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1. INTRODUCTION

In 1964, Lukacs and Laha defined the matrix variate gamma (MG) distri-
bution. In multivariate statistical analysis, the MG distribution has been the
subject of considerable interest, study, and applications for many years. For ex-
ample, the Wishart distribution, which is the distribution of the sample variance
covariance matrix when sampling from a multivariate normal distribution, is a
special case of the MG distribution. Applications of the MG distribution have
included: damping modeling (Adhikari [1]); models for stochastic upscaling for
inelastic material behavior from limited experimental data (Das and Ghanem [7],
[8]); models for fusion yield [15]; models for uncertainty quantification (Pascual
and Adhikari [31]); characterizing the distribution of anisotropic micro-structural
environments with diffusion-weighted imaging (Scherrer et al. [32]); models for
magnetic tractography (Chamberland et al. [4]); models for diffusion compart-
ment imaging (Scherrer et al. [33]); models for image classification (Luo et al.
[24]); models for accurate signal reconstruction (Jian et al. [22], Bates et al. [3]).
Two recent applications of the Wishart distribution can be found in Arashi et al.
[2] and Ferreira et al. [13].

However, generalizations of the MG distribution have been neglected and
there is no account on this matter in the literature. The only extension that we
are aware of is the inverted matrix variate gamma distribution due to Iranmanesh
et al. [17]: if X has the MG distribution then X ~! has the inverted matrix vari-
ate gamma distribution. A generalization of the MG distribution must contain
the MG distribution as a particular case. See also Iranmanesh et al. [18] and
references there in for more details.

The goal of this paper is to give the first generalization to the MG distri-
bution, where its kernel includes zonal polynomials (Takemura [34]). The gener-
alization proposed has two shape parameters. One of the shape parameters acts
on the determinant of the data while the other acts on the trace of the data. The
MG distribution has only one shape parameter acting on the determinant of the
data. The proposed generalization can be more flexible for data modeling if: i)
both trace and determinant are significant (that is, the empirical distribution of
the data has significant patterns involving both the trace and determinant); ii)
if trace is significant but determinant is not (that is, the empirical distribution
of the data has significant patterns involving only the trace); iii) if trace is more
significant than determinant is (that is, the empirical distribution of the data has
more significant patterns involving the trace).

For our purpose, we first provide the reader with some preliminary defini-
tions and lemmas. Most of the following definitions and results can be found in
Gupta and Nagar [14], Muirhead [27], and Mathai [26].
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2. Preliminaries

In this section we state certain well known definitions and results. These
results will be used in subsequent sections.

Let A = (a;;) be a p X p matrix. Then, A’ denotes the transpose of A;
tr(A) = ann +- -+ app; (A) =exp (tr(A)); det(A) = determinant of A; norm of
A = ||A|| = maximum of absolute values of eigenvalues of the matrix A; A'/?
denotes a symmetric positive definite square root of A; A > 0 means that A
is symmetric positive definite and 0 < A < I, means that the matrices A and
I, — A are symmetric positive definite. The multivariate gamma function which
is frequently used in multivariate statistical analysis is defined by

rp(a):/x 0(—X)det(X)a—<P+1>/2 dX
>

P .
— WP(P—l)/‘*HF(a ! 5 1)7 Re(a) > p?l (2.1)
i=1

Let Cx(X) be the zonal polynomial of p X p complex symmetric matrix
X corresponding to the ordered partition x = (k1,...,kp) k1 > -+ > k, > 0,
ki+---+kp, =k and ), denotes summation over all partitions s of k. The
generalized hypergeometric coefficient (a), used above is defined by

(@ =TTt~ "5

=1

where (a)r:a(a+1)"‘(a+T—1)7T:1,2,...With (Cl)():l.

Lemma 2.1.  Let Z be a complex symmetric p X p matrix with Re(Z) >
0, and let Y be a symmetric p X p matrix. Then, for Re(a) > (p — 1)/2, we have

/ (—X Z) (det X)* P20 (XY) dX = (a)Tp(a)(det Z)7°C,, (Y Z7).
X>0
(2.2)

Lemma 2.2.  Let Z be a complex symmetric p X p matrix with Re(Z) >
0, and let Y be a symmetric p X p matrix. Then, for Re > (p — 1)/2, we have

/ (—X Z)(det X)*~ P2 [tr(XY)]" dX =Tp(a)(det Z2)™* Y (a)xCx (YZ7').
X >0 K

(2.3)

For Z =Y in (2.3), we get

/ (—XY)(det X)*=0HD/2 [tr(XY)]F dX = Ty(a)(det ¥) 0 3 (0)uCh (I,)
X>0 K

=T'p(a)(ap)r(det Y) ™. (2.4)
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The above result was derived by Khatri [23].

Davis [9, 10] introduced a class of polynomials C’g”\(X ,Y) of p x p sym-
metric matrix arguments X and Y, which are invariant under the transformation
(X,Y) - (HXH' HYH'), H € O(p). For properties and applications of in-
variant polynomials we refer to Davis [9, 10], Chikuse [5] and Nagar and Gupta
[28]. Let k, A, ¢ and p be ordered partitions of non-negative integers k, ¢, f = k+/¢
and r, respectively, into not more than p parts. Then

C" (I, 1)
KyA kA KA ¢ p>=p
(2.5) Cy (X,X)_9¢ Cy(X), 04 _70(15(1,,) ,
2 Cg (Ip) Cr(X) 2 Cg (I) CA(X)

(26) 027/\ (X> Ip) = 927 ’ C(’;’)\ (Ip7 Y) = ‘9;7

Ck (Ip) Cx (Ip) 7

CrOX,Y) = Cu(X), CYNX,Y)=Cr(Y)
and

27) CUX)ONY) = Y 0O X,Y),
PER-A

where ¢ € k- signifies that irreducible representation of Gl(p, R) indexed by 2¢,
occurs in the decomposition of the Kronecker product 2« ® 2X of the irreducible
representations indexed by 2k and 2\. Further,

/ (—CR) det(R)"""*V/2C5* (ARA’, BRB') dR
R>0

=T, (t, ¢)det(C)'C;* (AC™' A, BCT'B') , (2.8)

I
/0 " det(R)!- D2 det (I, — R)"-#+D/? Ci* (R, I,— R) dR

Tyt m)Tp(u, A) k.
ST tud) O (L) 2

and
I
/ " det(R)!- D/ det (I, — )" D)2 C5” (AR, BR) dR
0

o Fp(tv QS)FP(U) Ko\
~ L A, (2.10)

In expressions (2.8), (2.9) and (2.10), I';(a, p) is defined by
(2.11) I'y(a, p) = (a),I'p(a).

Note that I'y(a,0) = I'y(a), which is the multivariate gamma function.
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Let A, B, X and Y be p X p symmetric matrices. Then

Ci (A, B)C3 N (X,Y)
05°Co (I,)

/ C3* (AH'XH,BH'Y H) [dH] = . (2.12)
HEO(p)

where [dH] is the unit invariant Haar measure. The above result is a generaliza-
tion of Davis [10, Eq. 5.4] and is due to Diaz-Garcia [11]. Finally, using (2.9) and
(2.12), it is straightforward to see that

IP
/ det(R)"~tD/2 det (I, — R)"" WV CSY (AR, B (I, - R)) dR
0

~ Tp(t, m)p(u, A) en
= T(tu0) Cy (A, B). (2.13)

Definition 2.1. The n x p random matrix X is said to have a matrix
variate normal distribution with n x p mean matrix M and np X np covariance
matrix Q ® 3, denoted by X ~ N,,(M,Q® X), if its probability density
function (p.d.f) is given by (Gupta and Nagar [14])

(27) /2 det(Q) P/ det(X) V2

1
X exp {—2 Q71X - M)SY(X — M)] } . X eR™P, M e RV,
where X(p x p) > 0 and Q(n x n) > 0.

If X ~ Ny, (M,Q®X), then the characteristic function of X is
¢x(Z) = Elexp (tr (1Z2'X))]

1
= exp [tr<LZ’M — 2Z’QZZ>} ., ZeRYP, ,=+—1.

The present paper has been organized in the following sections. In Sec-
tion 3, a new generalized matrix gamma (GMG) distribution has been defined.
Some important properties of this newly defined distribution are given in Section
4. In Section 5, using the conditioning approach for the matrix variate normal
distribution, a new matrix t type family of distributions is introduced. Some
important statistical characteristics of this family are studied in Section 6. A
Bayesian application is given in Section 7. The paper is concluded in Section 8.

3. Generalized matrix gamma distribution

Recently, Nagar et al. [30] defined a generalized matrix variate gamma
distribution by generalizing the multivariate gamma function. We also refer to
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Nagar et al. [29] for further generalizations. In this paper, by incorporating
an additional factor in the p.d.f, we give a generalization of the matrix variate
gamma distribution (Das and Dey [6], Iranmanesh et al. [17]).

In the following we provide the reader with the definition of the generalized
matrix variate gamma distribution.

Definition 3.1. A random symmetric matrix X of order p is said to
have a generalized matrix gamma (GMG) distribution with parameters «, j, k,
Y and U, denoted by X ~ GMG), (o, B,k, 2, U), if its p.d.f is given by
1
C(a,B,k,2,U) <—62_1X> det(X)= V2 [ty XU)F, X >0, (3.1)
where a > (p—1)/2,8>0,2>0,U >0, k € Ny and C (o, 8, k, 2, U) is the
normalizing constant.

By integrating the p.d.f of X over its support set, the normalizing constant
C (o, B,k,3,U) can be evaluated as

C B,k B0 = /

X>0
= BP Ty () det(E)* ) (@) Cu(UE), (3.2)

K

<—121X> det(X)2~ P2 [tr(XU)* dX

where the last line has been obtained by using (2.3).

The distribution given by the p.d.f (3.1) is a generalization of the matrix
variate gamma distribution (Das and Dey [6], Iranmanesh et al. [17]). For
U = X!, the p.d.f in (3.1) simplifies to

(_Ele/ﬁ) det(X ) (p+1)/2 [tr (EilX)]k
Bortk(ap)Tp(a) det() )

X >0. (3.3)
Further, for U = 0 or k£ = 0 the p.d.f (3.1) reduces to the matrix variate gamma
p.d.f given by

(—-27'X/B) det(X)>~ P12
perlp(a) det(3)” ’

X > 0. (3.4)

By suitably choosing 8 we can derive a number of special cases of (3.3). If we
choose & = n/2 and f = 2, then X has a generalized Wishart distribution with
p-d.f

(=271 X /2) det(X)/2= @D/ [ir (271 X)]F
2P/2HKT (n/2) (np/2), det (X)"/2 ’

X > 0. (3.5)

Note that n is a positive integer, generally considered as the sample size. If we
choose ¥ = I,, B = 2 and p = 1 in (3.3), then the scalar variable X follows
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a chi-square distribution with n + 2k degrees of freedom. Further, if we take
p=1and 8 =1 1in (3.3), then the scalar variable X follows a univariate gamma
distribution with shape parameter o + k and scale parameter ¢. Finally, for
¥ = I, and p = 1, the scalar variable X follows a univariate gamma distribution
with shape parameter o 4+ k and scale parameter .

Definition 3.2. red If X ~ GMG), (o, B,k,%,U) then X! is said to
have an inverted generalized matrix gamma (IGMG) distribution with parameters
a, f, k, 7! and U, denoted by X1 ~ IGMG, (oz,ﬁ, k, 2_1,U).

red In the following theorem, the p.d.f. of the IGMG distribution is derived.

Proposition 3.1. red Let X ~ GMG,(a,3,k,2,U). Then, ¥ =
X1~ IGMG), (a, Bk, Xt U) has the p.d.f given by

(3Bfa, B, k, =71, U) <—;2Y_1> det(Y)~*~+0/2 [tr (Y -'U))*, Y >0,

where a > (p—1)/2, >0, >0,U >0, k € Ny and C(a,ﬁ,k‘,E‘l,U) is the
normalizing constant.

Proof:  The proof follows from the fact that the Jacobian of the trans-
formation Y = X ! is given by J (X — Y) = det(Y)~(+1), O

red By taking U = X, a =n/2 and 8 = 2 in (3.6), the inverted generalized
Wishart p.d.f can be obtained as

(==Y 1/2) det(Y) /202 [t (Y )] "

(3.7) 2nP/2+kT ), (n/2) (np/2) ), det(X)—"/2 ;

Y > 0.

4. Properties of GMG and IGMG distributions

In this section, various properties of the GMG and IGMG distributions are
derived.

Proposition 4.1. Let X ~ GMG) (a,3,k,3,U). Then, the Laplace
transform of X is

S (a)xChe (U (8T + 2—1)‘1)
Zﬁ(a)ncn (Ux) 7

where T' is a complex symmetric matrix of order p with Re(T") > 0.

ox(T) = det (I, + XT)"“ (4.1)
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Proof: By definition, we have
px(T) = Elexp (- tr(TX))]
- Caphz0) |

[—X(T + l2—1) det( X))o~ (P+1)/2
X>0

B
x [tr (XU)F dX

Now, evaluating the above integral by using (3.2) and simplifying the resulting
expression, we get the desired result. ]

Corollary 4.0.1. Let X ~ GMG), («,B,k,%,U). Then the character-
istic function of X is
5 u(@):Cr (UB (I, ~ 18TZ) )
> n(@)sCr(UE) ’

where « = +/—1, T is a symmetric positive definite matrix of order p with
T = ((1 + 045) tij/2) and 0;; is the Kronecker delta.

Yx(T) =det (I, —BET)™* (4.2)

Proposition 4.2. If X ~ GMG, (a,,k,2,U), then for a p x p non-
singular constant matrix A, we have

AX A~ GMG, (a, B,k AX A’ (A7) UA*1> .

Proposition 4.3. Let X ~ GMG,(c,B,k,3,U). Then

Dy(a+h) 3 (a+h).CoUS)
Ppl@) 2 (a)sCu(UE)

E [det(X)h] = det(FX)"

Proof: By definition

E [det(X)h} =C (o, B3,k,X,U) / (—EZ”X) det(X)oth—(p+1)/2
x>0 b

x [tr(XU)F dX
_ C(C)&,B,]{?,E,U)
- Ca+h,B, k2 U)

Now, simplification of the above expression yields the desired result. O

Proposition 4.4. If X ~GMG, (oz,ﬁ, k, 3, 271). Then

L'p(a+ h) (ap + hp)y,
I'y(a) (ap)p

E [det(X)h] — det (82)"
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In order to find the expectation of the trace of a GMG random matrix, it
is useful to find the expectation of zonal polynomials, which is derived below.

Theorem 4.1. Let X ~ GMG,(a,,k,2,U) and B be a constant
symmetric matrix of order p. Then

E[C-(XB)] = C(a, B, k,,U) BT det(2)
X Y 05Ty, ¢)Cy T (US, BY).

K @ERT

Proof: By definition, we have
E[C.(XB)] = C (a,8,k,3,U)
x/ (—12*1X)det(X)a*<P+1>/2 [tr(XU))* C.(XB) dX.
X>0

Now, writing
[tr(XU))* C-(XB) =) Cu(XU)C-(XB)
=Y > 6,7CLT (XU, XB),
K ¢ER-T
where we have used (2.7), and integrating X by using (2.8), we obtain
E[C/(XB)]=C(a,8,k,3,U)> > 057
K ¢ERT
1
X / (—2—1X> det(X)*~WHI/2CET (XU, X B) dX,
X>0
= C(a, B,k, 2, U) det(B2)* Y Y~ 057 Ty(e, ¢)C47 (BUE, BBS) .
K QERT
Now, the result follows from the fact that

C;7 (BUZ, SBE) = Bk”Cg’T (U, BY).

Theorem 4.2. Let Y ~ IGMG,(a,,k,®,U). Then, the Laplace
transform of Y is given by

k

4.3y (T) = C (e, B, k, ¥~ U) det(T)~ [CZ,GBQ (T (871w - 2U)) ,
z=0

where T is a complex symmetric matrix of order p with Re(T') > 0 and By(-) is
the Bessel function of matrix argument (Herz [16]) given by

Bs(W Z) :det(W)_‘s/ det(8)°~PH/2 (87 — §7I1W) dS.  (4.4)
S>0
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Proof:  The Laplace transform of Y, denoted by ¢y (T') can be derived
as

ey (T) = C (o, B, k, ¥, U)
_ Loyt det(y) o w02 [ (vt
X/Y>O( TY)( /B\IIY )dt(Y) e (YU d)(f. |
4.5

Note that, we can write

e (Y10 = [j:k exp [z (VD)) (4.6)

Now, substituting (4.6) in (4.5), we have

SOY(T) =C (Oé, Ba k’ \Il_l) U)

r gk
X ‘Lk (—-TY) [~ (871 - 2U) Y '] det(y) o~ (PH1)/2 dY]
Ldz" Jy >0 2=0
=C (o, 3,k, ¥ U)
[ d* -1 —1 a—(p+1)/2
< | i /Y T (5 -0 Y] de(Y) dY] -
(4.7)
Finally, using (4.4) in (4.7), we get the desired result. O
Proposition 4.5. Let Y ~ IGMG), (o, B,k,®,U). Then
det(®)"T,(a — h) 3, (o — h)Cr (UT ) p—1
E |det(Y)"| = P K . Re(a—h) > ——.
[ t(¥) } BT () Y (@)xC (UL o>

Proof: By definition,
E [det(Y)h} = C (B, k, ¥, U)

></ (—B71 Y ) det(Y) (@M= HD/2 [y (Y‘lU)]k dY
Y >0

Cl(a,8,k, 8 LU —1
_ s _1) . Re(a—h)>2_=.
C’(a—h,ﬁ,k,\I’ ,U) 2
Now, the desired result is obtained by simplifying the above expression. O

Proposition 4.6. LetY ~ IGMG), (o, 3,k, ¥,U) and A be a constant
symmetric matrix of order p. Then AY A" ~ IGMG,, (o, 8, k, AT A', AUA").
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Proof:  The Jacobian of the transformation Z = AY A" is J(Y — Z) =
det(A)~®P*tD_ Substituting appropriately in the p.d.f of Y, we get the desired
result. O

Theorem 4.3. Let the p X p random symmetric matrices X1 and Xo
be independent, X1 ~ GMGy, (o1, 8, k,2,U) and X9 ~ GMG, (a2, 3,1,%,U).
Define R= (X1 + X2) V2 X (X1 + X3) Y% and S = X, + X5. The p.d.f of
S is given by

C (a1, 8.k, = U)C(aQ,ﬁ,z,z U) [— (52)*15} det () +ea—(p+1)/2

F 041 (Oq )\) by
9“ B 2o (SU, SU), S > 0.
X ;;d)ezﬁ)\ 041 + as, ¢) ) ( )

Further, for U = I,, the p.d.f of R is given by

C (a1, Bk, 2, 1,) C (ag, 8,1, 2, I,) det (BX) T2 det(R)*~P+1/2 det (I, — R)*2~ P T1)/2
DN TN 05T, (o0 + a2, 6) C5N (BER, AR (I, — R)), 0<R<I,

K X PEK-A

Proof:  The joint p.d.f of X; and X5 is given by
C(a1,8,k,2,U) C (03, 8,1, ,U) |- (B) " (X1 + X2)
x det (X 1)1~ PHD/2 qet (X 5)22~PHY/2 [4p (X, U)]F [tr (X2U))', X1>0, X2 >0.

Transforming R = (X + X2) Y2 X1 (X1 + X5) Y2 and § = X + X, with
the Jacobian J (X1, X3 — R, S) = det(S)®*t1)/2 in the joint p.d.f of X; and
X, the joint p.d.f of R and S can be derived as

C (a1, B,k B,U) C (a2, 8,1, B,U) = (8%) " 8| deg(§)+or- )2
a1—(p+1)/2 az—(p+1)/2 1/2 1/2 k 1/2 1/2 !
x det(R)™~#+1/2 det (I, — R) [tr (S RS U)} [tr (s (I,—R)S U)} ,
(4.8)

where § > 0 and 0 < R < I,. Now, writing
[tr <51/2Rsl/2U)} * [tr (s, - R) SWUHZ

=33 > optep (sVPUs PR, sV PUSVA (I, - R))
K A PER-A

n (4.8), the joint p.d.f of R and S can be re-written as
C(a1, p,k,2,U)C (a2,5,1,%,U) [— (ﬁ2)71 S} det(s)a1+a27(p+1)/2
X det(R)alf(p+1)/2 det (Ip _ R)Ozz*(erl)/Q

> ; d)Z)\ o5t (812U S 2R, 8VPUSY2 (1, - R)), (4.9)
K ER-
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where § > 0 and 0 < R < I,. Finally, integrating the above expression with
respect to R by using (2.13), we get the p.d.f of §. Further, substituting U = I,
in the above expression and integrating S by using (2.8), we get the p.d.f of
R. O

5.  Family of generalized matrix variate t-distributions

In this section, a new family of matrix variate t distributions is introduced.
This distribution will be useful in Bayesian analysis.

Definition 5.1. The nxp random matrix T is said to have a generalized
matrix variate t distribution (GMT) with parameters M € R"*P, ¥(p x p) > 0,
Qnxn)>0,Upxp) >0,a>{p—-1)/2,8>0, k= (ki,...,kp), k1 >--- >
k, > 0, if its p.d.f is given by

det(Q) /2 det(®) /2T (a + n/2) ( B8 >"p/2

Tp(0) S (a)sC (UTT) 21
5 —(atn/2)
% det <In +5 QYT - M)®~ (T - M)’)

-1
n é _ '0—1 _ nxp
x;<a+2>ﬁC,€<U<\If+2(T MYQ~YT M)) ) T € RVP.
(5.1)
We shall use the notation T' ~ GMT,, ), (o, B, k, M, 2, ¥, U).

For $ =2, a=(m+p—1)/2 and k = 0, the GMT distribution simplifies
to the matrix variate ¢ distribution (Gupta and Nagar [14]). Further, for k = 0,
the GMT simplifies to the generalized matrix variate ¢ distribution defined by
Iranmanesh et al. [19].

Theorem 5.1. Let X|¥ ~ N, ,(0,2® X)and¥ ~ IGMG, (o, 8,k, ¥, U).
Then, X ~ GMT,, (o, B, k, 0,9, ®,U).

Proof: Let g(X|X) be the conditional p.d.f of X given ¥. Further, let
h(X) be the marginal p.d.f of 3. Then, using conditional method, we find the
marginal p.d.f of X as

F(X) = /2 _ OXID(E) dS,

Now, substituting for g(X|X) and h(X) above, we get the marginal p.d.f of X
as

F(X) = (2m) "2 det(Q)P/2C (o, B, k, ¥ 71, U)

></ [—1(‘I’+5X’Q‘1X)E‘1] det(x) (P02 [ (271)] " dx.
ssol B 2
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Further, substituting ¥~! = Z with the Jacobian J(X — Z) = det(Z)~®+) in
the above integral and using (3.2), we get

C (o, B, k, &1, U)
C (a+n/2.8,k (¥ +5X'Q71X/2) ", U)

FX) = (2m) "2 dex(52) 72

Finally, simplifying the above expression, we get

det(Q)P/2 det() 2T (a +n/2) [ B \"/? B o o\t
Tp(a) 3, (a)xCh (UI—Q\I,A) <277> det<In+2§2 Xv X>

1
<3 (a n g) C <U <\If + §X’Q—1X> ) . X € R,

which is the desired result. O

Next, in Corollary 5.1.1, Corollary 5.1.2 and Theorem 5.2, we give three
different variations of the above theorem.

Corollary 5.1.1. LetY|X ~ N,, (0,2 ® Q) and¥ ~ IGMG) (o, B, k, ¥, U).
Then, the marginal p.d.f of Y is given by

det(ﬂ)_p/gdet(lll)—nﬂr (a—l—n/2) ﬂ np/2 B 1 e —(a+n/2)
T (@) @) Cr (U <2w> det(IpU‘I’ Yo Y)

-1
> (a n g) C, (U (\If + gYQ_lY’) ) .Y e RPX™

Proof: TakeY = X’ in Theorem 5.1. O

Corollary 5.1.2. Let X|Q~ N, ,(0,2®X)and Q2 ~ IGMG, (o, 3,k, ¥, U).
Then, the marginal p.d.f of X is

det(2) /2 det(®)P/2T (o + p/2) ( B \"/? B o ol o
T TS ()OO ) <27T> det<1n+2\ll Xy lx

X ZH: (a + g)ﬁ Co(U(T + gxz—lx’)—l), X € R™P,

> —(a+p/2)

Proof:  This result can be obtained from Corollary 5.1.1. O

Theorem 5.2. LetY|Q2 ~ N,, (0,X® Q) and Q2 ~ IGMG,, (o, 5,k, ¥, U).
Then, Y ~ GMT,, (a, 8,k,0,%, ¥, U).
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Proof: Let g(Y|Q2) be the conditional p.d.f of Y given €. Further, let
h(€2) be the marginal p.d.f of ©. Then, using conditional method, we find the
marginal p.d.f of Y as

fy(Y)= /ﬂ>og(Y]Q)h(Q) ds.

Now, substituting for g(Y|2) and h(€2) above, we get the marginal p.d.f of Y as

fy(Y) = (2m) "2 det (%) "/2C (o, .k, ¥, U)
x / {—1 (@ + 5Y’2—1Y> Q_l} det(Q)~ (P02 [ (@ 1U))" an.
Q>0 B 2

Further, substituting Q! = Z with the Jacobian J(Q — Z) = det(Z)~®+V) in
the above integral and using (3.2), we get

C (o, Bk, ¥, U)
C (a +p/2, 8.k, (W + BY'S71Y /2) 7 U) ‘

Jr(Y) = (27) 7"/ det(8) ™

Finally, simplifying the above expression, we get the desired result. O

6. Some properties of the GMT family of distributions

In this section, various properties of the GMT distribution are derived.

Proposition 6.1. LetT ~ GMT, , (a,5,k, M,Q, ¥ U). Let A(nxn)
and B(pxp) be constant nonsingular matrices. Then, ATB ~ GMT, , («,3,k, AMB, AQA', BYB, B

Proof:  Transforming W = ATB, with the Jacobian J(T' — W) =
det(A)"Pdet(B)™ ™, in the p.d.f (5.1) of T', and simplifying the resulting expres-
sion, we get the result. O

Corollary 6.0.1. IfT ~GMT,,(«,B3,k,M,Q, ¥ U), then

Q2TB ~ GMT,, (a, B,k QY2MB, I, B'UB, B’UB) ,

ATO V2 < GMT,, (a, Bk, AMTY2 AQA T, xIrWU\IrI/?)
and

Q21w L GMT,, (a,ﬁ, kL QV2Me2 T, T, \11_1/2U\Il‘1/2> .
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Proposition 6.2. IfT ~ GMT,, (a,,k, M,Q2, ¥, U), then forn > p,
the p.d.fof Z = (T — M) Q™ (T — M) is given by

det () "P/2 det (W) ~"/?T'y(a + n/2) B e e (n—p—1)/2
Lp(n/2)Tp(a) 32, ()eCr (UET) <2> det(Z)™"

xdet<1p+2\Il Z) Z(a+§)ﬁcﬁ U(w+5 . Z>0.

K

(6.1)
Proof:  The p.d.f of Z is given by
det(€2)P/2 det(®) /2T (o + n/2) < B >”p/2 <a . @)
()Y, (a):Ck (U\Il_l) 2 2/ k
B —(a+n/2)
></ det(Ip—l—\P_I(T—M)’Q_l(T—M)>
(T-M)Q Y (T-M)=2Z 2

xC <U('II + g(T -M)Q YT - M))—1> dZ, Z >0.
Now, evaluating the above integral by using Theorem 1.4.10 of Gupta and Nagar

[14], we get the result. O

The following result is a generalization of the work of Dickey [12].

Theorem 6.1. Let X ~ N, , (0,922 ® I,), independent of S ~ GMG, (a, Bk, AL, U).
/
DefineT = X S~ Y24 M, where M is an nxp constant matrix and S*/? <Sl/2> =
S. Then, the p.d.f of T is given by

det(2)P/2 det(A) /2T (a + n/2) < B >”P/2
Ip(a) Y, (@)Ch (UA_l) 2r

3 —(a+n/2)
x det (Ip - 5A—l(:r - MYQ YT - M))

X Z (a + g) C, (U(A + g(T ~M)YQ YT - M))—1> , T e R™P,

Proof:  The joint p.d.f of X and S is given by
(2m) P12 det () 7P/ det(A)™
Brotkly(a) 3, (@) Cr (UATY)

1 1
X exp [—tr (BAS 1 2X/Q_1X>] . §>0, X eRmMP,

Now, let T = XS~Y/2 + M. The Jacobian of this transformation is J(X —
T) = det(S)"/2. Substituting for X in terms of T in the joint p.d.f of X and S,

det(8)*~P+D/2 [gr(ST) P




Generalized matrix t distribution based on new matrix gamma distribution 17

and multiplying the resulting expression by J(X — T'), we get the joint p.d.f of
T and S as

(270)7"P/2 det(2) 7P/2 det(A)™
Brathly (@) 3o, (@)C (UATY)

x[—1<A+5(T—M)’Q1(T—M)>S], S>0, TecR"P,

det(s)a+n/27(p+1)/2 [tr(SU)]k

I3 2
Now, integrating out S by using (3.2) and simplifying the resulting expression
the p.d.f of T is obtained. O

Theorem 6.2. Let X ~ N, , (0,1, ® X), independent of S ~ GMG,, (a, Bk, AL U).
!/
Define T = (871/2) X + M, where M is an n X p constant matrix and

/
S1/2 (51/2) = S. Then, the p.d.f of T is

det(S) /2 det(A)/*T' (0 + p/2) (5>W
Lu(@) Do (@)nCr (AT \2r

3 —(a+p/2)
x det <In + 5/\—1(:r - M) T — M)’)

P p _ _ n
xz<a+2)HCﬁ(U(A+2(T—M)Z LT — M) 1), T € RV,
Proof:  The joint p.d.f of X and S is given by

(2m)~"P/2 det(3) /2 det(A)*
Bretkl, (@) 3, ()Cr (UATY)

1 1
Xexp[tr<ﬁAS+2X2}_1X'>], S>0, X eR"™P,

det(8)* /2 [tr(SU)*

/
Now, let T' = <S_1/2) X + M. The Jacobian of the transformation is J(X —

T) = det(S)P/2. Substituting for X in terms of T in the joint p.d.f of X and S,
and multiplying the resulting expression by J(X — T'), we get the joint p.d.f of
T and S as

(2m)~"P/2 det ()2 det(A)*
BrathTy, (a) 3, (a)xCr (UATY)

x [— <;A + %(T - M)ZNT - M)’> S] , §>0, X RV

Now, integrating out S by using (3.2) and simplifying the resulting expression,
the p.d.f of T is obtained. O

det(s)a+p/2—(n+l)/2 [tr(SU)]k
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7. Applications in Bayesian analysis

As in Iranmanesh et al. [17], consider the Kullback-Leibler divergence loss

(KLDL) function log ( EA||1[7)§

m(A|D)
,A)=F]|l — .
)= s (S5 )|
One may use the inverted generalized matrix gamma distribution as a prior dis-

tribution in Bayesian context. It is straightforward to prove that posterior dis-
tributions are IGMG. They are stated in Propositions 7.1 and 7.2 without proof.

) with the posterior expected loss function

Proposition 7.1. Let X|¥ ~ N, ,(0,Q® X). Further suppose that
the prior distribution of 3 is IGMG with parameters (o, 5,k, ¥,U). Then, the
posterior distribution of ¥ is IGMG with parameters

(a +n/2,8,k, (¥ + BX’Q_lX/2)_1 ,U). That is, the posterior p.d.f of ¥ is

(| X)=C (a + ﬁ,,@, k, (¥ + §X’Q*1X)*1, U)

Lo B
<[5
< [r(=7'U)]*, = >o.

X O 1X> 1:| det(z)fa*(n+p+1)/2

Proposition 7.2. Let X|¥ ~ N, ,(0,Q2® X). Further suppose that
the prior distribution of 2 is IGMG with parameters («, 5, k, ¥,U). Then, the
posterior distribution of € is IGMG with parameters

(a +p/2,8,k, (¥ + ﬂXE_lX’/Q)_1 , U). That is, the posterior p.d.f of § is

(X)) =C (a 5Bk (T gxzﬂx')*l, U)

1 B
<[5+
x [ir(Q7'T)]", a@>o.

Zxe- 1X ) —l:| det(ﬂ)_a_(n+p+1)/2

By definition, the Bayes estimator of 3, under the KLDL function, is given
by ¥ =x 7(X|X). Iranmanesh et al. [19] have shown that

S=[la+n/2+@+1)/2" <;X’Q_1X + ;@)

for the special case k = 0.
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8. Conclusion

In this paper, a generalized matrix variate gamma distribution has been
introduced. The corresponding inverted matrix variate gamma distribution has
also been derived. By making use of this newly defined matrix variate distribution
as the prior for the characteristic matrix of a matrix variate normal distribution,
using conditioning approach, a family of generalized matrix variate ¢ distributions
has also been defined.

A future work is to consider estimation of the newly introduced matrix vari-
ate distributions. One issue is that the new distributions are over parameterized;
that is, there is parameter redundancy. This can be accounted for numerically by
constrained maximization of the log likelihood. For example, if the data follow the
overparameterized p.d.f. abexp(—abz) then the log likelihood can be maximized
using the constraint ab = c. Usually, partial derivatives of the log likelihood are
not required for evaluating maximum likelihood estimates numerically.
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