
REVSTAT – Statistical Journal

Volume 0, Number 0, Month 0000, 000-000

ESTIMATION OF DISTRIBUTION FUNCTION US-
ING PERCENTILE RANKED SET SAMPLING

Authors: Yusuf Can Sevil �
*

– The Graduate School of Natural and Applied Sciences, Dokuz Eylul University,
Izmir, Turkey (yusuf.sevil@ogr.deu.edu.tr)

Tugba Ozkal Yildiz
– Department of Statistics, Dokuz Eylul University,

Izmir, Turkey (tugba.ozkal@deu.edu.tr)

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

� The estimation of distribution function has received considerable attention in the lit-
erature. Because, many practical problems involve estimation of distribution function
from experimental data. Estimating the distribution function makes it possible to
do pointwise estimation and to make statistical inference about the distribution of
interested population. In this study, we suggested an empirical distribution function
(EDF) for percentile ranked set sampling (PRSS). Bias of the EDF estimator is in-
vestigated theoretically and numerically. Relative efficiencies of the proposed EDF
estimator based on PRSS with respect to EDF estimator based on simple random
sampling (SRS) and ranked set sampling (RSS) are obtained. We also considered
impact of imperfect rankings on the EDF based on PRSS. According to the results,
the proposed EDF estimator is unbiased for the extreme ”minimum and maximum”
points and center of the distribution. Also, it is clearly appeared that the EDF estima-
tor based on PRSS is more efficient than the EDF based on SRS. Another important
result is that the suggested EDF estimator has larger efficiencies than the EDF based
on RSS for some special cases of PRSS. In the application, the EDF based on PRSS
is used to estimate the proportion of women in obesity class III (BMI> 40).
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1. INTRODUCTION

Ranked set sampling (RSS) was introduced by McIntyre [13] as an ad-
vantageous alternative to simple random sampling (SRS). McIntyre [13] studied
mean estimator based on RSS and showed that this estimator is more efficient
than mean estimator using SRS. Then, mathematical theory of RSS was first
suggested by Takahasi and Wakimoto [24]. By Dell and Clutter [6], it was proved
that mean estimator based on RSS is unbiased and more efficient than mean
estimator based on SRS even if ranking is not perfect. In the literature, there
are some other estimators based on RSS such as estimation of correlation coef-
ficient [21], estimation of variance [22] and estimation of population proportion
[15, 28, 29]. Also, for more extended literature about RSS, see Kaur et al. [11]
and Al-Omari and Bouza [3].

The estimation of cumulative distribution function (CDF) with various
settings of the RSS has been studied by many authors. Stokes and Sager [23]
suggested an unbiased estimator based on RSS for population distribution func-
tion. Samawi and Al-Sagheer [19] considered EDF estimator based on extreme
ranked set sampling and median ranked set sampling. EDF using double ranked
set sampling was investigated by Abu-Dayyeh et al. [1]. Al-Omari [2] studied
EDF based on quartile ranked set sampling. Sevil and Yildiz [20] developed esti-
mation of distribution function using RSS based on level-2 sampling design. Also,
Kolmogorov Smirnov (KS) test statistic based on RSS was compared with KS
test statistic based on SRS by Sevil and Yildiz [20]. EDF estimators using RSS
based on three different sampling designs were given by Yildiz and Sevil [25, 26].
Some goodness of fit tests based on these EDF estimators were investigated in
their study. Some other distribution function estimators were considered for ex-
treme median ranked set sampling [12], selective order ranked set sampling [4],
partially rank-ordered set [16] and pair ranked set sampling [27].

By using percentiles instead of quartiles, more flexible selection procedure
named as percentile ranked set sampling (PRSS) was suggested by Muttlak [14].
In Muttlak’s study, estimation of mean is investigated using PRSS. Since PRSS
is general form of quartile ranked set sampling (QRSS) and extreme ranked set
sampling (ERSS), EDF estimators based on QRSS and ERSS can be obtained by
using EDF estimator based on PRSS. Moreover, EDF estimator based on median
ranked set sampling (MRSS) can be derived by using EDF estimator of PRSS
when the set size is even. So, the EDF estimator using PRSS becomes quite
useful estimator. Therefore, we considered the performance of EDF estimator
using PRSS under perfect and imperfect rankings.

This study is organized as follows. In section two, PRSS procedure is
defined. The EDF estimator based on PRSS is given in section three. Also,
the properties of the EDF estimator are discussed. In section four, we introduce
Frey’s one-parameter ranking error model [7] and study imperfect ranking case
for proposed EDF estimator. Also, we obtained some results under imperfect



Estimation of Distribution Function Using PRSS 3

ranking in this section. Some inferences about CDF, F (x), are given in section
five. Moreover, body mass index data is used to illustrate the EDF using PRSS.
Finally, some conclusion remarks are stated in section six.

2. PERCENTILE RANKED SET SAMPLING

Muttlak [14] proposed PRSS as practical sampling scheme according to
RSS. In literature, modified versions of PRSS can be seen such as double PRSS
[9] and multistage PRSS [10].

In this method, pth and qth percentile of the sample are selected for
full measurement, 0 < p < 1 and q = 1 − p. Before we describe the proce-
dure of PRSS, we give some notations. Let k, l and n denote set size, num-
ber of cycles and total sample size, respectively. Also, (X11j , X12j , · · · , X1kj),
(X21j , X22j , · · · , X2kj),· · · , (Xk1j , Xk2j , · · · , Xkkj) are random sets of size k from
jth cycle, j = 1, · · · , l. Here, it is assumed that Xitj is selected from a population
with continuous density function f(x) and CDF F (x). The order statistics of the
ith set are denoted by Xi(1)j , Xi(2)j , · · · , Xi(k)j , i = 1, · · · , k.

Now, we define the procedure of PRSS. First, k2 units are selected without
replacement from the population. These units are divided into the k random
sets, each of size k. In each set, these units are ranked from the smallest to the
largest. If the set size k is odd, PRSS is denoted by PRSSO and it is obtained
by using the following steps.

(i) From the first (k − 1)/2 sets, the rth smallest units are measured, X(r).

(ii) The median ranked unit is measured from the ((k + 1)/2)th set, X(m).

(iii) Then, the sth smallest units are measured from the remaining (k − 1)/2
sets, X(s).

where r and s are the nearest integer value of p(k+ 1) and q(k+ 1), respectively.
Note that r = 1 if p(k+ 1) < 0.5 and s = k if the nearest integer value of q(k+ 1)
is larger than k. If the set size k is even, PRSS is denoted by PRSSE and it is
obtained by using the following steps.

(i) From the first k/2 sets, the rth smallest units are measured, X(r).

(ii) Then, the sth smallest units are measured from the remaining k/2 sets,
X(s).

To obtain n = lk sample observations, these procedures are repeated l times.
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PRSSO and PRSSE are denoted by

PRSSO =
{
X1(r)j , X2(r)j , · · · ,
X k−1

2
(r)j , Xm(m)j , X k+3

2
(s)j , · · · ,

Xk−1(s)j , Xk(s)j

}
and

PRSSE =
{
X1(r)j , · · · , X k

2
(r)j ,

X k+2
2

(s)j , · · · , Xk(s)j

}
,

respectively, where m = (k + 1)/2 and j = 1, · · · , l.

As defined in Stokes and Sager [23], lk independent copies (Y,R) are ob-
served as follows: R is first selected at random from 1, · · · , k and Y is observed
according to F(i)(x) (the CDF of the ith order statistics), then the marginal joint
distribution of Y ’s is the same as that of the SRS. This statement is given in the
part (a) of the Theorem 1 by Stokes and Sager [23]. Part (b) of the Theorem 1
capitalizes on this characterization to link RSS with SRS.

Let T
′

= (T1, T2, · · · , Tk) be a multinomial random vector with lk trials
and P = ( 1k ,

1
k , · · · ,

1
k ) be a probability vector. It is supposed that the lk random

variables were obtained by first observing T and then selecting Ti units randomly
from a population with probability density function (PDF) f(i)(x), i = 1, · · · , k.
Also, the obtained lk units are denoted by Y1, Y2, · · · , Ylk.

Theorem 2.1. With the same conditions of Theorem 1 in Stokes and
Sager [23], we give the following:

(1) When the set size is odd, {Y1, Y2, · · · , Ylk | T = (0, · · · , 0, tr = (k−1)l
2 , 0, · · · , 0,

tm = l, 0, · · · , 0, ts = (k−1)l
2 , 0, · · · , 0)} has the same probability structure as

{Xg(r)j , Xm(m)j , Xh(s)j ; g = 1, 2, · · · , k−12 ;m = k+1
2 ;h = k+3

2 , k+5
2 , · · · , k; j =

1, 2, · · · , l} where ranks of the measured observations could be one of the
(r, s) pairs, {(1, k) , (2, k − 1) , · · · ,

(
k−1
2 , k+3

2

)
}.

(2) When set size is even, {Y1, Y2, · · · , Ylk | T = (0, · · · , 0, tr = lk
2 , 0, · · · , 0, ts =

lk
2 , 0, · · · , 0)} has the same probability structure as {Xg(r)j , Xh(s)j ; g =
1, 2, · · · ,
k
2 ;h = k+2

2 , k+4
2 , · · · , k; j = 1, 2, · · · , l} where ranks of the measured obser-

vations could be one of the (r, s) pairs, {(1, k) , (2, k − 1) , · · · ,
(
k
2 ,

k+2
2

)
}.

These part (1) and (2) are proved in Appendices.
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3. EMPIRICAL DISTRIBUTION FUNCTION OF PERCENTILE
RANKED SET SAMPLING

In this section, we described the suggested EDF estimator based on PRSS.
Also, properties of the EDF estimator are given. Bias and efficiency of the EDF
based on PRSS are investigated and compared with distribution function estima-
tors using SRS and RSS. It is assumed that X1, X2, · · · , Xn be a simple random
sample. EDF based on SRS is denoted by F̂SRS(x),

F̂SRS(x) =
1

n

n∑
i=1

I (Xi ≤ x) .

where I(.) is indicator function. The EDF based on SRS is unbiased estimator
of F (x) for given x, with variance V (F̂SRS(x)) = 1

nF (x)(1− F (x)).

Stokes and Sager [23] proposed F̂RSS(x) for estimating the distribution
function F (x). Let

{
X1(1)j , X2(2)j , · · · , Xk(k)j

}
be the order statistics that are

obtained by using RSS,

(3.1) F̂RSS(x) =
1

lk

l∑
j=1

k∑
i=1

I
(
Xi(i)j ≤ x

)
They showed that F̂RSS(x) is unbiased with variance

V
(
F̂RSS(x)

)
=

1

lk2

k∑
i=1

F(i)(x)
(
1− F(i)(x)

)
where F(i)(x) is distribution function of the ith order statistic, and

F̂RSS(x)− E
(
F̂RSS(x)

)
(
V
(
F̂RSS(x)

))1/2
converges in distribution to standard normal as l → ∞, when x and k are held
fixed.

Let F̂PRSSO(x) and F̂PRSSE (x) are the EDFs of a PRSS data when set size
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is odd and even, respectively. If set size is odd,

F̂PRSSO(x) =
1

lk

 l∑
j=1

k−1
2∑
i=1

I
(
Xi(r)j ≤ x

)

+

l∑
j=1

k−1
2∑
i=1

I
(
X k+1

2
+i(s)j ≤ x

)

+
l∑

j=1

I
(
Xm(m)j ≤ x

)(3.2)

and if set size is even,

F̂PRSSE (x) =
1

lk

 l∑
j=1

k
2∑
i=1

I
(
Xi(r)j ≤ x

)

+
l∑

j=1

k
2∑
i=1

I
(
X k

2
+i(s)j ≤ x

)(3.3)

where r ≈ p(k+ 1), s ≈ q(k+ 1) and m = k+1
2 is the median ranked unit. Under

the perfect ranking, we state the following propositions for some basic properties
of these distribution function estimators.

Proposition 1. (a) Using PRSSO

i. E
(
F̂PRSSO(x)

)
=
(
1
2 −

1
2k

) (
F(r)(x) + F(s)(x)

)
+ 1

kF(m)(x)

ii. V
(
F̂PRSSO(x)

)
= 1

lk2

[ (
k−1
2

) (
F(r)(x)

(
1− F(r)(x)

)
+ F(s)(x)

(
1− F(s)(x)

))
+

F(m)(x)
(
1− F(m)(x)

) ]
(b) Using PRSSE

i. E
(
F̂PRSSE (x)

)
= 1

2

(
F(r)(x) + F(s)(x)

)
ii. V

(
F̂PRSSE (x)

)
= 1

2lk

[
F(r)(x)

(
1− F(r)(x)

)
+ F(s)(x)

(
1− F(s)(x)

)]
where F(r)(x), F(s)(x) and F(m)(x) are distribution function of X(r), X(s) and
X(m), respectively. Part (a) and part (b) are proved in Appendices. As seen in

Proposition 1, F̂PRSSO(x) and F̂PRSSE (x) are biased estimators for F (x). How-
ever, the bias is almost zero as F (x) gets closer to 1, 0.5 and 0 under perfect
ranking. Also, the biases of these estimators do not depend on the number of
cycles. The biases of these EDFs can be calculated by using following equations.

(3.4) Bias[F̂PRSSO(x)] = F (x)− E(F̂PRSSO(x)),
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(3.5) Bias[F̂PRSSE (x)] = F (x)− E(F̂PRSSE (x)).

These biases of F̂PRSSO(x) and F̂PRSSE (x) are given by Figure 1 when p = 0.1
and p = 0.4. These EDF estimators are unbiased as F (x) gets closer to 1, 0.5
and 0. The bias increases as k increases except for F (x) = 0.5. In the Figure
1(b), the blue and black curves are overlapping. Mean squared error is used as

(a) When p = 0.1, the bias of EDFs (b) When p = 0.4, the bias of EDFs

Figure 1: Bias for F̂PRSSO and F̂PRSSE where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively

a measure of performance of the proposed estimators. Then, relative efficiencies
(RE) of F̂PRSSO(x) and F̂PRSSE (x) with respect to F̂SRS(x) are described as

RE[F̂PRSSO(x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂PRSSO(x))
,

and

RE[F̂PRSSE (x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂PRSSE (x))
.

REs are illustrated by the Figure 2. When p = 0.1, it is seen that the REs peak on
the middle of the distribution function. Even, the EDFs based on PRSS are more
efficient than the EDF based on RSS whenever F (x) is close to 0.5 comparing
with Stokes and Sager [23]. The REs increase while the set size increases. When
p = 0.4, Figure 2 shows that the REs are higher on the tails of the distribution
function. Whenever F (x) is close to 0.1 (or 0.9) comparing with Stokes and
Sager [23], the EDFs based on PRSS are more efficient than the EDF based on
RSS. Also, the REs are almost equal to or larger than 1 for any F (x) when
k = 3, 4, 5, 6 and p = 0.4. Table 1 indicates REs of EDFs using PRSS when
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(a) When p = 0.1, the REs of EDFs (b) When p = 0.4, the REs of EDFs

Figure 2: REs for F̂PRSSO and F̂PRSSE where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively

F (x) = 0.1 and F (x) = 0.5 relative to RSS. The REs are obtained by using the
following equations.

RE[F̂PRSSO(x), F̂RSS(x)] =
V (F̂RSS(x))

MSE(F̂PRSSO(x))
,

and

RE[F̂PRSSE (x), F̂RSS(x)] =
V (F̂RSS(x))

MSE(F̂PRSSE (x))
.

It can be shown that the EDFs based on PRSS (with p = 0.4) have higher
performances than the EDF based on RSS when F (x) = 0.1. Also, the EDFs
using PRSS (with p = 0.1) are more efficient than the EDF using RSS when
F (x) = 0.5.

F (x) = 0.1 F (x) = 0.5

k p = 0.1 p = 0.4 p = 0.1 p = 0.4

3 1.000 1.000 1.760 0.625
4 0.522 2.333 1.473 0.636
5 0.557 1.635 1.227 0.720
6 0.263 7.303 1.045 0.500

Table 1: The REs of the EDF estimators based on PRSS with respect to RSS

The following proposition is needed to study some asymtotic inference
about the expected value of the estimators, F̂PRSSO(x) and F̂PRSSE (x). The
Proposition 2 is proved in Appendices.
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Proposition 2. For fixed k and l → ∞, the following results are ob-
tained.

(a)
F̂PRSSO (x)−E(F̂PRSSO (x))√

V (F̂PRSSO (x))
converges in distribution to N(0, 1).

(b)
F̂PRSSE (x)−E(F̂PRSSE (x))√

V (F̂PRSSE (x))
converges in distribution to N(0, 1).

4. IMPERFECT RANKING

The efficiency of PRSS is affected by ranking steps. In general, the ranking
is performed by subjective judgement or according to concomitant (auxiliary)
variable that is correlated to the variable of interest. In the ranking steps, it is
assumed that the ranking is completely accurate. However, this is not a realistic
assumption. Therefore, one of the interesting topic is ranking error models in the
literature. Dell and Clutter [6] proposed adaptive perceptual error model. Bohn
and Wolfe [5] suggested ranking error model that constructs the judgement class
distributions as a mixture distribution of the actual order statistics. Then, Frey
[7, 8] extended the model [5] and introduced new class of models for imperfect
ranking. Ozturk [17] estimated the parameters of ranking error models of Bohn
and Wolfe [5] and Frey [7, 8]. He proved that one-parameter ranking error model
[7, 8] is more efficient than ranking error model [5].

In this section, we investigated the effect of imperfect ranking on PRSS
using Frey’s one-parameter judgement ranking [7]. It is assumed that k! possible
judgment orderings of the true order statistics X(i1:h), · · · , X(ik:h) selected from

a larger set of size h, h ≥ k. Random selection of set of size k yields
(
h
k

)
possible

selection of k order statistics out of h order statistics in the larger set and all these
selections are equally likely. LetAAA(i1, · · · , ik) be a doubly stochastic matrix. Frey
[7] specified a way to compute the matrix AAA(i1, · · · , ik),

AAA(i1, · · · , ik) =
1

k!

∑
π∈Sk

q(iπ(1), · · · , iπ(k))

× Per(π(1), · · · , π(k)),

where q(iπ(1), · · · , iπ(k)) denotes the probability that corresponds to the ordering
of X(i1:h) < · · · < X(ik:h), Per(π(1), · · · , π(k)) is the permutation matrix whose
(i, π(i))th entry is one for i = 1, · · · , k and all other entries are zero, and Sk is
the set of all permutations. The probabilities q(iπ(1), · · · , iπ(k)) are obtained by
selecting an appropriate weight function w(π) with π ∈ Sk. These weights must
be normalized, so these are actually probabilities. A class of weight function was
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suggested by Frey [7],

w(π) = exp

δ
k∑
j=1

jλ

(
iπ(j)

h+ 1

)
where δ is called as power and δ ∈ [0,∞). When δ = 0, a completely ran-
dom ranking model is constructed. When δ approaches infinity, the probability
q(iπ(1), · · · , iπ(k)) concentrates on the single permutation having the largest value
of

k∑
j=1

jλ

(
iπ(j)

h+ 1

)
and corresponds to a perfect ranking model. Also, a wide range of imperfect
ranking models can be obtained using the other values of δ. Frey [7] proposed
three different λ function which are λ1(u) = u, λ2(u) = −u−1 and λ3(u) =
(1 − u)−1 to obtain symmetric, skewed-left and skewed-right imperfect ranking
probabilities. Note that these probabilities do not depend on shape of underlying
distributions. ΩΩΩ(i1, · · · , ik) is a k×h matrix to exhaust the selection of all possible
judgment orderings. In this matrix, the (i

′
, ii′ )th entry is one for i

′
= 1, · · · , k

and all other entries are zero. Then, the matrix product

NNN(i1, · · · , ik) = AAA(i1, · · · , ik)ΩΩΩ(i1, · · · , ik)

is a k × h matrix that constructs relation between AAA(i1, · · · , ik) and the set of
independent order statistics X(i1:h), · · · , X(ik:h) in the larger set of size h. The
distribution of X[i], conditional on the values of i1, · · · , ik is given by

F[i](x|i1, · · · , ik) =
h∑
ι=1

NNN(i1, · · · , ik)iιF(ι)(x)

where NNN(i1, · · · , ik)iι is the (i, ι)th entry of NNN(i1, · · · , ik). When the contribution
of all

(
h
k

)
equally likely choices of the values of i1, · · · , ik the CDF of X[i] can then

be written

F[i](x) =
h∑
ι=1

pk,h(i, ι)F(ι)(x)

where PPP k,h = (pk,h(i, ι)) is the k × h matrix average

PPP k,h =

(
h

k

)−1 ∑
1≤i1<i2<···<ik≤h

NNN(i1, · · · , ik)iι

In our study, we assumed that PPP k,h is a square matrix, so we use PPP and p(i, ι)
instead of PPP k,h and pk,h(i, ι), respectively. For more details about Frey’s one-
parameter judgement ranking model, see Frey [7]. The matrix PPP can be estimated
by using an R-function that is proposed by Ozturk [17] for any correlation coeffi-
cient (ρ), the set size (k) and the larger set size (h). For theoretical backgrounds
of the R-function, see Ozturk [17]. In the following example, we illustrate the
matrix PPP .
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Example 1. It is assumed that set size k = 4 and the units in the set
are ranked perfectly. Then, the matrix PPP is as follows:

PPP =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


If the units in the set are ranked randomly, then the matrix PPP is as follows:

PPP =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4


Let us define that Xi[1]j , Xi[2]j , · · · , Xi[k]j be judgement order statistics in

the ith set, i = 1, · · · , k and j = 1, · · · , l. Then, the EDF based on RSS [23] as
follows.

(4.1) F̂ ∗RSS(x) =
1

lk

l∑
j=1

k∑
i=1

I
(
Xi[i]j ≤ x

)
On the other hand, the measured units in the steps of the PRSS are denoted
by X[r], X[s] and X[m]. Thus, the measured units in PRSSO and PRSSE are
represented by

PRSSO =
{
X1[r]j , X2[r]j , · · · ,
X k−1

2
[r]j , Xm[m]j , X k+3

2
[s]j , · · · ,

Xk−1[s]j , Xk[s]j

}
and

PRSSE =
{
X1[r]j , · · · , X k

2
[r]j ,

X k+2
2

[s]j , · · · , Xk[s]j

}
,

respectively, where m = (k + 1)/2 and j = 1, · · · , l. The CDF estimators based
on PRSSO and PRSSE are given by

F̂ ∗PRSSO(x) =
1

lk

 l∑
j=1

k−1
2∑
i=1

I
(
Xi[r]j ≤ x

)

+
l∑

j=1

k−1
2∑
i=1

I
(
X k+1

2
+i[s]j ≤ x

)

+
l∑

j=1

I
(
Xm[m]j ≤ x

)(4.2)
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and if set size is even,

F̂ ∗PRSSE (x) =
1

lk

 l∑
j=1

k
2∑
i=1

I
(
Xi[r]j ≤ x

)

+

l∑
j=1

k
2∑
i=1

I
(
X k

2
+i[s]j ≤ x

)(4.3)

where r ≈ p(k + 1), s ≈ q(k + 1) and m = k+1
2 is the median ranked unit. The

following proposition gives the properties of F̂ ∗PRSSO(x) and F̂ ∗PRSSE (x).

Proposition 3. (a) Using PRSSO

i. E
(
F̂ ∗PRSSO(x)

)
=
(
1
2 −

1
2k

) (
F[r](x) + F[s](x)

)
+ 1

kF[m](x)

ii. V
(
F̂ ∗PRSSO(x)

)
= 1

lk2

[ (
k−1
2

) (
F[r](x)

(
1− F[r](x)

)
+ F[s](x)

(
1− F[s](x)

))
+

F[m](x)
(
1− F[m](x)

) ]
(b) Using PRSSE

i. E
(
F̂ ∗PRSSE (x)

)
= 1

2

(
F[r](x) + F[s](x)

)
ii. V

(
F̂ ∗PRSSE (x)

)
= 1

2lk

[
F[r](x)

(
1− F[r](x)

)
+ F[s](x)

(
1− F[s](x)

)]
where

F[t](x) =
k∑
ι=1

p(t, ι)F(ι)(x), t = {r, s,m}.

The proof the Proposition 3 is the same as the proof of the Proposition 1. We gave
an example in order to illustrate obtaining the distribution of judgement order
statistics F[t]. Also, we investigated the properties of F̂ ∗PRSSO(x) and F̂ ∗PRSSE (x)
under random ranking case in this example. First, we give the following lemma
that is noted by Dell and Clutter [6]. Detailed proof of this lemma was given by
Presnell and Bohn [18].

Lemma 4.1. 1
k

k∑
i=1

F[i](x) = F (x) ∀x.

Using this lemma, the results are provided in the following example.

Example 2. Let {X1[r]j , X2[r]j , · · · , X k−1
2

[r]j , Xm[m]j , X k+3
2

[s]j , · · ·
, Xk−1[s]j , Xk[s]j} are obtained using PRSSO under random ranking case. Then,

p(t, ι) = 1
k in the matrix PPP for each t = {r, s,m} and ι = 1, · · · , k. Thus, F[t](x)

is obtained according to Lemma 1.

F[t](x) =
k∑
ι=1

1

k
F(ι)(x) = F (x)



Estimation of Distribution Function Using PRSS 13

Straightforwardly, it can be seen that

E
(
F̂ ∗PRSSO(x)

)
= F (x),

V
(
F̂ ∗PRSSO(x)

)
=

1

n
F (x)(1− F (x)).

Besides, we have to note that the obtained results are not surprising. It means
that F̂ ∗PRSSO(x) reduce to F̂ (x) under random ranking case. Obviously, these

results are the same for F̂ ∗PRSSE (x) as well.

Now, we investigated the performances of F̂PRSSO(x) and F̂PRSSE (x) under
the imperfect ranking. To construct imperfect ranking schemes, we take the
correlation coefficients as ρρρ = {0.90, 0.75, 0.50}. The matrix PPP υ, υ = 1, 2, 3
corresponding to each correlation coefficient are estimated using Ozturk’s R-
function. When k = 3, the estimated matrices are

PPP 1 =

0.841 0.151 0.008
0.151 0.698 0.151
0.008 0.151 0.841

 ,
PPP 2 =

0.762 0.210 0.028
0.210 0.580 0.210
0.028 0.210 0.762

 ,
and PPP 3 =

0.555 0.303 0.142
0.303 0.395 0.303
0.142 0.303 0.555

 .
for ρ = 0.90, ρ = 0.75 and ρ = 0.50, respectively. These matrices are estimated
for k = 4, k = 5 and k = 6 as well. Bias for F̂ ∗PRSSO(x) and F̂ ∗PRSSE (x) are
obtained by using Equations (4.4) and (4.5). Figure 3 gives bias for the CDF
estimators based on PRSS with p = 0.1 and p = 0.4, respectively. For any ρ,
these EDF estimators are unbiased as F (x) gets closer to 1, 0.5 and 0. Also, the
bias increases as k increases except for F (x) = 0.5. It can be seen that the biases
decrease as ρ decreases. This is a result of the Example 2.

(4.4) Bias[F̂ ∗PRSSO(x)] = F (x)− E(F̂ ∗PRSSO(x)),

(4.5) Bias[F̂ ∗PRSSE (x)] = F (x)− E(F̂ ∗PRSSE (x)).

Besides, relative efficiencies (RE) of F̂PRSSO(x) and F̂PRSSE (x) with respect to
F̂SRS(x) are described as

RE[F̂ ∗PRSSO(x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂ ∗PRSSO(x))
,

RE[F̂ ∗PRSSE (x), F̂SRS(x)] =
V (F̂SRS(x))

MSE(F̂ ∗PRSSE (x))
.
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(a) When p = 0.1, the bias of EDFs for ρ =
0.90

(b) When p = 0.4, the bias of EDFs for ρ =
0.90

(c) When p = 0.1, the bias of EDFs for ρ =
0.75

(d) When p = 0.4, the bias of EDFs for ρ =
0.75

(e) When p = 0.1, the bias of EDFs for ρ =
0.50

(f) When p = 0.4, the bias of EDFs for ρ =
0.50

Figure 3: Bias for F̂PRSSO and F̂PRSSE where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively

REs are given by Figure 4 for p = 0.1 and p = 0.4, respectively. For any ρ, it is
seen that the REs peak on the middle of the distribution function when p = 0.1.
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(a) When p = 0.1, the REs of EDFs for ρ =
0.90

(b) When p = 0.4, the REs of EDFs for ρ =
0.90

(c) When p = 0.1, the REs of EDFs for ρ =
0.75

(d) When p = 0.4, the REs of EDFs for ρ =
0.75

(e) When p = 0.1, the REs of EDFs for ρ =
0.50

(f) When p = 0.4, the REs of EDFs for ρ =
0.50

Figure 4: REs for F̂PRSSO and F̂PRSSE where black, blue, green and red curves
are k = 3, k = 4, k = 5 and k = 6, respectively

Also, the REs increase while the set size increases. On the other hand, the REs
are higher on the tails of the distribution function when p = 0.4. Also, the REs
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are almost equal to or larger than 1 for any F (x) and ρ when k = 3, 4, 5, 6 and
p = 0.4.

Table 2 gives REs of EDFs using PRSS when F (x) = 0.1 and F (x) = 0.5
relative to RSS. The REs are obtained by using the following equations.

RE[F̂ ∗PRSSO(x), F̂ ∗RSS(x)] =
V (F̂ ∗RSS(x))

MSE(F̂ ∗PRSSO(x))
,

and

RE[F̂ ∗PRSSE (x), F̂ ∗RSS(x)] =
V (F̂ ∗RSS(x))

MSE(F̂ ∗PRSSE (x))
.

Table 2 shows that even if ρ = 0.5, the gain in efficiency from EDFs using PRSS
with p = 0.4 (and with p = 0.1) are substantial when F (x) = 0.1 (and when
F (x) = 0.5). The Proposition 4 is needed to study some asymptotic inference

F (x) = 0.1 F (x) = 0.5

ρ k p = 0.1 p = 0.4 p = 0.1 p = 0.4

0.9 3 1.000 1.312 1.000 0.740
4 0.629 1.379 1.782 0.695
5 0.647 1.233 1.504 0.749
6 0.323 1.128 4.784 0.527

0.75 3 1.000 1.185 1.000 0.798
4 0.749 1.251 1.461 0.760
5 0.738 1.204 1.379 0.785
6 0.434 1.231 2.993 0.578

0.5 3 1.000 1.036 1.000 0.936
4 0.952 1.046 1.091 0.923
5 0.962 1.036 1.070 0.939
6 0.651 1.231 1.775 0.696

Table 2: The REs of the EDF estimators based on PRSS with respect to RSS

about the expected value of the estimators, F̂ ∗PRSSO(x) and F̂ ∗PRSSE (x).

Proposition 4. For fixed k and l → ∞, the following results are ob-
tained.

(a)
F̂ ∗PRSSO

(x)−E
(
F̂ ∗PRSSO

(x)
)

√
V
(
F̂ ∗PRSSO

(x)
) converges in distribution to N(0, 1).

(b)
F̂ ∗PRSSE

(x)−E
(
F̂ ∗PRSSE

(x)
)

√
V
(
F̂ ∗PRSSE

(x)
) converges in distribution to N(0, 1).

The proof of the Proposition 4 is similar to proof of Proposition 2.
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5. INFERENCES ABOUT F (x)

In this section, we now consider a pointwise estimate of F (x). It supposed
that we interest with the proportion, F (x) of population below a specified value
X. We know that 100(1 − α)% confidence interval for F (x) using SRS is as
follows:

F̂SRS(x)± Zα
2

√
V̂ (F̂SRS(x))

where Zα
2

is the upper quantile of the standard normal distribution and

V̂ (F̂SRS(x)) =
1

n− 1
F̂SRS(x)

(
1− F̂SRS(x)

)
.

Also, Stokes and Sager [23] gave a 100(1− α)% for F (x) using RSS.

F̂RSS(x)± Zα
2

√
V̂ (F̂RSS(x))

where

V̂ (F̂RSS(x)) =
1

(l − 1)k

k∑
i=1

F̂(i)(x)
(

1− F̂(i)(x)
)
.

According to Proposition 2, an approximate 100(1−α)% confidence intervals can
be constructed when l is larger. For F̂PRSSO(x), confidence interval of F (x) can
be obtained as

p

Zα
2
≤ F̂PRSSO(x)− E(F̂PRSSO(x))√

V̂ (F̂PRSSO(x))
≤ Z1−α

2


= 1− α,

(5.1)

where

V̂ (F̂PRSSO(x)) =
1

(l − 1)k2

[(
k − 1

2

)
F̂(r)(x)(1− F̂(r)(x))

+

(
k − 1

2

)
F̂(s)(x)(1− F̂(s)(x))

+F̂(m)(x)(1− F̂(m)(x))
]

By solving the Equation (5.1) for E(F̂PRSSO(x)), the limits are obtained.

Lower Bound(LB) = F̂PRSSO(x)− Z1−α
2

√
V̂ (F̂PRSSO(x)),

and

Upper Bound(UB) = F̂PRSSO(x) + Zα
2

√
V̂ (F̂PRSSO(x)).
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Thus, 100(1 − α)% confidence interval of F (x) can be found by solving the fol-
lowing equations, numerically or any suitable method such as Newton Raphson.

2LB =
1

k
(k − 1)

(
F(r)(x) + F(s)(x)

)
+ 2F(m)(x)

= Ψ(F ),
(5.2)

and

2UL =
1

k
(k − 1)

(
F(r)(x) + F(s)(x)

)
+ 2F(m)(x)

= Ψ(F ).
(5.3)

For confidence interval of F (x) based on F̂PRSSE (x),

p

Zα
2
≤ F̂PRSSE (x)− E(F̂PRSSE (x))√

V̂ (F̂PRSSE (x))
≤ Z1−α

2


= 1− α,

(5.4)

where

V̂ (F̂PRSSE (x)) =
1

2(l − 1)k

[
F̂(r)(x)(1− F̂(r)(x))

+F̂(s)(x)(1− F̂(s)(x))
]

Thus, the limits are obtained as

LB = F̂PRSSE (x)− Z1−α
2

√
V̂ (F̂PRSSE (x)),

and

UB = F̂PRSSE (x) + Zα
2

√
V̂ (F̂PRSSE (x)).

100(1 − α)% confidence interval of F (x) can be found by solving the following
equations,

(5.5) 2LB = F(r)(x) + F(s)(x) = Ψ(F ),

and

(5.6) 2UL = F(r)(x) + F(s)(x) = Ψ(F ).

Note that Ψ(F ) is increasing function in F (x) so the solutions of the Equations
(5.2), (5.3), (5.5) and (5.6) should be unique. Similarly, confidence intervals are
obtained using F̂ ∗PRSSO(x) and F̂ ∗PRSSE (x).
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5.1. A REAL DATA APPLICATION

In the literature, the distribution function estimators are applied to real
data such as bilirubin level [19], lung cancer [27] and airquality [26]. The num-
ber of case studies can be increased. In the case studies, it can be seen that
some quantiles are important hence the probabilities corresponding to them are
substantial as well. Thus, if we can estimate the distribution function, these
probabilities can also be estimated.

In this section, we consider body mass index data (BMI) to give an illustra-
tive example. BMI is a measure for indicating nutritional status in adults. BMI is
frequently used to screen for weight categories that may lead to health problems.
A table that includes the weight categories was reported by World Health Organi-
zation (WHO), http://www.euro.who.int/en/health-topics/disease-prev
ention/nutrition/a-healthy-lifestyle/body-mass-index-bmi and this cat-
egories are given by Table 3. According to WHO, the health problems caused

BMI Nutritional status

Below 18.5 Underweight
18.5− 24.9 Normal weight
25.0− 29.9 Pre-obesity
30.0− 34.9 Obesity class I
35.0− 39.9 Obesity class II
Above 40 Obesity class III

Table 3: The weight categories

by obesity are as follows: premature death, cardiovascular diseases, high blood
pressure, osteoarthritis, some cancers and diabetes.

Orginal data includes 500 adult people (255 of 500 are women) and four
variables such as gender, height (m), weight (kg) and index (0: extremely weak,
1: weak, 2: normal, 3: overweight, 4: obesity and 5: extreme obesity). This
data can be available in https://www.kaggle.com/yersever/500-person-gen

der-height-weight-bodymassindex. However, we assume a population that
includes 255 women and their measurements such as height (m) and weight (kg)
in our study. Note that we limited the population size as 255 to give sample
observations. Thus, we aimed to illustrate the application, clearly. Also, it is
supposed that the proportion of women in the Obesity class III is close to 0.5,
1 − F (40) ≈ 0.5. Therefore, using PRSS with p = 0.1 is appropriate in this
case. From this population, n = 100 observations are selected using PRSS with
p = 0.1. To obtain PRSS, we take the set size and the number of cycles as k = 5
and l = 20, respectively.

In the process PRSS, 25 observations are first selected at random among
255 women in jth cycle, j = 1, · · · , 20. Then, the 25 observations are assigned

http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex
https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex
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into 5 sets at random. Ranking the BMI of the 25 observations may be performed
by subjective ranking or according to a concomitant variable such as height of the
observations. Also, it is assumed that ranking is almost perfect. The ranked sets
are given as follows. In the sets, bold faced units represent the measured BMIs of

Set Ranked Units Measured Units

S1 X1[1]jX1[1]jX1[1]j ≤ X1[2]j ≤ X1[3]j ≤ X1[4]j ≤ X1[5]j X1[1]j

S2 X2[1]jX2[1]jX2[1]j ≤ X2[2]j ≤ X2[3]j ≤ X2[4]j ≤ X2[5]j X2[1]j

S3 X3[1]j ≤ X3[2]j ≤X3[3]jX3[3]jX3[3]j ≤ X3[4]j ≤ X3[5]j X3[3]j

S4 X4[1]j ≤ X4[2]j ≤ X4[3]j ≤ X4[4]j ≤X4[5]jX4[5]jX4[5]j X4[5]j

S5 X5[1]j ≤ X5[2]j ≤ X5[3]j ≤ X5[4]j ≤X5[5]jX5[5]jX5[5]j X5[5]j

Table 4: Selected units in PRSS for jth cycle, j = 1, · · · , 20

5 observations among 25 observations. For the first cycle, the measured BMIs are
X1[1]1 = 18.52, X2[1]1 = 12.75, X3[3]1 = 32.45, X4[5]1 = 52.89 and X4[5]1 = 66.66.

These BMIs are given in the first row of Table 5. 1 − F̂PRSSO(40) = 0.41 is
obtained according to the sample. Also, 95% confidence interval of 1−F (40) ≈ 0.5
is (0.35, 0.46).

6. CONCLUSION

In this study, PRSS procedure is considered to estimate the distribution
function. Properties of the EDF using PRSS are investigated. We examined how
well the estimator performs in comparison with its SRS and RSS counterparts.
Finally, we can summarize the following remarks:

1. Whether the ranking is perfect or not, the EDFs based on PRSS are unbi-
ased as F (x) gets closer to 1, 0.5 and 0.

2. Compared with F̂SRS(x), the EDFs based on PRSS are more efficient under
perfect and imperfect ranking.

3. If there is a known prior information that the value of F (x) gets closer to
0.1, PRSS with p = 0.4 can be preferred instead of RSS whether the ranking
is perfect or not.

4. Also, PRSS with p = 0.1 can be preferred instead of RSS when F (x) is
close to 0.5.

5. As in our application for BMI data, PRSS with p = 0.1 is recommended
when estimating for the center of the distribution.

6. Also, it is suggested to use PRSS with p = 0.4 when estimating the extremes
of the distribution.

7. In many studies on EDF estimators based on RSS and its modifications,
theoretical results are presented for perfect ranking case while empirical
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results are presented for imperfect ranking case. Empirical results are ob-
tained by running Monte Carlo simulations in the studies. Unlike the other
studies, the present paper shows that the proposed EDF estimator can be
examined theoretically by using Frey [7]’s ranking error model even in the
case of imperfect ranking.

As a future work, the moment-based (MB) and maximum likelihood (ML) esti-
mators of the CDF can be considered. A comparable study of the MB, ML and
the EDF estimators based on PRSS can be meaningful. The authors continue to
work towards this goal.

ACKNOWLEDGMENTS

The authors thank to Professor Omer Ozturk for providing the R function
that is used in computation of ranking error probabilities. Also, the authors are
grateful to the referees and the editor for helpful comments.

APPENDIX

Proof of Theorem 1

To prove this theorem, we follow the Proof of Lemma 2.1 in Samawi and
Al-Sagheer[19] and the Proof of Theorem 1 in Stokes and Sager[23].

(1) Units in PRSSO are sampled from specific groups. It is assumed that

tr = (k−1)l
2 observations comes from f(r)(x), ts = (k−1)l

2 from f(s)(x) and
tm = l from f(m)(x), where f(m)(x) is density function of mth order statis-
tic. Note that t1 = · · · = tr−1 = 0, tr+1 = · · · = tm−1 = 0, tm+1 =
· · · = ts−1 = 0 and ts+1 = · · · = tk = 0. This is accomplished by
first randomly select R from 1, · · · , k with replacement and if r = 1,
r = k or r = m then observe Y according to Fr(x), otherwise reject r.
In SRS the order in which the groups are sampled is random, by rear-
ranging and relabeling, a realization (y1, · · · , ykl) of (Y1, · · · , Ykl) becomes
(Zr1, · · · , Zr (k−1)l

2

, Zm1, · · · , Zml, Zs1, · · · , Zs (k−1)l
2

) the groups {Zij , Zmj′ ; i =

r, s; j = 1, · · · , (k−1)l2 ; j
′

= 1, · · · , l}. It is necessary to specify a consistent
order for the units of the PRSSO and SRS to compare their distributions
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logically. Otherwise, because of the arbitrariness of listing order, a coor-
dinate wise of PDF’s or CDF’s between PRSSO and SRS might imply
unequal distributions, although the only difference would be a permutation
of coordinates. Given

T =

(
0, · · · , 0, tr =

(k − 1)l

2
, 0, · · · , 0, tm = l, 0 · · · , 0,

ts =
(k − 1)l

2
, 0, · · · , 0

)
and P (T = ti) = 1

k , i = 1, · · · , k then, there are (kl)!
tr!···tm!···ts! = (kl)!((

(k−1)l
2

)
!
)2
l!

rearrangements of Y yielding the same Z. So the conditional CDF of Y
given T = t is

1

P (T = t)
P
{
Zr1 ≤ ar1, · · · , Zr (k−1)l

2

≤ a
r
(k−1)l

2

,

Zm1 ≤ am1, · · · , Zml ≤ aml,

Zs1 ≤ as1, · · · , Zs (k−1)l
2

≤ a
s
(k−1)l

2
;T

}
=

1
(kl)!

(tr!···tm!···ts!)
(
1
k

)tr · · · ( 1k)tm · · · ( 1k)ts×
∑

(k−1)l
2∏
i=1

(
F(r)(ari)×

1

k

)(
F(s)(asi)×

1

k

)
×

l∏
i′=1

(
F(m)(ami′ )×

1

k

)
where the sum is over all rearrangements of Y consistent with T = t. So

∑
(k−1)l

2∏
i=1

(
F(r)(ari)× F(s)(asi)

) l∏
i
′
=1

(
F(m)(ami′ )

)
(kl)!((

(k−1)l
2

)
!
)2
l!

=

(k−1)l
2∏
i=1

(
F(r)(ari)× F(s)(asi)

) l∏
i′=1

(
F(m)(ami′ )

)
(2) It is assumed that tr = lk

2 observations come from f(r)(x) and ts = lk
2 from

f(s)(x), where f(r)(x) and f(s)(x) are density functions of rth and sth order
statistics, respectively. This proof follows from the part (1).



Estimation of Distribution Function Using PRSS 23

Proof of Proposition 1

(a) For F̂PRSSO(x),

i.

E
(
F̂PRSSO(x)

)
=

1

lk

 l∑
j=1

k−1
2∑
i=1

E
(
I
(
Xi(r)j ≤ x

))

+
l∑

j=1

k−1
2∑
i=1

E
(
I
(
X k+1

2
+i(s)j ≤ x

))

+

l∑
j=1

E
(
I
(
Xm(m)j ≤ x

))
I
(
Xi(r)j ≤ x

)
, I
(
X k+1

2
+i(s)j ≤ x

)
and I

(
Xm(m)j ≤ x

)
have bernoulli

distributions with parameters F(r)(x), F(s)(x) and F(m)(x), respec-
tively. Therefore,

E
(
I
(
Xi(r)j ≤ x

))
= F(r)(x),

E
(
I
(
X k+1

2
+i(s)j ≤ x

))
= F(s)(x) and

E
(
I
(
Xm(m)j ≤ x

))
= F(m)(x).

Thus,

E
(
F̂PRSSO(x)

)
=
(
1
2 −

1
2k

) (
F(r)(x) + F(s)(x)

)
+ 1

kF(m)(x).

ii.

V
(
F̂PRSSO(x)

)
=

1

lk

 l∑
j=1

k−1
2∑
i=1

V
(
I
(
Xi(r)j ≤ x

))

+
l∑

j=1

k−1
2∑
i=1

V
(
I
(
X k+1

2
+i(s)j ≤ x

))

+

l∑
j=1

V
(
I
(
Xm(m)j ≤ x

))
Since I

(
Xi(r)j ≤ x

)
, I
(
X k+1

2
+i(s)j ≤ x

)
and I

(
Xm(m)j ≤ x

)
have

bernoulli distribution, variance of these indicator functions are given
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bellow,

V
(
I
(
Xi(r)j ≤ x

))
= F(r)(x)

(
1− F(r)(x)

)
V (I(X k+1

2
+i(s)j ≤ x)) = F(s)(x)(1− F(s)(x))

V
(
I
(
Xm(m)j ≤ x

))
= F(m)(x)

(
1− F(m)(x)

)
.

Thus, variance of the estimator can be obtained

V
(
F̂PRSSO(x)

)
=

1

lk2

[(
k − 1

2

)
F(r)(x)

(
1− F(r)(x)

)
+

(
k − 1

2

)
F(s)(x)

(
1− F(s)(x)

)
+F(m)(x)

(
1− F(m)(x)

)]

(b) E
(
F̂PRSSE (x)

)
and V

(
F̂PRSSE (x)

)
can be proved by using the same steps

in Proof (a).

Proof of Proposition 2

Following Samawi and Al-Sagheer[19] and Kim et al.[12],

(a) Let Zj = 1
k

 k−1
2∑
i=1

(
I(Xi(r)j ≤ x) + I

(
X k+1

2
+i(s)j ≤ x

))
+ I(Xm(m)j ≤ x)

,

j = 1, · · · , l. Since Zj are independent and identically with finite mean and
variance, then based on Central Limit Theorem Z̄ − E(Zj)(

var(Zj)
l

)1/2
 D−→ N(0, 1)

(b) Similarly, this part can be proved by assuming

Zj = 1
k

k
2∑
i=1

(
I(Xi(r)j ≤ x) + I

(
X k

2
+i(s)j ≤ x

))
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Percentile ranked set sample

PRSS
l 1st 1st 5th 5th 3rd

1 18.52 12.75 52.89 66.66 32.45
2 23.59 28.20 43.17 53.01 37.57
3 12.75 20.90 66.66 40.75 39.21
4 21.37 20.96 43.11 68.96 30.48
5 16.38 28.07 57.96 57.70 32.42
6 29.17 30.64 52.89 66.66 28.67
7 20.90 22.65 67.06 52.89 35.58
8 25.98 17.43 43.56 57.70 32.42
9 22.63 33.96 44.63 71.93 32.15
10 24.12 22.45 57.96 54.86 30.42
11 20.02 28.07 48.15 59.49 33.77
12 17.43 27.35 68.41 59.69 35.58
13 18.34 16.04 51.17 55.66 32.42
14 24.12 25.46 44.90 53.01 44.79
15 28.07 20.52 32.69 59.94 39.44
16 12.75 35.29 67.94 78.85 49.34
17 33.88 17.09 59.84 71.93 43.56
18 21.37 20.52 39.06 78.85 52.80
19 22.10 32.15 43.17 52.26 39.68
20 23.23 26.40 36.95 63.38 23.59

Table 5: Sample observations that are obtained using PRSS
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