
θ̂(−i) − θ̂(.)

)2
n(n− 1)

Applying jackknife method in non−parametric regression can be thought
as same logic. By excluding one observation from the current dependent and
independent variables, non−parametric regression method is applied in current
data. This process is repeated times of sample size.

The parameters of non−parametric regression methods using jackknife method
are found as follow;

� Firstly, (n− 1) sized n different subsamples are formed by removing the
observations from the data one by one.

� Regression coefficients belonging to non−parametric regression methods in
interest are estimated for each formed subsample. This regression coeffi-
cients are called deleted slope coefficients and is indicated by βi(−j), j =
1, 2, . . . , n; i = 1, 2, . . . , p.
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� Lastly, in order to obtain Jackknife estimator of intercept parameter value,

mean of values (yj−
(
β̂1(−j)

)
x1+

(
β̂2(−j)

)
x2+. . .+

(
β̂p(−j)

)
xp) is estimated

as estimate β̂0(−j) as below:

(3.4) β̂0(−j) =

∑n
j=1

(
yj −

(
β̂1(−j)

)
x1 +

(
β̂2(−j)

)
x2 + . . .+

(
β̂p(−j)

)
xp

)
n− 1

� Mean value of these coefficients that obtained for each subsample are Jack-
knife estimators and expressed as below,

(3.5) β̂J∗i =

∑n
j=1

(
β̂i(−j

)
n

; i = 1, 2, . . . , p; j = 1, 2, . . . , n; β̂J∗0 =

∑n
j=1 β̂0(−j)

n

4. SOME PROPERTIES OF JACKKNIFE ESTIMATORS

In this section, the theoretical results of the jackknife estimation on unbi-
ased, consistency, and asymptotic distribution are indicated.

For j = 1, · · · , n supposed that the point jackknife estimations of the pa-
rameters are β̂J∗ and determine the sampling distribution of these estimators.
Here β̂J∗ is defined as in the following equation. Let us consider the px1 dimen-
sional β̂J∗ jackknife estimator vector of β parameters.

(4.1) β̂J∗ =
1

n

n∑
j=1

β̂(−j)

First, let’s find the expected value of the estimator β̂J∗ in equation 4.1.

(4.2) E
(
β̂J∗

)
=

1

n

n∑
j=1

E
(
β̂(−j)

)

(4.3) E
(
β̂J∗

)
=

1

n
E
[
β̂(−1) + β̂(−2) + · · ·+ β̂(−n)

]
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(4.4) E
(
β̂J∗

)
=

1

n

[
E
(
β̂(−1)

)
+ E

(
β̂(−2)

)
+ · · ·+ E

(
β̂(−n)

)]

(4.5) E
(
β̂J∗

)
=

1

n
[β + β + · · ·+ β] =

1

n

n∑
j=1

β =
nβ

n
= β

The result clearly shows that the estimate of β̂J∗ is unbiased for the pa-
rameter vector of βββ [7, 2].

Then, let’s find the variance−covariance of the estimator β̂J∗ in equation
4.1. The jackknife variance−covariance estimator of β̂J∗ then can be written as
follows:

(4.6) V ((β̂J∗) = S =
1

n

n∑
j=1

(β̂(−j) − β̂J∗)′(β̂(−j) − β̂J∗)

=
1

n


∑n

j=1(β̂1(−j) − β̂J∗1 )2 · · ·
∑n

j=1(β̂1(−j) − β̂J∗1 )(β̂p(−j) − β̂J∗p )
...

. . .
...∑n

j=1(β̂1(−j) − β̂J∗1 )(β̂p(−j) − β̂J∗p ) · · ·
∑n

j=1(β̂p(−j) − β̂J∗p )2


(p×p)

=


V (β̂J∗1 ) · · · Cov

(
β̂J∗1 , β̂J∗p

)
...

. . .
...

Cov
(
β̂J∗1 , β̂J∗p

)
· · · V

(
β̂J∗p

)


is found. If the expected value of both sides is taken in Equation 4.6, Equation
4.7 is obtained.

(4.7)

E
[
V
(
β̂J∗

)]
= E (S) =


E
[
V
(
β̂J∗1

)]
· · · E

[
Cov

(
β̂J∗1 , β̂J∗p

)]
...

. . .
...

E
[
Cov

(
β̂J∗1 , β̂J∗p

)]
· · · E

[
V
(
β̂J∗p

)]

(p×p)

=

 V (β1) · · · Cov (β1, βp)
...

. . .
...

Cov (β1, βp) · · · V (βp)

 = Σ
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As a result, the sampling distribution of β̂J∗ in jackknife estimator is ob-
tained asymptotically β̂J∗ ∼ N (β; Σ).

The equation 4.7 clearly indicates that the estimate of V
(
β̂J∗

)
is unbiased

asymptotically for Σ.

Finally, let’s examine the consistency of the jackknife estimator of β̂J∗.

Firstly the estimator has the variance V
(
β̂J∗

)
and then we can write it as

follows:

(4.8)

lim
n→∞

V (β̂J∗) = lim
n→∞

S = lim
n→∞

 1

n

n∑
j=1

(
β̂(−j) − β̂J∗

)′ (
β̂(−j) − β̂J∗

)→ 0

So, the equation 4.8 shows that the jackknife estimation β̂J∗ is consistent
for the parameter vector β. That is, β̂J∗ → β [36].

5. JACKKNIFE MULTIVARIATE THEIL− SEN ESTIMATOR
(JMTSE) IN MULTIPLE LINEAR REGRESSION MODEL

JMTSE is a modification of the Theil−Sen estimator based on the jackknife
method in multiple linear regression, a technique that narrows the confidence
interval and reduces the effect of extreme values. In the analysis of proposed
JMTSE method, subsamples, which are obtained through excluding each obser-
vation value sequentially from sample, are used instead of sample data. The
algorithm steps for proposed JMTSE method is given below:

1. Step: Firstly, n different subsample, each (n−1) sized, are formed by
excluding each of n observation sequentially.

2. Step: Arbitrary number t is determined as k + 1 ≤ t < n. Here p
indicates number of independent variable and n indicates sample size.

3. Step: Regression coefficients are calculated by applying LSE method to

each possible

(
n− 1
t

)
combinations according to arbitrarily determined t value

in order to estimate parameter estimation values, βi, (i = 1, 2, . . . , p). If we ex-
press obtained regression coefficients as Lij , regression parameter estimations are
multivariate median of Lij values. The multivariate median used here is spatial
median. In other words, βi(−j) = Mmed (Lij) (i = 1, 2, . . . , p); (j = 1, 2, . . . , n).

Since this process will be repeated for each subsample, n number of β̂i(−j) will
be calculated.
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4. Step: To calculate β̂0(−j) estimation, there are different alternatives.
These are:

i) If error term has a symmetric distribution around zero, β̂0(−j) estimation

is calculated by calculating each possible
(
yi − β̂i(−j)xi

)
. In other words, β̂0(−j) =

med
(
yi − β̂i(−j)xi

)
.

ii) β̂0(−j) estimation can be calculated by averaging all possible
(
yi − β̂i(−j)xi

)
values. That means β̂0(−j) =

∑n
i=1(yi−β̂i(−j)xi)

n−1 .

iii) Alternatively, (β0, βi) values can be estimated simultaneously with mul-
tivariate median in a less restricted situation. In other words, it can be calculated
using (β0, βi) = smed(β0(−j), βi(−j)).

5. Step: Means of all these coefficients for each sub−sample are proposed

JMTSE estimations. In other words, β̂0 =
∑n

j=1 β̂0(−j)

n ve β̂i =
∑n

j=1 β̂i(−j)

n .

There are certain things to consider while estimating with MTSE and pro-
posed JMTSE methods. For example, if independent variables are categorical,
then subsamples selected according to arbitrary t might be zero valued. In this
case, estimation values with the LSE method can take values like (Lij) ±∞. So,
uncertainty may occur in this analysis. If Lij values, which is calculated based on
arbitrary t, is excluded from analysis, there would be data loss and this decreases
the reliability of analysis. There are suggestions about this problem in simple
linear regression models in Erilli and Alakuş [14]. If these suggestions are applied
to JMTSE method;

1. βi is calculated by replacing regression coefficients in (Lij) value, which
is found infinite, with maximum or minimum values in each possible Lij values
(in other words, max(Lij) instead of +∞ and min(Lij) instead of −∞) which is
calculated according to arbitrary m.

2. The median of the data can be placed instead of regression coefficients
in Lij , which is found infinite, after infinite values are excluded from the data.

3. The trimmed mean values can be placed instead of regression coefficients
in (Lij), which is found infinite.

Using these methods, regression parameter estimations are calculated and
regression coefficients for proposed JMTSE estimation method can be calculated
considering the algorithm above. There is not a certain conclusion about which
method gives the best result. It is advised to the researcher that all estimation
results belonging to the all possible methods need to be obtained and compared
according to data structure in order to obtain the best result.

In this article, the results of estimation of regression coefficients belonging
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to JMTSE method (β0;βi, (i = 1, 2, . . . , p)), which is proposed in the simulation
and real data applications, are obtained and interpreted simultaneously. In other

words,
(
β̂0, β̂i

)
= smed

(
β̂0(−j), β̂i(−j)

)
[49].

6. RESULTS AND DISCUSSION

We conducted some numerical examples with Monte Carlo simulations and
two real dataset examples. We measured the robustness and efficiency of the
coefficients in the simulations. In real dataset examples we checked the predic-
tion accuracies of the models and sparseness of the regression coefficients. The
datasets are compatible for our aims which consist of heavy-tailed errors. All
implementations were performed in R software [34].

6.1. Calculation and Simulation Studies

We performed Monte Carlo simulations study to evaluate the efficiency
of proposed method. To compare the performance of proposed estimator, we
employed two techniques ordinary least squares (LSE), multivariate Theil−Sen
estimator (MTSE) [10]. Simulation design was constructed similar to Dang et al.
[10].

In this section, various simulation studies are made with regards to ro-
bustness and efficiency in order to examine the behavior of proposed method.
Some samples are produced from multiple linear regression model Yi = 2.5 +
3X1i+1.5X2i+εi, where, X1i ∼ N(0, 1), X2i ∼ U(0, 1) and εi are produced from
different distributions with different purposes.

In this study, with the help of sub−samples obtained by excluding each
observation values from the sample, we take a random sample of size t from the
whole sample between k + 1 ≤ t ≤ n and calculate the LSE based this random
sample. This process is repeated in such a way that it does not exceed the
combination of

(
n
t

)
. Then, the spatial median of the obtained LSE estimators

is calculated simultaneously. The mean of these coefficients calculated for each
sub−sample are proposed JMTSE estimates. Breakdown point depends on the
choice of t. The highest breakdown point is reached when t takes its minimal
value t = k + 1. Therefore t = 3 was taken in this study.

Firstly, let us examine the robustness of proposed method. Sample sizes
n = 20, 40, 80 are produced from multiple linear regression model Yi = 2.5+3X1i+
1.5X2i + εi with distribution εi ∼ N(0, 1). Obtained data set is polluted with
outliers (Xi, Yi) of regression model Yi = −10− 20X1i− 25X2i + εi. Here, n1 and
n2 are, respectively, count of good ones and count of bad ones (outliers). When we
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examine Table 1 that without outliers, all the LSE, MTSE and JMTSE performed
well. However, with the presence of outliers, the LSE’s method has completely
deteriorated and become useless. While MTSE’s and JMTSE’s performed well
until the ratio of outliers reaches 35−40 %. But, it is seen that JMTSE’s gives
results closer to the real parameter value. Also, in the polluted data, LSE method
have distant values to real regression coefficients. As pollution rate increased, it
is observed that regression coefficients obtained by JMTSE is better compared
to regression coefficients obtained by MTSE. In other words, it is shown that
regression coefficients obtained through JMTSE method, which is proposed by
hybridizing the resampling method, jackknife method, with MTSE estimation
that is in literature, are closer to the real regression coefficients. Therefore, as
a result of this simulation study, it is seen that proposed JMTSE method gives
sufficient contribution to the literature.

True Parameter (2.5, 3, 1.5)
LSE MTSE JMTSE

n = 20 (2.480 3.001 1.521) (2.488 3.043 1.523) (2.469 3.001 1.509)
n = 30 (2.487 3.004 1.530) (2.466 3.023 1.494) (2.488 3.017 1.501)
n = 40 (1.894 2.242 1.084) (2.792 2.544 0.417) (2.226 2.202 0.875)

n1 = 19, n2 = 1 (2.264 1.862 -0.436) (2.420 2.864 1.550) (2.462 2.961 1.482)
n1 = 18, n2 = 2 (0.855 0.949 -0.219) (2.180 3.144 1.370) (2.563 3.001 1.221)
n1 = 16, n2 = 4 (-0.732 -2.403 -3.249) (1.210 2.363 -0.849) (0.826 1.183 1.178)
n1 = 14, n2 = 6 (-0.935 -3.601 -6.696) (0.912 0.480 -2.213) (1.633 1.667 -1.413)
n1 = 12, n2 = 8 (-0.348 -0.736 -0.860) (1.644 -0.225 0.369) (-0.187 -0.188 -0.394)

Table 1: Robustness

Robust estimator may lose efficiency. To investigate the efficiency, a simula-
tion is conducted as follows. The values of mean square error belonging to LSE’s,
MTSE’s and JMTSE’s value β̂ with sample size n = 10, 20, 25, 30, 35, 40, 45, 50
distribution εi ∼ N(0, 1), and various outlier value ratios is calculated using

MSE = 1
κ

∑κ
i=1

(
β̂i − βtrue

)2
. where, κ = 1000, βtrue = (2.5, 3, 1.5) and β̂i is

the estimate for ith sample.

In Table 2, LSE method gave worse results compared to other methods
when all cases of outlier ratios and sample sizes are considered. When sample
size is fixed and outlier ratios are increased, experimental mean squared errors be-
longing to examined methods increased. For example, when sample size is taken
as 20 and outlier ratios are 5%, 10%, and 20% respectively, experimental mean
squared errors are 4.8272 when 5%; 15.7596 when 10% and 26.1113 when 20%
respectively. Similarly, experimental mean squared errors belonging to MTSE
method are 0.1373 when 5%, 0.2152 when 10% and 0.7689 when 20%. Finally,
mean squared errors belonging to JMTSE method are 0.1381 when 5%, 0.148
when 10% and 0.7158 when 20%. That is to say, when examined methods are
evaluated, it is seen that experimental mean squared errors belonging to estima-
tion methods increases when sample size is fixed and outlier ratios are increased.
When regression coefficients belonging to examined methods and outlier ratios
are fixed, mean values for all sample sizes are calculated. In n=10,20,25,. . . ,50
sample size and 5% pollution rate, MSE values belonging to estimations are cal-
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culated as 7.7903 for LSE, 0.6270 for MTSE and 0.3512 for JMTSE when outlier
ratio is 5%; 13.3294 for LSE, 3.1737 for MTSE and 1.6983 for JMTSE when 10%;
and 31.2867 for LSE, 5.1085 for MTSE and 4.4401 for JMTSE when 20%. If
it is looked carefully, the in equation, MSEJMTSE < MSEMTSE < MSELSE
exists between MSE’s belonging to estimation methods which are examined when
outlier ratios are fixed. In this regard, when pollution rate is fixed and sample
size is n=10,20,25,. . .,50, it is seen that JMTSE estimation method gives more
efficient results. In a same way, when sample size is fixed and outlier ratio is in-
creased, again, JMTSE estimation method gives results closer to real regression
coefficients compared to LSE and MTSE estimation methods. In other words,
it is seen that JMTSE method is more efficient in estimating real parameters in
these cases. In summary, it is seen that results belonging to Theil-Sen method
are improved with the addition of jackknife method. It is also observed that
when the sample size increases, the values decrease in the mean square error of
the methods.

Sample Size
Outlier ratio %

5% 10% 20%
LSE MTSE JMTSE LSE MTSE JMTSE LSE MTSE JMTSE

10 28.80 0.4422 0.5483 32.0605 0.5326 0.5677 66.5179 4.2187 5.2909
20 4.8272 0.1373 0.1381 15.7596 0.2152 0.1484 26.1113 0.7689 0.7158
25 8.145 3.85 1.754 12.0568 0.1455 0.1468 31.2967 1.2035 0.8902
30 4.8467 0.0697 0.0698 10.3119 4.5238 5.8034 27.5454 0.3196 0.3271
35 4.2601 0.0499 0.0499 12.5515 9.9076 0.3733 25.7719 9.1562 9.4418
40 3.2691 0.0509 0.0509 8.734 4.5144 1.8785 26.3822 6.2388 2.8074
45 4.3719 0.0477 0.0478 7.9876 5.4876 4.6048 22.2376 8.6498 7.3089
50 3.8026 0.3682 0.1505 7.1731 0.0631 0.0632 24.4306 10.3123 8.7384

Mean 7.7903 0.6270 0.3512 13.3294 3.1737 1.6983 31.2867 5.1085 4.4401

Table 2: Efficiency Comparisons

Considering multiple linear regression model Yi = 2.5 + 3X1i + 1.5X2i + εi,
for sample sizes n = 20, 30, 40 and n = 50 generate 1000 samples with errors
from εi ∼ N(0, 1) εi ∼ t(u) with two different degrees of freedoms (df) u=1,3.
The prediction accuracies are evaluated with mean square error (MSE) as the
following:

MSE =
1

κ

κ∑
i=1

(
β̂i − βtrue

)2
where κ = 1000, βtrue = (2.5, 3, 1.5) and β̂i is the estimate for ith sample. As for
relative efficiency (RE) of β̂, it is obtained by dividing the MSE of the LSE by
that of β̂. In Tables 3 and 4, the values of MSE and RE are given.

The relative efficiencies and MSE values of the MTSE and JMTSE are
computed with respect to LSE in Table 3. When we examine Table 3, under
the Gaussian model, the finite sample RE values of MTSE and JMTS are about
12−58 % and the 52−98 % which are acceptable. However, it is found that RE
values of the JMTSE is bigger than 1 for heavy tail distributions t with df = 3 and
df = 1(Cauchy). Especially, under the Cauchy model, JMTSE is more efficient
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compared to LSE.

The relative efficiencies and MSE values of the JMTSE are computed with
respect to MTSE in table 4. From the Table 4, it can be concluded that when
the error comes from the heavily tail distributions t with df = 3, the JMTSE
competes the MTSE, especially for Cauchy. That means, JMTSE is more efficient
compared to MTSE.

Normal T3 T1 (Cauchy)
LSE MTSE JMTSE LSE MTSE JMTSE LSE MTSE JMTSE

n=20
MSE 0.072785 0.126266 0.10913 0.941811 0.533084 0.534346 802.2187 2.513192 2.364063
RE 1 0.576442 0.666953 1 1.76672 1.76255 1 319.2031 339.339

n=30
MSE 0.047412 0.081497 0.069998 0.523894 0.372488 0.365735 169.8011 0.856768 0.802462
RE 1 0.581769 0.677338 1 1.406473 1.432442 1 198.188 211.6002

n=40
MSE 0.035762 0.097724 0.068763 0.451233 0.52053 0.351836 163.7145 4.880104 3.658022
RE 1 0.365944 0.520069 1 0.866873 1.28251 1 33.54733 44.75491

n=50
MSE 0.019061 0.156786 0.019393 0.319796 0.267127 0.254355 2.67E+07 3.51E-01 3.28E-01
RE 1 0.121571 0.982851 1 1.197171 1.257285 1 76068376 81402439

Mean 0.411432 0.711803 1.309309 1.433697 19017232 20350759

Table 3: MSE values and Relative efficiencies of the MTSE and JMTSE
with respect to LSE for some continuous distributions

As a results, just like what simulation studies showed, it is found that pro-
posed JMTSE method has more consistency than LSE and MTSE methods with
regard to efficiency and robustness and results of MTSE method are improved.

T3 Cauchy
MTSE JMTSE MTSE JMTSE

n=20
MSE 0.533084 0.534346 2.513192 2.364063
RE 1 0.99764 1 1.063082

n=30
MSE 0.372488 0.365735 0.856768 0.802462
RE 1 1.018464 1 1.067674

n=40
MSE 0.52053 0.351836 4.880104 3.658022
RE 1 1.479468 1 1.334083

n=50
MSE 0.267127 0.254355 3.51E-01 3.28E-01
RE 1 1.050214 1 1.070122

Mean 1.136446 1.13374

Table 4: MSE values and Relative efficiencies of the JMTSE with respect
to MTSE for some continuous distributions

6.2. Numerical Illustrations

In this part we conducted some experiments on real datasets to evaluate
the predictive performance of estimators. Meanwhile we presented the sparsity of
the regression coefficients. For the application we used Coleman and Education
expenditure data sets which are available in R software, ”MASS” and ”robust-
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base” packages [47, 24]. These datasets contain heavy-tailed errors so the real
datasets are conformable for the computations. Coleman dataset contains 20 ob-
servations and 5 independent variables. This data set contains information on
20 schools from the Mid-Atlantic and New England states. The purpose is to
predict the verbal mean test score [26]. Education expenditure data set consists
of 50 observations and 3 independent variables. This data set is related with the
education expenses of 50 states in the US. The aim is to predict the per capita
expenditure for public education [8].

Predictive performance is measured by cross validation technique. The
datasets are divided in two parts as test-train. Train sets contain %80 and test
sets contain %20 of the datasets, respectively.

% 95 confidence intervals of the regression coefficients are given for LSE and
JMTSE methods in Tables 5 and 6. From the table 5, It is seen that independent
variables, x3, x4 and x5, are found significant for the model obtained through
LSE method and all independent variables are found significant for the model
obtained through proposed JMTSE method. In table 6, independent variable x2
is found significant for the model obtained through LSE method and independent
variables, x2 and x3, are found significant for the model obtained through JMTSE
method. As a result narrower confidence limits were estimated with the proposed
estimator.

Coefficients
LSE JMTSE

Lower Bound Upper Bound Lower Bound Upper Bound

Constant 16.743 59.624 35.175 37.619
x1 -3.013 1.242 -0.675 -0.377
x2 -0.004 0.159 0.058 0.086
x3 0.540 0.835 0.654 0.684
x4 0.323 1.619 0.881 0.975
x5 -8.221 -1.629 -4.723 -4.342

Table 5: Confidence intervals of the regression coefficients for the Cole-
man data set

Coefficients
LSE JMTSE

Lower Bound Upper Bound Lower Bound Upper Bound

Constant -589.951 77.250 -346.571 -329.127
x1 -0.113 0.134 -0.024 0.008
x2 0.034 0.088 0.066 0.073
x3 -0.142 1.625 0.879 0.954

Table 6: Confidence intervals of the regression coefficients for the Edu-
cation expenditure data set

The predictive performance of each approaches are given in Table 7. In
experimental results, JMTSE performs better than LSE and MTSE in terms of
prediction for new observations. It should be noted that the JMTSE proposed
by using jackknife in MTSE is good for both data sets.
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Methods Coleman-MSE Education E-MSE

LSE 16.423 4293.951
MTSE 15.209 3645.489
JMTSE 14.724 3564.373

Table 7: Predictive performance results

7. CONCLUSION

Theil−Sen estimator is a point estimator of the slope parameter in the
model and has many nice properties, including asymptotic normality. It has be-
come a useful alternative solution for robust regression modelling with a high
breakdown point and asymptotic efficiency. Although TSE has these many good
properties, there are not many researches for Theil−Sen estimator in multiple
linear regression methods. Jackknife method throwing an observation at a time
from the sample which statistics calculates that as the number of individuals in
the sample and the effect of extreme values can be defined as a method with re-
lieving properties. The paper proposes a modification of the Theil−Sen estimator
based on jackknife method. Simulation studies and real data applications is made
in order to improve the results belonging to MTSE. Also, Jackknife estimations
of parameters for Theil−Sen regression analysis, hypothesis test of parameters
based on jackknife estimations and confidence intervals are examined.

According to simulations studies, robustness of methods investigated in the
first phase of the simulation study is explored. When outliers do not exist in the
data and distribution of error term is normal distribution, all of the LSE, MTSE
and JMTSE estimation methods obtained results close to the real regression co-
efficients as a result of comparison with regard to robustness. Again, when the
errors obtained from simulation study is normally distributed and the data is
polluted with different ratios, LSE method got far away from real regression co-
efficients immediately and become unusable. However MTSE and JMTSE meth-
ods were able to endure until a certain point. It is seen that this ratio is around
35−40% for MTSE and JMTSE. Also JTSE is more capable of determining the
real regression coefficients correctly. These findings exhibit the superiority of
jackknife within MTSE in terms of variable selection. In the second phase of the
simulation study, mean square error values are calculated for the methods which
are investigated when errors are distributed normally but data has pollution with
various ratios. As a result, it is clear that the proposed JMTSE method has a
smaller mean square error than LSE and MTSE methods. In the third and fourth
phase of the simulation study, no pollution is added to produced data. But when
the error comes from the heavily tail distributions t with df = 3 and df = 1, it is
found that JMTSE method, which is proposed with regards to sample sizes and
arbitrary error term distributions, is more efficient than LSE and MTSE meth-
ods. Immediately after the simulation study, situations of methods in interest are
investigated considering two original datasets. According to estimation results,
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it is found that JMTSE method gives more efficient results than MTSE and LSE
methods. As a result, robustness and effectiveness of MTSE is improved using
jackknife method.

It is clearly seen that the proposed JMTSE method works well when n and
t are small. This shows that the proposed JMTSE method is computationally
feasible and the method is to have useful outlier resistance.

Consequently, a new estimator named JMTSE is proposed by integrating
Jackknife method to Theil−Sen method in multiple linear regression. It is ob-
served that proposed method reduces the effects of outliers even more and gives
more reliable results. According to obtained results, resampling methods like
Jackknife method can be applied in non−parametric regression methods success-
fully. Moreover, we demonstrated the applicability of jackknife with MTSE and
concluded the success with several numerical examples. We suggest using JMTSE
when there are many predictors for further practical studies to accomplish model
selection in the presence of heavy−tailed errors.
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