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Abstract:

• The analysis of unreplicated factorial designs constitutes a challenging but difficult
issue since there are no degrees of freedom so as to estimate the error variance. In
the present paper we propose a method for screening active effects in such designs,
assuming Bernoulli distributed data rather than linear; something that hasn’t received
much attention yet. Specifically, we develop an innovating algorithm based on an
information theoretical measure, the well-known symmetrical uncertainty, so that it
can measure the relation between the response variable and each factor separately.
The powerfulness of the proposed method is revealed via both, a thorough simulation
study and a real data set analysis.
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1. INTRODUCTION

Factorial designs constitute a powerful tool especially in screening experi-
ments where the goal is to identify the factors with a significant impact on the
response of interest. Although two-level factorial designs are commonly used as
experimental plans, the number of runs grows exponentially as the number of
factors increases; thus, in case when the replication of the experiment is pro-
hibitive due to economical or technical issues, unreplicated designs constitute an
appropriate choice. Such designs are saturated; means that the number of exam-
ined factors d equals to n − 1, where n is the number of runs. As a result, the
experimenter can estimate all the d main and interaction effects, but there are
no degrees of freedom to estimate the error; therefore, the conventional analysis
of variance (ANOVA) techniques cannot be applied.

Many methods, either theoretical or graphical ones, have been proposed
to overcome the aforementioned problem. The standard method for identifying
active effects in unreplicated designs is the probability plot of the effects, proposed
by Daniel [7]. This approach consists of plotting the factor estimates on a normal
or half-normal probability plot, where the inactive effects fall along a straight line
while the active ones tend to fall off the line. The subjective nature of that method
motivated many authors to provide more objective procedures. For a detailed
review article, we refer the interested reader to Hamada and Balakrishnan [10].
Some important works include: Box and Meyer [5], Lenth [11], Dong [8], Chen
and Kunert [6], Aboukalam [1], Miller [14], Voss and Wang [22], Angelopoulos
and Koukouvinos [2], and Angelopoulos et al. [3,4].

Although many methods have been proposed for analyzing unreplicated
designs for a normal response, it is evident the lack of research papers for non-
normally distributed responses. This fact prompted us to develop a methodology
for screening out the important effects assuming that the response of interest is
a binary one; therefore, we developed a generalized linear model, say a logistic
model. Our approach for analyzing unreplicated designs constitutes a statistical
method inspired by some information theoretical measures, the main of which was
the symmetrical uncertainty (SU). To the best of our knowledge, this is the first
time such an algorithm is modified and appropriately used for variable selection
in unreplicated designs. The merits of our study is encouraging enough.

The rest of the paper is organized as follows. In Section 2, we briefly discuss
the basic concepts of the information theoretical measures, the formulation of the
problem as well as our new SU algorithm. In Section 3, we carry out an empirical
study comparing our method with two well-known feature selection algorithms,
the CMIM and the mRMR. Finally, in the last Section 4, we summarize the
merits of our study providing some concluding remarks.
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2. A METHOD FOR SEARCHING ACTIVE EFFECTS IN UN-
REPLICATED DESIGNS WITH BINARY RESPONSE

Generalized linear models (Nelder and Wedderburn [17], McCullagh and
Nelder [13] and Myers et al. [16]) were developed to allow the fit of regression
models for response data that follow a distribution belonging to the exponen-
tial family. This family includes not only the exponential but also the normal,
binomial, Poisson, geometric, negative binomial, gamma and the inverse normal
distributions. All these models have a common property: the mean (or expected)
response at each data point and the variance of the response are related.

Consider a two-level full factorial unreplicated design where one wants to
estimate the main and interaction effects in d factors with n runs. Let X be the
corresponding n × d design matrix where at the ith data point, i = 1, . . . , n the
response is a Bernoulli random variable yi, that takes only two possible values,
0 and 1, representing “failure” or “success”, respectively. It is well known that
µi = E(yi) = Pi = P (xi), where Pi is the probability of success in a Bernoulli
process, xi is a d−dimensional vector of the predictor variables and V ar(yi) =
Pi(1 − Pi) is the variance of the response. It is obvious that the variance is a
function of the mean. The probability of success, P (xi), in case of the logistic
regression model is given as follows

(2.1) P (xi) =
1

1 + e−x
T
i β
,

where the term xT
i β is said to be the linear predictor. For more details on logistic

regression model, we refer the interested reader to Montgomery et al. (2006). In
accordance with this scenario, we perform our simulation study by generating
logistic models that has the form

(2.2) yi = P (xi) + ε,

where ε has a distribution with zero mean and variance P (xi)[1 − P (xi)]. More
precisely, ε takes two possible values: ε = 1 − P (xi) with probability P (xi) if
y = 1, and ε = −P (xi) with probability 1 − P (xi) if y = 0. Consequently, the
conditional distribution of the outcome variable has a Bernoulli distribution with
success probability P (xi).

2.1. Information measures

Information theory provides useful tools to quantify the uncertainty of ran-
dom variables. Our method is inspired from the information theory field with
the aim of identifying those effects that carry as much information as possible.
This section provides some information measures which constitutes the theoreti-
cal basis of our methodology.
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Let U and V be two discrete random variables. One of the most fundamen-
tal concept in information theory is that of entropy measure which was introduced
by Shannon [21] and it is defined as

(2.3) H(U) = −
∑
u∈U

p(u) log2(p(u)).

The entropy quantifies the uncertainty of U, where p(u) is the prior probability
for all values of U. It is a measure of the amount of information required on
average to describe the random variable. The information entropy of a Bernoulli
trial used in our study is defined as

(2.4) H(Y ) = −p(y)log2p(y)− (1− p(y))log2(1− p(y)),

where p(y) is the prior probability for all values of Y .

In case of two variables we could define the mutual information (MI) which
is a quantity that measures the mutual dependence of these variables. It is also
called information gain (Quinlan [18]) and it is defined as

(2.5) I(U |V ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X)+H(Y )−H(X,Y ).

Note that the MI of a random variable with itself, is its entropy. MI can
be used for feature selection with the aim to select a small subset of features that
carries as much information as possible (Fleuret [9], Peng et al. [19]). Informa-
tion gain is a symmetrical measure for two random variables. Symmetry is an
appealing property for a measure of correlations between factors, but informa-
tion gain is biased in favor of factors with more values. Symmetrical uncertainty
(Press et al. [20]) counterbalances the bias of information gain towards factors
with more values, and normalizes its value to the range [0, 1]. The definition of
Symmetrical Uncertainty is given as

(2.6) SU(U, V ) = 2×
[

I(U |V )

H(U) +H(V )

]
.

2.2. Symmetrical uncertainty algorithm

The proposed method is a modification of a feature selection algorithm,
known as Fast Correlation Based Filter (FCBF, Yu and Liu [23]). More precisely,
it actually performs a typical variable selection using the SU coefficient so as to
determine the significant effects. The algorithm can be described as follows:

Algorithm

a) Given a n × d unreplicated design matrix X = [x1,x2, . . . ,xd], where xl,
l = 1, 2, . . . , d, is the lth column of the matrix, as well as a n× 1 Bernoulli
distributed vector y, which is the response vector, compute the entropy and
the conditional entropy with respect to the response variable.
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b) Compute the vector entropy values and the conditional entropy values
for each variable as: H(X) = (H(x1), H(x2), . . . ,H(xd)) and H(X|Y) =
(H(x1|y),
H(x2|y), . . . ,H(xd|y)), where H(xj) is the corresponding value of the en-
tropy measure and H(xj |y) is the corresponding value of the conditional
entropy for the j-th, j = 1, . . . , d variable, respectively.

c) Compute the vector of information gain values as: I(X|Y ) = (I(x1|y), I(x2|y),
. . . , I(xd|y)), where I(xj |y) is the information gain value for each variable
with respect to the response variable.

d) Compute the symmetrical uncertainty measure, SU = (su1, su2, . . . , sud),
where

suj = 2×
[

I(xj |y)

H(xj) +H(y)

]
,

for j = 1, . . . , d, represents the value of SU for the j-th variable with respect
to the response variable.

e) The last step is to identify and maintain the significant effects by retaining
only those with scores greater than the predefined threshold value of the
SU vector values.

2.3. Performance Criteria

The performance of the proposed methodology is evaluated using the two
most known criteria, the Type I and Type II error rates. In screening designs,
there are two, the probability of declaring an inactive factor to be active (Type
I error), and the probability of declaring an active factor to be inactive (Type II
error). Type II errors are troublesome, as addressed in Lin [12], as well as Type I
errors, since they can result in unnecessary cost in follow-up experiments. Type
I errors are very likely in situations of effect sparsity. Undoubtedly, Type II error
rates are of highly importance and we have considered that importance during
the creation and implementation of our algorithm.

3. EXPERIMENTAL RESULTS

This section presents a simulation study examining the performance of our
algorithm. To assess the performance of the proposed method, we applied simu-
lations for a wide range of underlying models. Our information-theoretic method
is compared with two feature selection algorithms which are widely used in many
fields of science: the Conditional Mutual Information Maximization (CMIM) al-
gorithm proposed by Fleuret [9] and the minimal-redundancy-maximal-relevance
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feature selection (mRMR) algorithm proposed by Peng et al. [19]. These algo-
rithms were selected to be compared with SU-algorithm since they were made
based on information measures. More precisely, CMIM constitutes a feature se-
lection technique based on conditional mutual information and it iteratively picks
features which maximize their mutual information with the class to predict, con-
ditional to any feature has already picked. MRMR algorithm performs feature
selection by maximizing the mutual information between the selected features and
the desired output (relevance), as well as by minimizing the mutual information
between the selected features (redundancy).

3.1. Simulation scheme

Two unreplicated factorial designs served as the design matrices in our
simulations experiments: a 24 and a 25 full factorial design. We used these designs
since they are commonly used in a wide range of problems; thus, our results
can be comparable to other existing methods and problems. For the examined
designs, the true active variables were selected using two different scenarios. For
each design and each number of the active factors, we randomly generated 1000
Bernoulli distributed response vectors y ∼ Bernoulli(P (XTβ)), where P (u) =

1
1+e−u . All simulations were conducted using MATLAB codes.

Scenario A: We developed logistic models with coefficients taking prede-
fined values. The coefficients of inactive effects are set equal to zero. However,
in order to examine the sensitivity of the results in terms of the selection and the
number of active factors, we changed the order of columns of the active factors,
using different values of β as well as different number of active factors for each
unreplicated design. As a result, we considered several models that were different
in this regard. We considered the cases for p = 1, 2, 3, 4, 5, 6, 7, 8 active effects
involved in a 24 factorial design and for p = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 active
effects involved in a 25 factorial design.

Scenario B: We developed logistic models with coefficients taking ran-
domly selected values from the range −5 to 5. When a generated coefficient was
“almost zero”, it was replaced by 50% of the maximum coefficient. Concerning
the true active variables, they were also selected randomly, according to the uni-
form distribution, using the set of {1, . . . , d} potentially active factors and with
respect to the number of active factors of the design matrix. The coefficients of
the non-active variables in the true model, were set equal to zero. The number of
true active variables was set at most d/2, based on the sparsity of effects principle
(Box and Meyer [5]). This principle states that, in contrast with the initial large
number of potentially active factors, only few of them are dominant, meaning
that their multitude hardly exceeds 1/2 of the total number of factors.
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3.2. Simulation results

The simulation results listed in the following Tables and Figures, contain
the application of the SU method along with that of CMIM and mRMR. Before
performing the simulation experiments, we should set the threshold value which
determines whether a factor is significant or not. Several different threshold val-
ues (0.001, 0.01, 0.05, 0.1, 0.15, 0.2, median (SU)) were examined in order to find
the optimal one for the proposed method. We finally selected the median(SU)
as a threshold value, since it acquires the best results. Not to mention the fact
that median(SU) is based on the estimated values of the SU vector and it seems
to be a reasonable choice. The following Tables summarize the results concern-
ing scenario A of simulation study. Specifically, in Tables 1 and 3, we present
the examined models for designs with four and five factors, respectively. The
first column represents the number corresponding to each model with predefined
values for the coefficients depicted in the second column.

Model Predefined values of coefficients
1 [0,0,0,0,3,0,0,0,0,0,0,0,0,0,0]T

2 [0,0,0,0,0,0,0,0,0,0,0,2,0,0,3]T

3 [0,0,-7,0,0,0,0,-8,0,0,0,0,0,0,-6]T

4 [0,0,-9,0,4,0,0,0,0,-2,0,0,0,0,10]T

5 [6,0,0,0,0,7,0,0,-5,-5,0,-7,0,0,0]T

6 [0,7,0,-2,0,5,2,0,4,0,0,0,-8,0,0]T

7 [0,0,-9,2,0,0,0,4,5,8,0,0,-5,-7,0]T

8 [5,0,-6,8,0,-5,6,0,0,7,0,0,-7,0,1]T

Table 1: Models considered in the simulation study for a 24 unreplicated
design (Scenario A).

Type I Error Type II Error
Model SU CMIM mRMR SU CMIM mRMR

1 0.00 0.00 0.03 0.00 0.00 0.00
2 0.15 0.04 0.08 0.17 0.31 0.45
3 0.08 0.08 0.11 0.00 0.33 0.33
4 0.09 0.10 0.11 0.24 0.27 0.28
5 0.09 0.10 0.13 0.08 0.23 0.23
6 0.00 0.11 0.22 0.33 0.33 0.33
7 0.12 0.34 0.35 0.28 0.39 0.40
8 0.00 0.13 0.18 0.12 0.12 0.16

Average 0.07 0.11 0.15 0.15 0.25 0.27

Table 2: 24 unreplicated design: Performance of the proposed method
for models 1− 8, using 1000 simulations (Scenario A).

The obtained results are summarized in Tables 2 and 4 for four and five
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factors, respectively. More precisely, the first column in both Tables contains
the number that corresponds to each model. The remaining columns present the
results for Type I and Type II error rates correspond to each method separately.
Table 2 clearly shows that SU algorithm outperforms all the others in terms of
both Type I and Type II error rates. Especially, the average values of Type II
error is comparatively smaller; with SU equals to 0.15 compared to 0.25 and 0.27
of CMIM and mRMR, respectively. This fact is extremely important in factorial
designs since low Type II means low probability of declaring an active factor to
be inactive.

Model Predefined values of coefficients
1 [0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,6,0]T

2 [20,0,-17,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]T

3 [7,0,5,0,0,3,0,0,0,0,0,0,0,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,0,0,0]T

4 [0,0,0,17,0,0,0,0,0,0,0,8,0,0,0,-7,0,12,0,0,0,0,0,,0,3,0,0,0,0,-8,0]T

5 [0,0,-9,-5,0,-9,0,0,0,0,0,0,0,0,0,-2,0,0,5,0,0,0,0,,4,0,0,0,0,0,0,8]T

6 [0,0,0,0,0,0,5,0,0,7,0,0,0,0,7,0,0,0,5,0,0,0,0,0,0,0,5,9,9,0,0]T

7 [0,2,4,0,0,0,0,0,0,0,0,0,2,0,3,0,0,-2,0,2,0,0,0,,0,0,0,3,2,0,0,0]T

8 [5,0,4,5,0,0,0,0,0,0,0,0,0,0,0,0,9,5,0,4,5,0,0,0,0,0,0,0,0,9,6]T

9 [0,0,2,-4,-3,0,0,0,0,0,-4,3,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,4,3,0,2,-1]T

10 [0,-5,0,0,0,0,-9,0,-7,0,0,0,-4,0,0,0,-5,-7,0,0,0,-2,-9,0,0,0,0,-3,-8,0,-5]T

11 [0,7,9,9,0,0,0,0,0,17,0,0,0,10,7,19,0,0,0,0,10,0,0,14,13,0,0,0,3,-10,0]T

12 [0,3,0,-2,0,0,0,0,1,0,0,-4,-3,2,0,0,0,-5,1,4,0,-3,0,2,0,3,0,2,2,4,0]T

Table 3: Models considered in the simulation study for a 25 unreplicated
design (Scenario A).

Figure 1: Comparisons of Type II error rates for Scenario A(left panel)
and Scenario B (right panel) in case of four factor model.
SU algorithm vs CMIM and mRMR (Scenario A).
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Table 4 shows that SU algorithm achieves the lowest error rates outperform-
ing the other two methods. More precisely, SU gathers extremely low average
value of Type II while keeping low values of Type I error. Figure 1 illustrates
the performance of the proposed methods considering Type II errors for scenario
A and scenario B at the left and right panel, respectively, considering the design
with the four factors. As depicted in this Figure, SU reveals extremely better
results compared to CMIM and mRMR in all the considered cases, establishing
its effectiveness.

Type I Error Type II Error
Model SU CMIM mRMR SU CMIM mRMR

1 0.04 0.04 0.03 0.00 0.33 0.26
2 0.04 0.04 0.04 0.00 0.33 0.33
3 0.19 0.08 0.04 0.00 0.39 0.21
4 0.15 0.06 0.10 0.00 0.26 0.42
5 0.17 0.08 0.08 0.14 0.29 0.28
6 0.08 0.07 0.09 0.14 0.24 0.32
7 0.13 0.09 0.10 0.00 0.26 0.30
8 0.22 0.18 0.15 0.00 0.43 0.36
9 0.14 0.08 0.13 0.09 0.17 0.27
10 0.18 0.20 0.21 0.27 0.36 0.39
11 0.21 0.19 0.22 0.08 0.29 0.34
12 0.04 0.24 0.17 0.13 0.23 0.18

Average 0.13 0.11 0.12 0.07 0.30 0.31

Table 4: 25 unreplicated design: Performance of the proposed method
for models 1-12 (Scenario A).

Tables 5 and 6 are referred to scenario B. According to the simulation
scheme, first column shows the number of true active effects in the simulated
models which were selected randomly, and the next columns are referred to the
average values of the Type I and Type II error rates for the examined approaches.
A four factor unreplicated design is considered and seven different active factors
from 1 to 7 were taken. Observing Table 5 we could confirm that the SU al-
gorithm achieves an excellent performance since it has the lowest percentages
of both Type I and Type II errors, say 0.08 and 0.23, while CMIM and mRMR
achieve almost similar results with average values equal to 0.13 and 0.32 for Type
I and Type II errors. Lastly, Table 6 aggregates the results for a five-factor un-
replicated design considering different number of active factors, varying from 1
to 15. The average values of Type I error, show that SU overall outperforms the
other algorithms. It is obvious that in terms of Type II error rates, SU revealed
much better performance. Figure 2 illustrates a comparison of Type II error rates
for scenario A (left panel) and scenario B (right panel), considering the design
with the five factors. The horizontal axes show the active factors that we ex-
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amined each time while the vertical axes the percentage of the Type II error. It
should be noted that in cases of 12 active factors and above, the performance is
relatively smaller. This fact justified by the assumption of effect sparsity which
holds in the present experiment.

Type I Error Type II Error
Active effects SU CMIM mRMR SU CMIM mRMR

1 0.00 0.01 0.01 0.00 0.09 0.08
2 0.02 0.06 0.15 0.36 0.39 0.40
3 0.12 0.08 0.10 0.10 0.37 0.36
4 0.13 0.12 0.12 0.22 0.32 0.34
5 0.10 0.17 0.17 0.31 0.34 0.35
6 0.09 0.21 0.23 0.30 0.34 0.36
7 0.08 0.27 0.28 0.31 0.32 0.32

Average 0.08 0.13 0.15 0.23 0.31 0.32

Table 5: 24 unreplicated design: Performance of the examined methods
for random model coefficients (Scenario B).

Type I Error Type II Error
Active effects SU CMIM mRMR SU CMIM mRMR

1 0.00 0.02 0.01 0.00 0.02 0.04
2 0.01 0.03 0.03 0.30 0.38 0.39
3 0.05 0.04 0.04 0.10 0.34 0.30
4 0.16 0.05 0.05 0.07 0.30 0.29
5 0.17 0.09 0.06 0.09 0.32 0.32
6 0.18 0.07 0.07 0.12 0.31 0.31
7 0.17 0.11 0.10 0.18 0.31 0.32
8 0.17 0.12 0.11 0.21 0.32 0.32
9 0.16 0.15 0.14 0.25 0.32 0.32
10 0.15 0.16 0.16 0.28 0.33 0.33
11 0.15 0.20 0.19 0.31 0.33 0.33
12 0.14 0.21 0.21 0.37 0.33 0.34
13 0.14 0.23 0.25 0.38 0.32 0.33
14 0.12 0.26 0.26 0.41 0.32 0.32
15 0.13 0.29 0.29 0.44 0.31 0.31

Average 0.13 0.14 0.13 0.23 0.30 0.30

Table 6: 25 unreplicated design: Performance of the examined methods
for random model coefficients (Scenario B).
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Figure 2: Comparisons of Type II error rates for Scenario A(left panel)
and Scenario B (right panel) in case of five factor model.
SU algorithm vs CMIM and mRMR.

3.3. Real experiment

In this subsection, we examine how the proposed screening methodology
performs in the presence of real data. More precisely, we examined a real medical
dataset that was collected in an annual registry conducted during the period
01/01/2005−31/12/2005 by the Hellenic Trauma and Emergency Surgery Society
and which involves 30 General Hospitals in Greece. Each week, there was selected
two data sets, each forms a factorial design with four and five factors, respectively,
according to medical advice. There was the necessity of finding significant factors
and their interactions without using an extremely large number of patients. For
each patient a corresponding response variable, y, was reported which takes only
two possible outcomes, denoted as 0 for survival and 1 for death. Taking all the
interactions among factors a factorial design without replicates was formed.

Variable Description
x55 immobility of limbs (0 = no, 1 = yes)
x56 fluids (0 = no, 1 = yes)
x64 Radiograph E.R. (0 = no, 1 = yes)
x72 surgical intervention (0 = no, 1 = yes)

Table 7: Description of variables for a 24 experiment.

This experiment helped us to confirm the effectiveness of our method to
identify the significant factors in real life problems. This case study is of particular
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interest since one can identify the most significant variables and their interactions
with respect to a certain effect (survival or death). The main purpose of the
present real case study is to validate the practical use of our approach and to
give some insights into how the proposed screening procedure contributes in real
life scenarios. First of all, we present the analysis of the real data in the presence
of four factors. Table 7 gives a description of the variables used in our study.
Table 8 presents the merits of this experiment. We denote variable x55 as factor
A, variable x56 as factor B, variable x64 as factor C and x72 as the D factor.
According to this notation we present the second order interactions of variables
x55 and x56 as AB, of variables x55 and x64 as AC and so on. In this way we
acquired the third and fourth order interactions of factors presented in Table
8. As we can conclude, all the applied methods recognize exactly the same
significant variables something that confirms the efficiency of our algorithm to
correctly identify significant factors.

Method A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD
SU • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

CMIM • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •
mRMR • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

Table 8: Significant variables for the real medical dataset using a 24 ex-
periment.

Variable Description
x36 x36: major doctor (0 = no, 1 = yes)
x55 immobility of limbs (0 = no, 1 = yes)
x56 fluids (0 = no, 1 = yes)
x64 Radiograph E.R. (0 = no, 1 = yes)
x72 surgical intervention (0 = no, 1 = yes)

Table 9: Description of variables for a 24 experiment.

The second stage of this real experiment regards to the full factorial un-
replicated design with five factors. Table 9 summarizes the description of the five
variables used for this case study. In the same way as that of the four-factor case,
variable x36 is denoted as factor A, variable x55 as factor B, variable x56 as factor
C, variable x64 as factor D and x72 as the E factor. According to this notation, we
present the second order interactions of variables x36 and x55 as AB, of variables
x36 and x56 as AC and so on. In this way we acquired the third, fourth and
fifth order interactions of the factors presented in Tables 10 and 11. Observing
Tables 10 and 11 there are some interesting results that should be highlighted.
First and foremost, SU seems to identify only the most significant variables and
do not add additional and possibly unnecessary information in the final model.
This fact leads to low levels of Type I error rates something that proved in the
previous section through the simulation study. The aforementioned fact is also
confirmed through the results of the other applied algorithms. We should state
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that all the other methods identify an additional significant factor which is dif-
ferent for each method; for instance, CMIM remarks ACDE as a significant one,
and mRMR factor A. It should be noted that applying mRMR algorithm requires
the number of significant factors as an input. As a consequence we present both:
the first nine (9 sig.) and the first ten significant (10 sig.) factors, respectively.
When nine factors were requested, the results were exactly the same as SU. This
fact confirms that the effects identified by SU algorithm are the most significant
ones.

Method A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD E
SU ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

CMIM ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦
mRMR (9 sig.) ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦
mRMR(10 sig.) • • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

Table 10: Significant variables for real medical dataset using a 25 experi-
ment.

Method AE BE ABE CE ACE BCE ABCE DE ADE BDE ABDE CDE ACDE BCDE ABCDE
SU ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

CMIM ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •
mRMR (9 sig.) ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
mRMR (10 sig.) ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Table 11: Significant variables for real medical dataset using a 25 experi-
ment (continue).

4. CONCLUDING REMARKS

Unreplicated experiments can be conducted in various improvement pro-
cesses due to their economic run size and structure. However, the analysis of
unreplicated designs doesn’t constitute an easy issue since there are no degrees
of freedom to estimate the experimental error. This fact makes the analysis of
variance of such designs infeasible. An additional hindrance is that of dealing
with a non-normal response, fon instance a binary one. In this work, we propose
a method for selecting the active effects in unreplicated designs, assuming a logis-
tic regression model. We take advantage of the simpleness and the effectiveness
of the SU measure so as to introduce a new method for analyzing unreplicated
factorials. The novelty of the proposed method is contained on the usage of infor-
mation gain and symmetrical uncertainty for analyzing unreplicated designs with
a binary response. The simulation study of section 3 shows that the proposed
method tends to declare at the highest rate inactive effects to be active and at
the lowest rate active effects to be inactive. Compared with CMIM and mRMR,
our approach has an almost similar performance concerning Type I error rates;
however, Type II error is notably higher for both CMIM and mRMR leading to an
unstable performance compared to SU. This fact, simultaneously leads to a very
satisfactory power, that is 1-(Type II error rate), of the algorithm, something
that constitutes an extremely characteristic for a screening procedure, such as
the analysis of unreplicated designs. In conclusion, SU achieves a general stable
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performance and yields significantly low Type II errors, while it keeps Type I at
a low level as well. It should be highlighted that there are problems, especially in
real life, where one needs to perform an economic experiment with the smallest
possible error. SU method gave the best average results in case of a real medical
analysis not only by identifying the significant factors but also by keeping low
Type I error rates. The empirical performance of the proposed algorithm reveals
that this new approach constitutes a very efficient way of tackling the problem of
unreplicated factorial designs while it opens new research opportunities for the
application of information-theoretic methods in experimental designs where there
are no degrees of freedom to estimate the experimental error.
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