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1. Introduction

Let X and Y be two random variables taking values on the entire real
line (for example, stock returns for two different commodities). Their magnitude
correlation is defined as the correlation between | X | and | Y |, i.e., the correlation
between the absolute values of X and Y . Its derivation clearly requires the use
of folded bivariate distributions.

The concept of magnitude correlation arises in many areas of the sciences,
engineering and medicine. One prominent area is stock modeling. Let X denote
the stock return for one commodity and Y the stock return for another commod-
ity. It is of interest to know if large values of X in magnitude are associated
with large values of Y in magnitude, if large values of X in magnitude are asso-
ciated with small values of Y in magnitude, if small values of X in magnitude
are associated with large values of Y in magnitude, or if small values of X in
magnitude are associated with small values of Y in magnitude. The magnitude
correlation of stock returns has been studied by many authors. Some recent ex-
amples are: Firth [22] observes that the “correlation between the magnitudes of
the changes in dividends and changes in future earnings (over the next two years)
is highly significant and positive”; While modeling volatility of Dhaka stock ex-
change, Islam et al. [32] observe that the “correlations between the magnitudes
of returns on nearby days are positive and statistically significant”; While inves-
tigating the overnight effect on the Taiwan stock market, Tsai et al. [49] examine
the “cross correlation between the magnitude of daytime (trading hour) returns,
overnight (off-hour session) returns, and total (close-to-close) returns”; Tsai et
al. [49] observe “a larger magnitude of overnight return implies a higher prob-
ability that the sign of the following daytime return is the opposite of the sign
of overnight return”; Chabakauri [11] finds “a positive relationship between the
amount of leverage in the economy and magnitudes of stock return correlations
and volatilities”; Fukuda and Tanaka [23] show that “during the global financial
crisis the magnitude correlation between TIBOR and LIBOR reversed depend-
ing on whether they were in yen or dollars”; Bhamra et al. [6] show that the
magnitude of asset return correlation depends on “three structural parameters:
the degree of market integration, the level of fundamental correlation and the
rate of time preference”; While investigating equity market reactions to Credit-
Watch events, Gu et al. [25] find evidence of a “positive correlation between the
magnitude of the cumulative abnormal returns prior to the listing day and the
magnitude of the rating changes announced on the delisting day”; Hamalainen
[28] says “Correlation between the magnitudes of asset returns is an overlooked
concept in financial research. It affects portfolio variance explicitly when the
directions of returns are predictable”. See also Kutergin and Filimonov [39].

Magnitude correlation is one area requiring the use of folded bivariate and
folded multivariate distributions. Other areas include: approximations to the
mean and variance of the index of dissimilarity in contingency tables (Inman and
Bradley [31], Mulekar et al. [41]); noise sensitivity of a new singularity index
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(Muralidhar et al. [42]); distribution and estimation of trading costs (Kourtis
[38]); the joint distribution of indemnity payment and allocated loss adjustment
expense for general liability claims (Guillou et al. [26]).

In all of these applications and others, only the folded bivariate/multivariate
normal distribution appears to have been used. We are not aware of applications
of any other folded bivariate/multivariate distribution. The normal distribution
does not give good fits to many types of data including heavy tailed data (for
example, stock returns). Hence, there is a need for folded bivariate/multivariate
distributions for non-normal data.

Psarakis and Panaretos [45] were the first to introduce the folded bivari-
ate normal distribution and study its statistical properties. They derived its
marginal distributions and joint moment generating function. Chakraborty and
Chatterjee [12] gave a multivariate form of the folded normal distribution and
derived expressions for its mean vector, covariance matrix and joint moment gen-
erating function. They also discussed possible areas of applications of the folded
multivariate normal distribution.

We are aware of only one folded bivariate distribution for non-normal data,
the folded bivariate t distribution. We are aware of no folded multivariate distri-
butions for non-normal data. The folded bivariate t distribution was also intro-
duced by Psarakis and Panaretos [45]. They derived its marginal distributions
and established its relationship to the folded bivariate normal distribution.

Neither of the papers (Psarakis and Panaretos [45] or Chakraborty and
Chatterjee [12]) discussed real data applications or even simulation studies. The
aim of this paper is to: i) introduce six new folded bivariate distributions; ii)
illustrate real data applications of all of the folded bivariate distributions.

The six new folded bivariate distributions are based on the: bivariate skew
normal distribution due to Azzalini and Dalla Valle [4]; bivariate skew t distri-
bution due to Azzalini and Capitanio [3]; bivariate logistic distribution due to
Gumbel [27]; bivariate Kotz type distribution due to Kotz [36]; bivariate Laplace
distribution of the first kind due to Eltoft et al. [19]; bivariate Laplace distri-
bution of the second kind due to Ernst [20]. We have chosen these distributions
because they are some of the most tractable and applied bivariate distributions
for non-normal data, see Balakrishnan and Lai [5] and references therein.

For each of the new distributions and for the two known ones, we give
expressions for the joint probability density function. Expressions for the joint
cumulative distribution function, joint moment generating function and the log-
likelihood function can be obtained from the corresponding author. As a by
product of the six new distributions, we also introduce two new univariate distri-
butions: the folded univariate skew normal distribution and the folded univariate
skew t distribution.

Our real data application involves forty five bivariate data sets on log re-
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turns of stocks. We show that: i) the folded bivariate t and folded bivariate skew t
distributions provide the best fits for the majority of the data sets; ii) each of the
folded distributions outperforms the corresponding truncated unfolded version
for each of the forty five data sets. The latter observation is a further advocate
for the need for folded bivariate distributions.

The expressions in Section 2 involve standard normal cumulative distribu-
tion function defined by

Φ(x) =
1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt

and the modified Bessel function of the second kind (Abramowitz and Stegun [1])
defined by

Kν(x) =


πcsc(πν)

2
[I−ν(x)− Iν(x)] , if ν 6∈ Z,

lim
µ→ν

Kµ(x), if ν ∈ Z,

where Iν(·) denotes the modified Bessel function of the first kind of order ν defined
by

Iν(x) =
∞∑
k=0

1

Γ(k + ν + 1)k!

(x
2

)2k+ν
.

2. New folded bivariate distributions

Let (X,Y ) denote a random vector on (−∞,∞) × (−∞,∞) with joint
probability density function fX,Y (x, y) and joint cumulative distribution function
FX,Y (x, y). Set (U, V ) = (|X|, |Y |). Then the joint probability density function
of (U, V ) is

fU,V (u, v) = fX,Y (u, v) + fX,Y (u,−v) + fX,Y (−u, v) + fX,Y (−u,−v).(2.1)

The distribution given by fU,V (u, v) is said to be the folded version of the distri-
bution given by fX,Y (x, y).

Let fX , fY denote the marginal probability density functions of (X,Y ).
Let fU , fV denote the marginal probability density functions of (U, V ). It follows
from (2.1) that fU (u) = fX(u) + fX(−u) and fV (v) = fY (v) + fY (−v).
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2.1. Folded bivariate normal distribution

The bivariate normal distribution due to the work of Laplace, Plana, Gauss
and Bravais is given by the joint probability density function

fX,Y (x, y) =
1

2πs1s2
√

1− ρ2
exp

[
− Q(x, y)

2 (1− ρ2)

]
for −∞ < x <∞ and −∞ < y <∞, where

Q(x, y) =

(
x− µ1
s1

)2

+

(
y − µ2
s2

)2

− 2ρ

(
x− µ1
s1

)(
y − µ2
s2

)
(2.2)

for −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0, s2 > 0 and −1 < ρ < 1. The
corresponding folded version has the joint probability density function

fU,V (u, v) =
1

2πs1s2
√

1− ρ2

{
exp

[
− Q(u, v)

2 (1− ρ2)

]
+ exp

[
− Q(u,−v)

2 (1− ρ2)

]

+ exp

[
− Q(−u, v)

2 (1− ρ2)

]
+ exp

[
− Q(−u,−v)

2 (1− ρ2)

]}
.

The marginals of the folded bivariate normal distribution are the folded univariate
normal distributions due to Leone et al. [40].

2.2. Folded bivariate t distribution

The bivariate t distribution is given by the joint probability density function

fX,Y (x, y) =
Γ (1 + ν/2)

νπΓ (ν/2) s1s2
√

1− ρ2

[
1 +

Q(x, y)

ν (1− ρ2)

]−1−ν/2
for −∞ < x <∞, −∞ < y <∞, −∞ < µ1 <∞, −∞ < µ2 <∞, s1 > 0, s2 > 0,
ν > 0 and −1 < ρ < 1, where Q is given by (2.2). The corresponding folded
version has the joint probability density function

fU,V (u, v) =
Γ (1 + ν/2)

νπΓ (ν/2) s1s2
√

1− ρ2

{[
1 +

Q(u, v)

ν (1− ρ2)

]−1−ν/2

+

[
1 +

Q(u,−v)

ν (1− ρ2)

]−1−ν/2
+

[
1 +

Q(−u, v)

ν (1− ρ2)

]−1−ν/2

+

[
1 +

Q(−u,−v)

ν (1− ρ2)

]−1−ν/2}
(2.3)
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for u > 0, v > 0, −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0, s2 > 0, ν > 0
and −1 < ρ < 1. The particular case for ν = 1 is the folded bivariate Cauchy
distribution, another new folded bivariate distribution. The marginals of the
folded bivariate t distribution are the folded univariate t distributions due to
Psarakis and Panaretos [44].

2.3. Folded bivariate skew normal distribution

The bivariate skew normal distribution due to Azzalini and Dalla Valle [4]
has the joint probability density function specified by

fX,Y (x, y) =
1

πs1s2
√

1− ρ2
exp

[
− Q(x, y)

2 (1− ρ2)

]
Φ (α1x+ α2y)

for −∞ < x <∞, −∞ < y <∞, −∞ < µ1 <∞, −∞ < µ2 <∞, s1 > 0, s2 > 0,
−∞ < α1 <∞, −∞ < α2 <∞ and −1 < ρ < 1, where Q is given by (2.2). The
corresponding folded version has the joint probability density function

fU,V (u, v) =
1

πs1s2
√

1− ρ2

{
exp

[
− Q(u, v)

2 (1− ρ2)

]
Φ (α1u+ α2v)

+ exp

[
− Q(u,−v)

2 (1− ρ2)

]
Φ (α1u− α2v)

+ exp

[
− Q(−u, v)

2 (1− ρ2)

]
Φ (−α1u+ α2v)

+ exp

[
− Q(−u,−v)

2 (1− ρ2)

]
Φ (−α1u− α2v)

}

for u > 0, v > 0, −∞ < µ1 <∞, −∞ < µ2 <∞, s1 > 0, s2 > 0, −∞ < α1 <∞,
−∞ < α2 < ∞ and −1 < ρ < 1. The marginals of the folded bivariate skew
normal distribution are the folded univariate skew normal distributions, which
appear to be new.

2.4. Folded bivariate skew t distribution

The bivariate skew t distribution due to Azzalini and Capitanio [3] has the
joint probability density function specified by

fX,Y (x, y) =
2Γ (1 + ν/2)

νπΓ (ν/2) s1s2
√

1− ρ2

[
1 +

Q(x, y)

ν (1− ρ2)

]−1−ν/2
R(x, y)
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for −∞ < x <∞ and −∞ < y <∞, where Q is given by (2.2) and

R(x, y) = G

((
α1 (x− µ1)√

s11
+
α2 (y − µ2)√

s22

)√
ν + 2

Q(x, y) + 2
; ν + 2

)
,

where −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0, s2 > 0, −∞ < α1 < ∞,
−∞ < α2 < ∞, ν > 0, −1 < ρ < 1, and G(·; ν) denotes the cumulative distri-
bution function of a Student’s t random variable with ν degrees of freedom. The
corresponding folded version has the joint probability density function

fU,V (u, v) =
2Γ (1 + ν/2)

νπΓ (ν/2) s1s2
√

1− ρ2

{[
1 +

Q(u, v)

ν (1− ρ2)

]−1−ν/2
R(u, v)

+

[
1 +

Q(u,−v)

ν (1− ρ2)

]−1−ν/2
R(u,−v)

+

[
1 +

Q(−u, v)

ν (1− ρ2)

]−1−ν/2
R(−u, v)

+

[
1 +

Q(−u,−v)

ν (1− ρ2)

]−1−ν/2
R(−u,−v)

}
for u > 0, v > 0, −∞ < µ1 <∞, −∞ < µ2 <∞, s1 > 0, s2 > 0, −∞ < α1 <∞,
−∞ < α2 < ∞, ν > 0 and −1 < ρ < 1. The marginals of the folded bivariate
skew t distribution are the folded univariate skew t distributions which appear
to be new too. The G term does admit closed form expressions if ν is an integer,
see Jamalizadeh et al. [33].

2.5. Folded bivariate logistic distribution

The bivariate logistic distribution due to Gumbel [27] has the joint proba-
bility density function specified by

fX,Y (x, y) =
2 exp [− (x− µ1) /s1 − (y − µ2) /s2]

s1s2 {1 + exp [− (x− µ1) /s1] + exp [− (y − µ2) /s2]}3

for −∞ < x < ∞, −∞ < y < ∞, −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0,
and s2 > 0. The corresponding folded version has the joint probability density
function

fU,V (u, v) =
2

s1s2

{
exp [− (u− µ1) /s1 − (v − µ2) /s2]

{1 + exp [− (u− µ1) /s1] + exp [− (v − µ2) /s2]}3

+
exp [− (u− µ1) /s1 + (v + µ2) /s2]

{1 + exp [− (u− µ1) /s1] + exp [(v + µ2) /s2]}3

+
exp [(u+ µ1) /s1 − (v − µ2) /s2]

{1 + exp [(u+ µ1) /s1] + exp [− (v − µ2) /s2]}3

+
exp [(u+ µ1) /s1 + (v + µ2) /s2]

{1 + exp [(u+ µ1) /s1] + exp [(v + µ2) /s2]}3

}
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for u > 0, v > 0, −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0, and s2 > 0. The
marginals of the folded bivariate logistic distribution are the folded univariate
logistic distributions due to Cooray et al. [13].

2.6. Folded bivariate Kotz type distribution

The bivariate Kotz type distribution is given by the joint probability density
function

fX,Y (x, y) =
srN/s

(
1− ρ2

)1/2−N

s1s2πΓ (N/s)
[Q(x, y)]

N−1
exp

{
− r

(1− ρ2)
s [Q(x, y)]

s

}
(2.4)

for −∞ < x < ∞, −∞ < y < ∞, −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0,
s2 > 0, N > 0, r > 0, s > 0 and −1 < ρ < 1, where Q is given by (2.2).
When s = 1, this is the original Kotz distribution introduced in Kotz [36]. When
N = 1, s = 1 and r = 1/2, (2.4) reduces to the bivariate normal probability
density function. When N = 1, s = 1/2 and r = 1, (2.4) reduces to the joint
probability density function of the bivariate Laplace distribution of the second
kind. The folded bivariate Kotz type distribution corresponding to (2.4) has the
joint probability density function

fU,V (u, v) =
srN/s

(
1− ρ2

)1/2−N
s1s2πΓ (N/s)

[
[Q(u, v)]N−1 exp

{
− r

(1− ρ2)s
[Q(u, v)]s

}
+ [Q(u,−v)]N−1 exp

{
− r

(1− ρ2)s
[Q(u,−v)]s

}
+ [Q(−u, v)]N−1 exp

{
− r

(1− ρ2)s
[Q(−u, v)]s

}
+ [Q(−u,−v)]N−1 exp

{
− r

(1− ρ2)s
[Q(−u,−v)]s

}]

for u > 0, v > 0, −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0, s2 > 0, N > 0,
r > 0, s > 0 and −1 < ρ < 1. The marginals of the folded bivariate Kotz
type distribution are the folded univariate exponential power distributions due
to Nadarajah and Bakar [43].

2.7. Folded bivariate Laplace distribution of the first kind

The bivariate Laplace distribution of the first kind due to Eltoft et al. [19]
has the joint probability density function specified by

fX,Y (x, y) =
1

πr
K0

(√
2

r

√
Q(x, y)

)
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for −∞ < x <∞, −∞ < y <∞, −∞ < µ1 <∞, −∞ < µ2 <∞, s1 > 0, s2 > 0,
r > 0 and −1 < ρ < 1, where Q is given by (2.2). The corresponding folded
version has the joint probability density function

fU,V (u, v) =
1

πr

[
K0

(√
2

r

√
Q(u, v)

)
+K0

(√
2

r

√
Q(u,−v)

)

+K0

(√
2

r

√
Q(−u, v)

)
+K0

(√
2

r

√
Q(−u,−v)

)]
for u > 0, v > 0, −∞ < µ1 < ∞, −∞ < µ2 < ∞, s1 > 0, s2 > 0, r > 0
and −1 < ρ < 1. The marginals of the folded bivariate Laplace distribution of
the first kind are the folded univariate Laplace distributions, special cases of the
folded exponential power distribution due to Nadarajah and Bakar [43].

2.8. Folded bivariate Laplace distribution of the second kind

The folded bivariate Laplace distribution of the second kind is the partic-
ular case of the folded bivariate Kotz type distribution for N = 1, s = 1/2 and
r = 1. So, the corresponding joint probability density function follows from the
expression given in Section 2.6. The marginals of the folded bivariate Laplace
distribution of the second kind are also the folded univariate Laplace distribu-
tions.

3. Application

In this section, we study the magnitude correlation for daily log returns
of stock values from the 3rd of January 2000 to the 28th of February 2014 for
the ten countries: the United States of America (S & P 500), Canada (S & P
TSX), the United Kingdom (FTSE 100), Germany (DAX), China (SSE), Japan
(Nikki), Brazil (BOVESPA), Argentina (MERVAL), South Africa (FTSE/JSE)
and Nigeria (S & P). The data were obtained from the database Datastream.

The distributions in Section 2 assume that the data on each country are
independent and identically distributed (i.e., randomness), have no serial corre-
lation, and have no heteroskedasticity. We tested for randomness using Cox and
Stuart [15]’s test, the rank test and the turning point test. We tested for no serial
correlation using Durbin and Watson [16, 17, 18]’s method and the method due to
Godfrey [24] and Breusch [8]. We tested for no heteroskedasticity using Breusch
and Pagan [9]’s test. The corresponding p-values not reported here showed no
evidence are randomness, no serial correlation or no heteroskedasticity.

The magnitude correlation between returns for any two countries can be
studied by: i) fitting a folded bivariate distribution to positive log returns from
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the countries (that is, considering only those days where the log returns are pos-
itive for both countries); ii) fitting a truncated unfolded bivariate distribution
(truncation made to the positive quadrant) to positive log returns from the coun-
tries. We have data for ten countries, so forty five pairs of bivariate data.

Section 2 describes eight folded bivariate distributions. Each of these has a
corresponding truncated unfolded version. These sixteen distributions were fitted
to positive log returns from: USA / CAD, USA / UK, USA / GER, USA / CHI,
USA / JPN, USA / BRA, USA / ARG, USA / SA, USA / NG, CAD / UK,
CAD / GER, CAD / CHI, CAD / JPN, CAD / BRA, CAD / ARG, CAD / SA,
CAD / NG, UK / GER, UK / CHI, UK / JPN, UK / BRA, UK / ARG, UK /
SA, UK / NG, GER / CHI, GER / JPN, GER / BRA, GER / ARG, GER / SA,
GER / NG, CHI / JPN, CHI / BRA, CHI / ARG, CHI / SA, CHI / NG, JPN
/ BRA, JPN / ARG, JPN / SA, JPN / NG, BRA / ARG, BRA / SA, BRA /
NG, ARG / SA, ARG / NG and SA / NG. The method of maximum likelihood
was used. The maximization of the log-likelihood functions was performed using
the routine optim in the R software package (R Development Core Team [46]).

The folded and the corresponding truncated unfolded distributions have the
same number of parameters. So, criteria like the Akaike information criterion and
the Bayesian information criterion reduce to comparing log-likelihood values. In
other words, the one giving the larger log-likelihood value can be regarded as the
better model. Boxplots of the differences between the log-likelihood values for the
forty five pairs are shown in Figure 1. We see that the differences are huge. They
range from: 575.7203 to 865.9098 when the truncated bivariate normal and folded
bivariate normal distributions are compared; 436.8568 to 744.1456 when the trun-
cated bivariate t and folded bivariate t distributions are compared; 380.7097 to
865.9098 when the truncated bivariate skew normal and folded bivariate skew
normal distributions are compared; 180.1524 to 299.9072 when the truncated bi-
variate skew t and folded bivariate skew t distributions are compared; 1275.391
to 2159.847 when the truncated bivariate logistic and folded bivariate logistic
distributions are compared; 1243.677 to 2298.231 when the truncated bivariate
Laplace and folded bivariate Laplace distributions of the first kind are compared;
401.2748 to 644.6660 when the truncated bivariate Kotz type and folded bivariate
Kotz type distributions are compared; 4229.656 to 7849.704 when the truncated
bivariate Laplace and folded bivariate Laplace distributions of the second kind
are compared. This is compelling evidence that the folded distributions are much
better models.
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Figure 1: Boxplots of the differences between the log-likelihood values un-
der the folded and truncated unfolded distributions for the forty
five pairs.

The fit of the eight folded distributions were compared in terms of log-
likelihood values as well as the Akaike information criterion due to Akaike [2],
the Bayesian information criterion due to Schwarz [47], the consistent Akaike
information criterion (CAIC) due to Bozdogan [7], the corrected Akaike informa-
tion criterion (AICc) due to Hurvich and Tsai [30], the Hannan-Quinn criterion
due to Hannan and Quinn [29] and p-values of the chisquared goodness of fit
statistic.

The log-returns for each country exhibit heavy tails, presence of heavy
tails was tested using the methods in Koning and Peng [35]. The p-values not
reported here showed no evidence against heavy tails for each country. Hence,
the log-returns for each pair of countries should be expected to exhibit heavy
tails too. Of the eight distributions in Section 2, only the folded bivariate t and
folded bivariate skew t distributions exhibit heavy tails.

For the following pairs (USA, CAD), (USA, ARG), (USA, SA), (USA, NG),
(CAD, UK), (CAD, GER), (CAD, CHI), (CAD, JPN), (UK, GER), (UK, BRA),
(UK, ARG), (GER, CHI), (GER, ARG), (CHI, JPN), (CHI, SA), (CHI, NG),
(JPN, BRA), (JPN, ARG), (JPN, SA), (BRA, NG), (ARG, SA) and (SA, NG),
the folded bivariate t distribution gave the best fit. The bivariate t distribution
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is heavy tailed but is also symmetric. The tests for bivariate symmetry (Snijders
[48]) of the log-returns for these pairs showed no evidence against symmetry,
see Table 3. This explains why the bivariate skew t distribution, a heavy tailed
distribution accommodating for asymmetry, did not provide better fits for these
pairs. None of the other distributions gave a significant p-value at the five percent
significance level for each of these pairs.

For the following pairs (USA, UK), (USA, GER), (USA, CHI), (USA, JPN),
(USA, BRA), (CAD, BRA), (CAD, ARG), (CAD, NG), (UK, SA), (GER, JPN),
(GER, BRA), (GER, SA), (GER, NG), (CHI, ARG), (JPN, NG), (BRA, ARG),
(BRA, SA) and (ARG, NG), the folded bivariate skew t distribution gave the best
fit. The tests for bivariate symmetry of the log-returns for these pairs showed
evidence against symmetry, see Table 3. This explains why the bivariate t dis-
tribution, a heavy tailed but symmetric distribution, did not provide better fits
for these pairs. Again none of the other distributions gave a significant p-value
at the five percent significance level for each of these pairs.

For the five remaining pairs of countries neither of the two heavy tailed
distributions gave the best fit. For the pairs (CAD, SA), (UK, CHI), (UK, JPN)
and (CHI, BRA), the folded bivariate Laplace distribution of the first kind gave
the best fit. For the pair (UK, NG), the folded bivariate Kotz type distribution
gave the best fit. The bivariate Laplace and Kotz type distributions are light
tailed and are symmetric. We have not been to explain why these pairs were
not best fitted by a heavy tailed distribution. However, the folded bivariate t
distribution gave the second smallest values for AIC, BIC, CAIC, AICc, HQC
and the second largest p-value for each of these pairs. Furthermore, the tests for
bivariate symmetry for these pairs did not show evidence against symmetry, see
Table 3.

Because of space concerns and to avoid repetitive discussion, we give details
for only one of the forty five pairs, (USA, CAD). Table 1 gives the parameter
estimates and standard errors for the fit of the eight folded distributions. Table
2 gives the log-likelihood values, AIC values, BIC values, CAIC values, AICc
values, HQC values and p-values of the chisquared goodness of fit statistic for the
fit of the eight folded distributions. We see that the folded bivariate t distribution
gives the smallest values for AIC, BIC, CAIC, AICc and HQC and the largest
p-value. The folded bivariate skew t distribution gives the second smallest values
for AIC, BIC, CAIC, AICc and HQC. Contours of the joint probability density
function of the best fitting distribution are shown in Figure 2. Also shown in this
figure are the actual data values. The fit appears reasonable.
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Model Parameter estimates (ses)

folded biv norm µ̂1 = 2.598× 10−5
(
1.102× 10−2

)
, µ̂2 = 1.215× 10−4

(
6.726× 10−3

)
,

ŝ1 = 1.374× 10−2
(
2.724× 10−4

)
, ŝ2 = 1.410× 10−2

(
2.844× 10−4

)
,

ρ̂ = 7.102× 10−1
(
1.630× 10−2

)
folded biv t µ̂1 = 2.112× 10−3

(
1.037× 10−3

)
, µ̂2 = 5.417× 10−3

(
6.712× 10−4

)
,

ŝ1 = 8.997× 10−3
(
4.028× 10−4

)
, ŝ2 = 8.852× 10−3

(
5.069× 10−4

)
,

ρ̂ = 6.842× 10−1
(
3.804× 10−2

)
, ν̂ = 3.589

(
3.350× 10−1

)
folded biv skew norm µ̂1 = 2.599× 10−5

(
1.437× 10−2

)
, µ̂2 = 1.215× 10−4

(
2.831× 10−3

)
,

ŝ1 = 1.374× 10−2
(
2.724× 10−4

)
, ŝ2 = 1.410× 10−2

(
3.447× 10−4

)
,

ρ̂ = 7.102× 10−1
(
1.989× 10−2

)
, α̂1 = 1.789× 10−11 (3.257),

α̂2 = −1.953× 10−12
(
1.823× 10−1

)
folded biv skew t µ̂1 = 2.112× 10−3

(
1.354× 10−3

)
, µ̂2 = 5.417× 10−3

(
8.358× 10−4

)
,

ŝ1 = 8.997× 10−3
(
3.266× 10−4

)
, ŝ2 = 8.852× 10−3

(
2.341× 10−4

)
,

ρ̂ = 6.842× 10−1
(
3.144× 10−2

)
, α̂1 = 0.000

(
6.279× 10−1

)
,

α̂2 = 0.000
(
6.301× 10−1

)
, ν̂ = 3.589

(
3.283× 10−1

)
folded biv logis µ̂1 = −3.405× 10−3 (2.427), µ̂2 = 2.300× 10−3 (2.863),

ŝ1 = 60.4 (4962.5), ŝ2 = 72.3 (6761.5)

folded biv Lap 1 µ̂1 = 13.4 (8.4), µ̂2 = −13.0 (2.3),
ŝ1 = 30.8 (55.1), ŝ2 = 34.7 (77.3),
ρ̂ = 9.999× 10−1

(
3.204× 10−2

)
, r̂ = 3.870× 10−3

(
3.202× 10−6

)
folded biv Kotz µ̂1 = 4.678× 10−3

(
4.393× 10−3

)
, µ̂2 = 6.530× 10−3

(
8.504× 10−3

)
,

ŝ1 = 9.928× 10−3
(
2.001× 10−2

)
, ŝ2 = 9.500× 10−3

(
1.003× 10−3

)
,

ρ̂ = 5.823× 10−1
(
5.332× 10−2

)
, r̂ = 200.3 (6.2),

ŝ = 5.821× 10−2 (11.2), N̂ = 6.838 (4.522)

folded biv Lap 2 µ̂1 = 1.726× 10−4
(
1.912× 10−3

)
, µ̂2 = −2.919× 10−3

(
2.455× 10−3

)
,

ŝ1 = 9.928× 10−3
(
7.655× 10−2

)
, ŝ2 = 9.500× 10−3

(
5.366× 10−3

)
,

ρ̂ = 9.999× 10−1
(
9.022× 10−2

)
Table 1: Fitted models, parameter estimates and standard errors for USA

/ CAD.
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Model − lnL AIC BIC CAIC AICc HQC p-value

folded biv norm -10210.2 -20410.4 -20384.1 -20379.1 -20410.3 -20400.6 0.04

folded biv t -10418.3 -20824.6 -20793.1 -20787.1 -20824.5 -20812.8 0.23

folded biv skew norm -10210.2 -20406.4 -20369.6 -20362.6 -20406.3 -20392.7 0.05

folded biv skew t -10418.3 -20820.6 -20778.6 -20770.6 -20820.5 -20804.9 0.23

folded biv logis 1710.3 3428.5 3449.5 3453.5 3428.5 3436.4 0.01

folded biv Lap 1 -6313.4 -12614.9 -12583.4 -12577.4 -12614.8 -12603.1 0.02

folded biv Kotz -10406.9 -20797.8 -20755.8 -20747.8 -20797.7 -20782.1 0.04

folded biv Lap 2 -4518.0 -9026.0 -8999.7 -8994.7 -9025.9 -9016.2 0.03

Table 2: Fitted models, log-likelihood values and selection criteria for
USA / CAD.
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Pair Magnitude correlation p-value for p-value for
independence symmetry

(USA, CAD) 0.596 0.000 0.112
(USA, UK) 0.499 0.000 0.006
(USA, GER) 0.533 0.000 0.048
(USA, CHI) 0.298 0.000 0.049
(USA, JPN) 0.153 0.000 0.001
(USA, BRA) 0.531 0.000 0.034
(USA, ARG) 0.317 0.000 0.086
(USA, SA) 0.366 0.000 0.057
(USA, NG) 0.049 0.003 0.074
(CAD, UK) 0.575 0.000 0.065
(CAD, GER) 0.509 0.000 0.095
(CAD, CHI) 0.342 0.000 0.077
(CAD, JPN) 0.189 0.000 0.084
(CAD, BRA) 0.507 0.000 0.021
(CAD, ARG) 0.312 0.000 0.013
(CAD, SA) 0.506 0.000 0.090
(CAD, NG) 0.057 0.001 0.004
(UK, GER) 0.743 0.000 0.068
(UK, CHI) 0.380 0.000 0.082
(UK, JPN) 0.210 0.000 0.062
(UK, BRA) 0.501 0.000 0.067
(UK, ARG) 0.268 0.000 0.081
(UK, SA) 0.626 0.000 0.042
(UK, NG) 0.051 0.002 0.066
(GER, CHI) 0.316 0.000 0.060
(GER, JPN) 0.175 0.000 0.006
(GER, BRA) 0.479 0.000 0.059
(GER, ARG) 0.259 0.000 0.055
(GER, SA) 0.529 0.000 0.008
(GER, NG) 0.043 0.009 0.002
(CHI, JPN) 0.370 0.000 0.075
(CHI, BRA) 0.306 0.000 0.076
(CHI, ARG) 0.152 0.000 0.034
(CHI, SA) 0.372 0.000 0.058
(CHI, NG) 0.064 0.000 0.091
(JPN, BRA) 0.145 0.000 0.094
(JPN, ARG) 0.097 0.000 0.056
(JPN, SA) 0.236 0.000 0.075
(JPN, NG) 0.075 0.000 0.009
(BRA, ARG) 0.351 0.000 0.028
(BRA, SA) 0.435 0.000 0.019
(BRA, NG) 0.022 0.191 0.077
(ARG, SA) 0.215 0.000 0.083
(ARG, NG) 0.020 0.222 0.012
(SA, NG) 0.041 0.012 0.067

Table 3: Estimated magnitude correlations, test for independence and
test for bivariate symmetry.
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The magnitude correlations based on the best fits for the forty five pairs
are given in Table 3. Also given in the table are p-values of the likelihood ratio
test of the hypothesis that the absolute values of the components in each pair
are independent. All of the correlations appear positive. This is expected since
global economies are so inter dependent these days. One would not expect large
stock values in magnitude for one country to be associated with small stock
values in magnitude for another country or small stock values in magnitude for
one country to be associated with large stock values in magnitude for another
country. We also see that all of the correlations are significant except for (BRA,
NG) and (ARG, NG). The strongest positive and significant correlations are for
(UK, GER), (UK, SA) and (USA, CAD). The weakest positive and significant
correlations are for (USA, NG), (CAD, NG), (UK, NG), (GER, NG), (CHI, NG),
(JPN, NG) and (SA, NG).
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Figure 2: Contours of the joint probability density function of the fitted
folded t distribution for (USA, CAD).
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Figure 3: Value at risk curves of the fitted folded t distribution at p =
0.9, 0.95, 0.99 for (USA, CAD).

We now give predictions based on bivariate value at risk curves. Under
the folded t distribution, a bivariate value at risk curve with probability p is the
solution of ∫ x

0

∫ y

0
f(u, v)dvdu = p,(3.1)

where f(u, v) is given by (2.3) with (µ1, µ2, σ1, σ2, ρ, ν) replaced by (µ̂1, µ̂2, σ̂1, σ̂2, ρ̂, ν̂),
the maximum likelihood estimates of (µ1, µ2, σ1, σ2, ρ, ν). So, (x, y) satisfying
(3.1) can be interpreted as the positive log returns for (USA, CAD) occurring with
probability p. The curves of (x, y) are plotted in Figure 3 for p = 0.9, 0.95, 0.99.

Finally, we check robustness of the fitted models by splitting the data into
two halves. The first half was taken to be the data from 3rd January 2000 to
31 December 2007. The second half was taken to be the data from 1st January
2008 to 28th February 2014. We fitted the same models to each half. The results
turned out to be the same as before. The folded bivariate t distribution gave the
best fit for (USA, CAD), (USA, ARG), (USA, SA), (USA, NG), (CAD, UK),
(CAD, GER), (CAD, CHI), (CAD, JPN), (UK, GER), (UK, BRA), (UK, ARG),
(GER, CHI), (GER, ARG), (CHI, JPN), (CHI, SA), (CHI, NG), (JPN, BRA),
(JPN, ARG), (JPN, SA), (BRA, NG), (ARG, SA) and (SA, NG) for each half.
The folded bivariate skew t distribution gave the best fit for (USA, UK), (USA,
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GER), (USA, CHI), (USA, JPN), (USA, BRA), (CAD, BRA), (CAD, ARG),
(CAD, NG), (UK, SA), (GER, JPN), (GER, BRA), (GER, SA), (GER, NG),
(CHI, ARG), (JPN, NG), (BRA, ARG), (BRA, SA) and (ARG, NG) for each
half. The folded bivariate Laplace distribution of the first kind gave the best
fit for (CAD, SA), (UK, CHI), (UK, JPN) and (CHI, BRA) for each half. The
folded bivariate Kotz type distribution gave the best fit for (UK, NG) for each
half. The explanations for these best fits are the same as before.

4. Conclusions

Motivated by the concept of magnitude correlation of stock returns, we have
introduced the following folded bivariate distributions: the folded bivariate skew
normal distribution; the folded bivariate skew t distribution; the folded bivariate
logistic distribution; the folded bivariate Kotz type distribution; the folded bivari-
ate Laplace distribution of the first kind; the folded bivariate Laplace distribution
of the second kind. We have also introduced the following folded univariate dis-
tributions: the folded univariate skew normal distribution; the folded univariate
skew t distribution.

We fitted eight folded bivariate distributions to forty five real data sets.
The two heavy tailed distributions, the folded bivariate t and folded bivariate
skew t distributions, gave the best fit for forty of the data sets. The remaining
five data sets were best fitted by folded bivariate Laplace distribution of the first
kind and the folded bivariate Kotz type distribution, two of the lighted tailed
distributions. We have not been able to explain why these five data sets were
best fitted by light tailed distributions when all of the data sets are heavy tailed.

We also compared the fits of the folded and truncated unfolded distributions
using the same data sets. Remarkably each folded distribution outperformed the
corresponding truncated unfolded distribution for each of the forty five data sets.
This shows that magnitude correlations can be better modeled by folded bivariate
distributions.

A future work is to extend the results of this paper for folded multivari-
ate distributions, folded matrix variate distributions and folded complex variate
distributions.
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