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1. INTRODUCTION

Censored data occurs commonly in reliability and survival analysis. There1

are mainly two censoring schemes which are Type–I censoring where the life-2

testing experiment stops at a predetermined time, say T and Type–II censoring,3

where the life–testing experiment stops when predetermined number of failures,4

say m, are observed. Epstein [19] proposed the hybrid censoring scheme which5

is the mixture of Type–I and Type–II censoring schemes. The hybrid censoring6

scheme has become quite popular in the reliability and life–testing experiments7

so far. For example, see the papers of of Chen and Bhattacharya [13], Childs8

et al. [15], Kundu and Joarder [25], Balakrishnan and Kundu [10]. It is worth9

mentioning that the book of f Balakrishnan and Cramer [8] discussed the topics10

of progressive censoring and progressive hybrid censoring in detail as separate11

chapters. In these schemes, it is allowed to remove the units only at the terminal12

points of the experiments. However, Kundu and Joarder [25] introduced another13

scheme which is called the Type–I progressively hybrid censoring scheme (Type–14

I PHCS) such that it allows removals of units during the test time. For more15

information on progressive censoring, we refer to to Balakrishnan and Aggarwala16

[7], Balakrishnan [6] and Balakrishnan and Cramer [8]. Type-I PHCS can be17

viewed as a mixture of Type-I progressive censoring and hybrid censoring as18

follows: Assume that there are n identical units in a lifetime experiment with19

the progressive censoring scheme (R1, R2, ..., Rm), 1 ≤ m ≤ n and the lifetime20

experiment ends at a predetermined time T ∈ (0,∞) and n,m,Ri’s are all fixed21

non–negative integers. At the time of first failure, say X1:m:n, R1 units randomly22

removed from the remaining n − 1 units. Similarly, when the second failure23

occurs at the time X2:m:n, R2 units are removed from the remaining n− R1 − 224

units. This process continues up to the end of experiment which occurs at the25

time min (Xm:m:n, T ). Therefore, if the mth failure occurs before time T , the26

experiment ends at the time Xm:m:n and all the remaining units Rm = n −27 ∑m−1
i=1 Ri−m are removed. However, if the experiment ends at time T with only28

J failures, 0 ≤ J < m, then all the remaining units R∗J = n −
∑J

i=1Ri − J are29

removed and the test ends at time T . Therefore, under Type–I PHCS we have30

the following two cases:31

� Case I: {X1:m:n, X2:m:n, ..., Xm:m:n} if Xm:m:n ≤ T .32

� Case II: {X1:m:n, X2:m:n, ..., XJ :m:n} if XJ :m:n < T < XJ+1:m:n.33

Due to the fact that the lifetime distributions of many experimental units34

can be modeled by a two–parameter Weibull distribution which is one of the35

most commonly used model in reliability and lifetime data analysis, we consider36

the Weibull distribution in this paper. The probability distribution function37

(PDF) and cumulative distribution function (CDF) of two parameter Weibull38

distribution are given as follows39

f (x;α, β) = αβxα−1exp {−βxα}(1.1)
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F (x;α, β) = 1− exp {−βxα}(1.2)

where α > 0 is the shape parameter and β > 0 is the scale parameter.1

Ng et al. [34] used the estimation method, along with Fisher information2

matrix, in the context of optimal progressive censoring schemes for the Weibull3

distribution. Banerjee and Kundu [11] considered the statistical inference on4

Weibull parameters when the data are Type–II hybrid censored, maximum like-5

lihood estimation (MLE), approximate MLE and Bayes estimation techniques6

were studied by the authors. Balakrishnan and Kateri [9] proposed an alterna-7

tive approach based on a graphical method, which also shows the existence and8

uniqueness of the MLEs. Lin et al. [28] studied the MLEs and the approxi-9

mate MLEs (AMLEs) of the parameters of Weibull distribution under adaptive10

type–II progressive hybrid censoring. Huang and Wu [21] discussed the maxi-11

mum likelihood estimation and Bayesian estimation of Weibull parameters under12

progressively type–II censoring scheme. Lin et al. [30] investigated the maximum13

likelihood estimation and Bayesian estimation for a two–parameter Weibull dis-14

tribution based on adaptive type–I progressively hybrid censored data which was15

introduced by Lin and Huang [29]. Jia et al. [20] studied the exact inference on16

Weibull parameters under multiple type–I censoring. Mokhtari et al. [32] dis-17

cussed the approximate and Bayesian inferential procedures for the progressively18

type–II hybrid censored data from the Weibull distribution. However, this type of19

censoring is identical to what we called as type–I progressive hybrid censored data.20

This paper will be different from [32] in three directions. Firstly, we introduce a21

new approach for inference about the Weibull distribution based on expectation–22

maximization (EM) and stochastic expectation–maximization (SEM) methods.23

We will show that both EM and SEM will result to have better estimates in the24

sense of having smaller biases and mean square errors. Secondly, we will derive25

the shrinkage estimators based on the ML estimates resulting to have higher26

deficiencies. Finally, in the Bayesian approach, different loss functions such as27

squared error loss (SEL), linear–exponential (LINEX), and general entropy loss28

(GEL) will be applied with both informative and non–informative priors.29

The rest of the paper is organized as follows: In Section 2, MLE of the30

parameters are introduced by using Newton–Raphson (NR) algorithm, EM al-31

gorithm and SEM algorithm, also the Fisher information matrix is obtained.32

In Section 3, Bayes estimation for the parameters of Weibull distribution under33

the assumption of independent priors using different loss functions such as SEL,34

LINEX and GEL loss functions. Moreover, Tierney and Kadane [44] (T-K) ap-35

proximations under these loss functions are also computed and Markov-Chain36

Monte Carlo (MCMC) method is also presented to estimate the parameters. In37

Section 4, a shrinkage pre–test estimation method is discussed. Extensive Monte38

Carlo simulations are conducted and results are discussed in Section 5. A real39

data example is presented in Section 6 to illustrate the findings of the study.40

Finally, some conclusive remarks are given in Section 7.41
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2. Maximum Likelihood Estimation

Let X = (X1:m:n, . . . , Xr:m:n) represents the Type-I progressively hybrid1

censored sample of size r from a sample of size n drawn from a population with2

probability distribution given in Equation (1.1). Throughout this paper, we will3

denote Xi:m:n by X(i), i = 1, 2, . . . , r. Then the likelihood function of (α, β) given4

the observed data x can be written as5

L(α, β | x) ∝
r∏
i=1

f(x(i);α, β)
[
1− F (x(i);α, β)

]Ri[1− F (C;α, β)
]RT ,(2.1)

where r = m, C = x(m), RT = 0 in Case I, and r = d, C = T,RT = n − d −6 ∑d
i=1Ri in Case II. Based on the observed data, the log-likelihood function can7

be expressed as8

l (α, β | x) = lnL (α, β | x)

= r ln(αβ) + (α− 1)
r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

{
xα(i) (1 +Ri)

}
− βCαRT .(2.2)

Taking the derivatives of Equation (2.2) with respect to α and β and equating9

them to zero, one can obtain the following likelihood equations for α and β10

respectively11

∂l (α, β | x)

∂α
=

r

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

{
(1 +Ri)x

α
(i) ln

(
x(i)

)}
−βCα ln(C)RT = 0(2.3)

∂l (α, β | x)

∂β
=

r

β
−

r∑
i=1

{
xα(i) (1 +Ri)

}
− CαRT = 0.(2.4)

Solving Equation (2.4) yields the MLE of β which is given by12

β̂ =
r

Cα̂RT +
∑r

i=1

{
xα̂(i) (1 +Ri)

} .(2.5)

Now, substituting Equation (2.5) into (2.3), the MLE of α can be obtained by13

solving the following nonlinear equation:14

r

α̂
+
r
[∑r

i=1

{
(1 +Ri)x

α̂
(i) ln(x(i))

}
+RTCα̂ ln(C)

]
RTCα̂ +

∑r
i=1

{
xα̂(i) (1 +Ri)

} = 0.

The second partial derivatives of the log-likelihood equation are obtained15
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as follows:1

∂2l (α, β | x)

∂α2
= − r

α2
− β

r∑
i=1

{
(1 +Ri)x

α
(i) ln

(
x(i)

)2}
−βCα ln(C)2RT ,(2.6)

∂2l (α, β | x)

∂α∂β
= −

r∑
i=1

{
(1 +Ri)x

α
(i) ln

(
x(i)

)}
− Cα ln(C)RT(2.7)

∂2l (α, β | x)

∂β2
=
−r
β2
.(2.8)

Now, using Equations (2.6)–(2.8), the Fisher’s information matrix I (α, β)2

can be formed by3

I (α, β) = E

[
−∂2l(α,β|x)

∂α2 −∂2l(α,β|x)
∂α∂β

−∂2l(α,β|x)
∂α∂β −∂2l(α,β|x)

∂β2

]
.(2.9)

It is well-known that (see [27]) the distribution of MLEs
(
α̂, β̂

)
is a bivariate

normal distribution with

N
(
(α, β) , I−1 (α, β)

)
where I−1 (α, β) is the covariance matrix. Moreover, one can approximate the4

covariance matrix evaluated at (α̂, β̂) by the following observed information ma-5

trix6

I
(
α̂, β̂

)
=

[
−∂2l(α,β|x)

∂α2 −∂2l(α,β|x)
∂α∂β

−∂2l(α,β|x)
∂α∂β −∂2l(α,β|x)

∂β2

]
(α̂,β̂)

.(2.10)

2.1. Expectation-Maximization Algorithm

The EM algorithm proposed by Dempster et al. [17] can be used to ob-7

tain the MLEs of the parameters α and β. It is known that the EM algorithm8

converges more reliably than NR. Since Type-I PHCS can be considered as an9

incomplete data problem (see [33]), it is possible to apply EM algorithm to obtain10

the MLEs of the parameters. Now, let us denote the incomplete (censored) data11

by Z = (Z1, Z2, ..., Zr) where Zj =
(
Zj1, Zj2, ..., ZjRj

)
, j = 1, 2, ..., r such that12

Zj denotes the lifetimes of censored units at the time of x(j). Similarly, let ZT13

denotes the lifetimes of censored units at the time of T . Now, combining both14

the observed and censored data, one can obtain the complete data which is given15

by W = (X,Z). The corresponding likelihood equation of the complete data can16

be obtained as follows:17

LW (α, β|x) =
r∏
i=1

f(x(i);α, β)

Ri∏
j=1

f(zij ;α, β)


RT∏
j=1

f(zTj ;α, β)(2.11)



6 Yasin Asar and R. Arabi Belaghi

Therefore, the log-likelihood equation can be easily obtained by taking the natural1

logarithm of Equation (2.11) as follows:2

lW (α, β|x) = ln (LW (α, β|x)) =

r∑
i=1

ln
(
αβxα−1

(i) exp
{
−βxα(i)

})
+

r∑
i=1

Ri∑
j=1

ln
(
αβzα−1

ij exp
{
−βzαij

})
+

RT∑
j=1

ln
(
αβzα−1

Tj exp
{
−βzαTj

})

= n lnα+ n lnβ + (α− 1)
r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) + (α− 1)
r∑
i=1

Ri∑
j=1

ln (zij)

−β
r∑
i=1

Ri∑
j=1

zαij + (α− 1)

RT∑
j=1,r 6=m

ln (zTj)− β
RT∑

j=1,r 6=m
zαTj(2.12)

Note that the last two terms of Equation(2.12), should be considered only for3

the Case II. Based on the complete sample, the MLEs of the parameters α and4

β can be obtained by taking the derivatives of (2.12) with respect to α and β5

respectively and equating them to zero as follows:6

∂lW (α, β|x)

∂α
=

n

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) ln
(
x(i)

)
+

r∑
i=1

Ri∑
j=1

ln (zij)

−β
r∑
i=1

Ri∑
j=1

zαij ln (zij) +

RT∑
j=1,r 6=m

ln (zTj)− β
RT∑

j=1,r 6=m
zαTj ln (zTj) = 0,(2.13)

7

∂lW (α, β|x)

∂β
=

n

β
−

r∑
i=1

xα(i) −
r∑
i=1

Ri∑
j=1

zαij −
RT∑

j=1,r 6=m
zαTj = 0.(2.14)

Now, the conditional expectation of the log–likehood equation of the complete8

data given the observations should be computed in the E-step of the algorithm.9

However, the following conditional expectations are necessary to be computed:10

E

(
∂lW (α, β|x)

∂α

∣∣∣ x(i), T

)
=

n

α
+

r∑
i=1

ln
(
x(i)

)
− β

r∑
i=1

xα(i) ln
(
x(i)

)
+

r∑
i=1

Ri∑
j=1

E
[
ln (Zij)

(
1− βZαij

) ∣∣∣ Zij > x(i)

]

+

RT∑
j=1,r 6=m

E
[
ln (ZTj)

(
1− βZαTj

) ∣∣∣ZTj > T
]
,(2.15)

11

E

(
∂lW (β, β | x)

∂β

∣∣∣x(i), T

)
=

n

β
−

r∑
i=1

xα(i) −
r∑
i=1

Ri∑
j=1

E
[
Zαij

∣∣∣Zij > x(i)

]

−
RT∑

j=1,r 6=m
E
[
ZαTj

∣∣∣ZTj > T
]
.(2.16)
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In order to compute the expectations given above, making use of the theorem1

proved in [33], the conditional probability function of the censored data given the2

observed data can be obtained as follows:3

f(zi|C∗, α, β) =
f(zi, α, β)

1− F (C∗, α, β)
, Zi > C∗(2.17)

such that C∗ = x(i) for i = 1, 2, . . . , r and C∗ = T for i = T . Thus, the following4

expectations can be obtained5

E1 (C∗, α, β) = E
[
Zα
∣∣∣Z > C∗

]
=

1

1− F (C∗, α, β)

∫ ∞
C∗

tαf(t)dt

=
e−βC

∗α

1− F (C∗, α, β)

(1 + βC∗α)

β
,(2.18)

6

E2 (C∗, α, β) = E
(

ln(Z) (1− βZα)
∣∣∣Z > C∗

)
=

1

1− F (C∗, α, β)

∫ ∞
C∗

ln(t) (1− βtα) f(t)dt.(2.19)

Since it is hard to obtain a closed form solution to Equation (2.19), the integral7

is approximated via Monte Carlo integration method in the simulation. After8

updating the missing data with the expectations above in the E–step, the log–9

likelihood function is maximized in the M–step at the current state, say α̂k and10

β̂k being the estimators of α and β and the following updating equations are11

computed:12

α̂k+1 = n

{
−

r∑
i=1

ln
(
x(i)

)
+ β̂k+1

r∑
i=1

xα̂k(i) ln
(
x(i)

)
−

r∑
i=1

RiE2

(
x(i), α̂k, β̂k+1

)
−RTE2

(
T, α̂k, β̂k+1

)}−1
(2.20)

13

β̂k+1 = n

{
r∑
i=1

xα̂k(i) +

r∑
i=1

RiE1

(
x(i), α̂k, β̂k

)
+RTE1

(
T, α̂k, β̂k

)}−1

.(2.21)

The EM estimates of (α, β) can be computed by an iterative procedure using14

Equation (2.21) and the iterations can be terminated when |α̂k+1−αk|+ |β̂k+1−15

βk| < ε where ε > 0 is a small real number.16

2.2. Stochastic Expectation-Maximization Algorithm

The computations in the E–step of EM algorithm is complex. Therefore,17

Wei and Tanner [46] proposed a Monte Carlo version of EM algorithm. However,18

the M–step of this algorithm may take so much time. Diebolt and Celeux [16]19

introduced a stochastic–EM (SEM) algorithm by considering a simulated values20
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from the conditional distribution. Asl et al. [4] used this algorithm successfully.1

In the SEM algorithm, firstly, one needs to generate Ri number of samples of zij2

where i = 1, 2, ..., r and j = 1, 2, ..., Ri using the following conditional CDF3

F
(
zij ;α, β|zij > x(i)

)
=

F (zij ;α, β)− F
(
x(i);α, β

)
1− F

(
x(i);α, β

) , zij > x(i).(2.22)

Now, using Equations (2.13) and (2.14), the estimators of (α, β) at the k+ 1 step4

of the algorithm can be obtained as follows:5

α̂k+1 = n

− r∑
i=1

ln
(
x(i)

)
+ β̂k+1

r∑
i=1

xα̂k(i) ln
(
x(i)

)
−

r∑
i=1

Ri∑
j=1

ln (zij)
(

1− β̂k+1z
α̂k
ij

)

−
RT∑

j=1,r 6=m
ln (zTj)

(
1− β̂k+1z

α̂k
Tj

)−1

(2.23)

6

β̂k+1 = n

 r∑
i=1

xα̂k(i) +
r∑
i=1

Ri∑
j=1

zα̂kij +

RT∑
j=1,r 6=m

zα̂kTj

−1

.(2.24)

Similarly, the iterations can be terminated when |α̂k+1 − αk| + |β̂k+1 − βk| < ε7

where ε > 0 is a small real number.8

2.3. Fisher Information Matrix

In this subsection, by making use of the idea of missing information princi-9

ple proposed by Louis [31], we can obtain the observed Fisher information matrix.10

Louis [31] suggested the following relation11

IX (ψ) = IW (ψ)− IW |X (ψ)(2.25)

where ψ = (α, β)′, IX (ψ) , IW (ψ) and IW |X (ψ) are the observed, complete and12

missing information matrices respectively. Now, the complete information matrix13

of a complete data set following the Weibull distribution can be obtained as14

IW (ψ) = −E
(
∂2 lnL
∂ψ2

)
= E

[ n
α2 + β

∑n
i=1 x

α
i

∑n
i=1 x

α
i lnxi∑n

i=1 x
α
i lnxi

n
β2

]
=

[
b11 b12

b21 b22

]
(2.26)

where15

b11 =
n

α2
+ nαβ2

∫ ∞
0

x2α−1 ln(x)

exp(βxα)
dx

b12 = b21 = nαβ

∫ ∞
0

x2α−1 ln(x)

exp(βxα)
dx

b22 =
n

β2



Estimation in Weibull Distribution Under Hybrid Censored Data 9

and lnL (ψ) = n lnα+ n lnβ + (α− 1)
∑n

i=1 xi + β
∑n

i=1 x
α
i is the corresponding1

log–likelihood equation. Moreover, the missing information matrix IW |X (ψ) is2

given by3

(2.27) IW |X (ψ) =
r∑
i=1

RiI
(i)
W |X (ψ) +RT I

∗
W |X (ψ)

where I
(i)
W |X (ψ) and I∗W |X (ψ) are the information matrices of a single observation4

from a truncated Weibull distribution from left at x(i) and T respectively, such5

that6

I
(i)
W |X (ψ) = −E

(
∂2 lnL
∂ψ2

ln
{
f
(
zij ;ψ|zij > x(i)

)})
.

Now to calculate the missing information matrix I
(i)
W |X (ψ), the conditional dis-7

tribution given in Equation (2.17) is used to obtain the following8

Lf = ln
(
f(zij | zij > x(i))

)
= ln(α) + ln(β) + (α− 1) ln(zij)− βzαij + βxα(i).

The second partial derivatives of Lf are obtained as follows9

∂2Lf
∂α2

= − 1

α2
− βzαij ln(zij)

2 + βxα(i) ln(x(i))
2

∂2Lf
∂α∂β

= −zαij ln(zij) + xα(i) ln(x(i))

∂2Lf
∂β2

= − 1

β2
.

Now, in order to obtain the information matrices, the negative expected values10

of the quantities above are computed respectively as follows11

E

(
−
∂2Lf
∂α2

)
=

1

α2
+ βE4

(
x(i), α, β

)
− βxα(i) ln(x(i))

2

E

(
−
∂2Lf
∂α∂β

)
= E3

(
x(i), α, β

)
− xα(i) ln(x(i))

E

(
−
∂2Lf
∂β2

)
=

1

β2

where12

E3 (C∗, α, β) = E (Zα ln(Z) | Z > C∗) =
1

1− F (C∗, α, β)

∫ ∞
C∗

tα ln(t)f(t)dt

E4 (C∗, α, β) = E
(
Zα ln(Z)2 | Z > C∗

)
=

1

1− F (C∗, α, β)

∫ ∞
C∗

tα ln(t)2f(t)dt.

Using similar arguments, the information matrix I∗W |X (ψ) can also be computed13

easily. Then, using (2.25)–(2.26), the asymptotic variance-covariance matrix of14

ψ̂ can be computed by inverting the observed information matrix IX

(
ψ̂
)

. Note15

that ψ̂ is computed using the NR estimates.16
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3. Bayesian Estimation

In this section, following Kundu [26], we consider the Bayesian estima-1

tion for the parameters of the Weibull distribution under the assumption that2

the random variables α and β have independent gamma priors such that α ∼3

Gamma(a, b) and β ∼ Gamma(c, d). Therefore, the joint prior density of α and4

β can be written as5

π (α, β) ∝ αa−1βc−1exp{−(bα+ dβ)}, a, b, c, d > 0.

Now, the posterior distribution of α and β can be obtained as follows6

π (α, β | x) =
L (α, β | x)π (α, β)∫∞

0

∫∞
0 L (α, β | x)π (α, β) dαdβ

=

(∏r
i=1 x

α−1
(i)

)
βc+r−1αa+r−1

Γ(c+ r)Ψ(a, c,x)
exp

{
d− bα+

r∑
i=1

(1 +Ri)x
α
(i) + CαRT

}
(3.1)

where7

Ψ(a, c,x) =

∫ ∞
0

αa+r−1exp {−bα}
(∏r

i=1 x
α−1
(i)

)
[
d+

∑r
i=1(1 +Ri)xα(i) + CαRT

]a+c+r dα.

In this paper, three different loss functions are considered. One of them is8

the most commonly used squared error loss function (SEL) which is defined as9

follows:10

LS
(
t̂(ψ), t(ψ)

)
=
(
t̂(ψ)− t(ψ)

)2
where t̂(ψ) is an estimator of t(ψ). SEL is a symmetric loss function which11

gives equal weights to both underestimation and overestimation. However, in12

certain situation overestimation and underestimation may have serious conse-13

quences ([37]). In such cases using SEL may not be appropriate. One remedy is14

to use linear-exponential (LINEX) loss function. LINEX is an asymmetric loss15

function introduced by Varian [45] as follows16

LL
(
t̂(ψ), t(ψ)

)
= eν(t̂(ψ)−t(ψ)) − ν

(
t̂(ψ)− t(ψ)

)
− 1, ν 6= 0.

The LINEX loss function is a convex function whose shape is determined by the17

value of ν. The negative (positive) value of ν gives more weight to overestimation18

(underestimation) and its magnitude reflects the degree of asymmetry. It is seen19

that, for ν = 1, the function is quite asymmetric with overestimation being20

costlier than underestimation. If ν < 0, it rises almost exponentially when the21

estimation error t̂(ψ) − t(ψ) < 0 and almost linearly if t̂(ψ) − t(ψ) > 0. For22

small values of |ν|, the LINEX loss function is almost symmetric and not far23

from squared error loss function.24
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Under the SEL function, the Bayes estimators of α and β which are the1

expected values of the corresponding posterior distributions are computed respec-2

tively as follows3

α̂S = E (π (α | x)) =
Ψ(a+ 1, c− 1,x)

Ψ(a, c,x)
(3.2)

and4

β̂S = E (π (β | x)) = (a+ c+ r)
Ψ(a, c+ 1,x)

Ψ(a, c,x)
.(3.3)

Since the Bayes estimators given above includes the complicated integral function5

Ψ(a, c+ 1,x) we also consider using the Bayes estimate of t(ψ) under the LINEX6

loss function is given by7

t̂L(ψ) = −1

ν
ln
[
Et

(
e−νt(ψ) | x

)]
= −1

ν
ln

[∫ ∞
0

∫ ∞
0

e−νt(ψ)π(α, β | x)dαdβ

]
.

Another asymmetric loss function that gained more attention is the general en-8

tropy loss (GEL) function given by9

LGEL
(
t̂(ψ), t(ψ)

)
=

(
t̂(ψ)

t(ψ)

)κ
− κ ln

(
t̂(ψ)

t(ψ)

)
− 1, κ 6= 0

where κ is the shape parameter showing the departure from symmetry. When10

κ > 0, the overestimation is considered to be more serious than underestimation11

and for κ < 0 vice versa. The Bayes estimator under GEL function is given by12

t̂GEL(ψ) =
[
Et
(
t(ψ)−κ | x

)]−1/κ
=

[∫ ∞
0

∫ ∞
0

t(ψ)−κπ(α, β | x)dα dβ

]−1/κ

.

3.1. Tierney-Kadane Approximation

In this subsection, the approximation method of Tierney and Kadane [44]13

is used to obtain the approximate Bayes estimators under SEL, LINEX and GEL14

loss functions. Now, we consider the following functions15

∆(α, β) =
1

n
ln[L(α, β | x)π(α, β)],(3.4)

∆∗(α, β) =
1

n
ln[L(α, β | x)π(α, β)t(ψ)].(3.5)

Now assume that (α̃∆, β̃∆) and (α̃∆∗ , β̃∆∗) respectively maximize the functions16

∆(α, β) and ∆∗(α, β). Then the approximation method of Tierney and Kadane17

[44] is given by18

t̃SEL(α, β) =

√
|Σ∗|
|Σ|

exp
[
n
(

∆∗1

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
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where |Σ| and |Σ∗| are the negative of inverses the second derivative matrices1

of ∆ (α, β) and ∆∗1 (α, β) respectively obtained at (α̃∆, β̃∆) and (α̃∆∗ , β̃∆∗). The2

function ∆(α, β) can be easily obtained by using the Equation (3.4) as follows3

∆(α, β) =
1

n

[
ln(M) + (α− 1)

r∑
i=1

ln(x(i))− β

(
d+ bα+

r∑
i=1

(1 +Ri)x
α
(i) + CαRT

)
+(a+ c+ r − 1) ln(β) + (a+ r − 1) ln(α)](3.6)

where M = dcba

Γ(c)Γ(a) . Now, differentiating Equation (3.6) with respect to α and β4

solving for these parameters, one gets the following equations5

α̃∆ = (a+ r − 1)

[
β

(
b+

r∑
i=1

(1 +Ri)x
α
(i) + CαRT

)
−

r∑
i=1

ln(x(i))

]−1

,

β̃∆ = (a+ c+ r − 1)

[
r∑
i=1

(1 +Ri)x
α
(i) + CαRT + d+ bα

]−1

.

Since it is easy to obtain the second derivatives and the related Hessian matri-6

ces, we skip this part. Thus under the SEL function, the approximate Bayes7

estimators are computed by8

α̃SEL =

√
|Σ∗|
|Σ|

exp
[
n
(

∆∗1α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
,

β̃SEL =

√
|Σ∗|
|Σ|

exp
[
n
(

∆∗1β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))]
where ∆∗1α (α, β) = ∆ (α, β)+ 1

n ln(α) for t(α, β) = α and ∆∗1β (α, β) = ∆ (α, β)+9

1
n ln(β) for t(α, β) = β.10

One can also compute the Bayes estimators under the LINEX loss and get11

t̃LINEX(α, β) =

√
|Σ∗|
|Σ|

exp
[
n
{

∆∗2

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

)}]
.

Letting t(α, β) = e−να, one gets ∆∗2α (α, β) = ∆ (α, β)− 1
nνα and letting t(α, β) =12

e−νβ , ∆∗2β (α, β) = ∆ (α, β) − 1
nνβ. Thus, approximate Bayes estimators under13

LINEX function are computed as14

α̃LINEX = −1

ν
ln

(√
|Σ∗|
|Σ|

exp
[
n
(

∆∗2α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])
,

β̃LINEX = −1

ν
ln

(√
|Σ∗|
|Σ|

exp
[
n
(

∆∗2β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])
.

Finally, letting t(α, β) = α−κ, one gets ∆∗3α (α, β) = ∆ (α, β)− κ
n ln(α) and15

letting t(α, β) = β−κ, ∆∗3β (α, β) = ∆ (α, β)− κ
n ln(β). Thus, approximate Bayes16
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estimators under GEL function are obtained by1

α̃GEL =

(√
|Σ∗|
|Σ|

exp
[
n
(

∆∗3α

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])−1/κ

,

β̃GEL =

(√
|Σ∗|
|Σ|

exp
[
n
(

∆∗3β

(
α̃∆∗ , β̃∆∗

)
−∆

(
α̃∆, β̃∆

))])−1/κ

.

3.2. MCMC Method

Metropolis–Hastings (MH) algorithm, a method for generating random2

samples from the posterior distribution using a proposal density, is considered3

in this subsection. A symmetric proposal density of type q(θ′|θ) = q(θ|θ′) may4

be considered generally, where θ is the parameter vector of the distribution con-5

sidered. Following Dey et al. [18], we consider a bivariate normal distribution6

as the proposal density such that q(θ′|θ) = N(θ|Vθ) where Vθ is the covariance7

matrix and θ = (α, β). Although, the bivariate normal distribution may generate8

negative observations, the domain of both shape and scale parameters of Weibull9

distribution is positive. Therefore, the following steps of MH algorithm is used10

to generate MCMC sample from the posterior density given by (3.1)11

(1) Set the initial parameter values as θ = θ0.12

(2) For j = 1, 2, ..., N , repeat the following steps:13

(i) Set θ = θj−114

(ii) Generate new parameters λ from bivariate normal N2 (ln(θ),Vθ)15

(iii) Compute θnew = exp(λ)16

(iv) Calculate γ = min
(

1, π(θnew|x)θnew
π(θ|x)θ

)
17

(v) Set θj = θnew with probability λ, otherwise θj = θ.18

After generating the MCMC sample, some of the initial samples, say N0, can19

be discarded as burn-in process and the estimations can be computed via the20

remaining ones (M = N − N0) under SEL, LINEX and GEL loss functions as21

follows22

t̂SEL(ψ) =
1

M

M∑
i=1

t(ψi),

t̂LINEX(ψ) = −1

ν
ln

(
1

M

M∑
i=1

exp (−νt(ψi))

)
,

t̂GEL(ψ) =

(
1

M

M∑
i=1

(
t(ψi)

−κ))−1/κ

.
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The main advantage of MCMC method over Tierney–Kadane method is that the1

MCMC samples can also be used to compute highest posterior density (HPD)2

intervals. Chen and Shao [14] proposed a method to compute the HPD intervals3

using MCMC samples. This method has been used in the literature extensively.4

Now, consider the posterior density π(θ|x). Assume that the pth quantile of5

the distribution is given by θ(p) = inf {θ : Π(θ|x) ≥ p; 0 < p < 1} where Π(θ|x)6

denotes the posterior distribution function of θ. Now, for a given θ∗, a simulation7

consistent estimator of Π(θ∗|x) can be computed as8

Π(θ∗|x) =
1

M

M∑
i=1

I(θ ≤ θ∗)

where I(θ ≤ θ∗) is an indicator function. Then, the estimate of Π(θ∗|x) is given9

as10

Π̂(θ∗|x) =


0 if θ∗ < θ(N0)∑i

j=N0
γj if θ(i) < θ∗ < θ(i+1)

1 if θ(M)

where γj = 1/M and θ(j) is the jth ordered value of θj . θ
(p) can be approximated11

by the following12

θ(p) =

{
θ(N0) if p = 0

θ(j) if
∑i−1

j=N0
γj < p <

∑i
j=N0

γj

Now, one can construct the 100(1− p)% confidence intervals where 0 < p < 1 as13 (
θ̂j/s, θ̂(j+[(1−p)s])/s

)
, j = 1, 2, ..., s− [(1− p)s] such that [v] denotes the greatest14

integer less than or equal to v. At the end, the HPD credible interval of θ is the15

one having the shortest length.16

4. Shrinkage Estimation

In the problem of statistical inference there may be some non-sample prior17

information that practitioner may have from previous experiences or knowledge18

Saleh [39]. For example, medical experts may know the average time of that a19

vaccine may take to relief a pain according their medical knowledge. This non-20

sample Prior information on the parameters in a statistical model generally leads21

to an improved inference procedure in problems of statistical inference. Restricted22

models arise from the incorporation of the known prior information in the model23

in the form of a constraint. The estimators obtained from restricted (unrestricted)24

model is known as the restricted (unrestricted) estimators. The results of an25

analysis of the restricted and unrestricted models can be weighted against loss26

of efficiency and validity of the constraints in deciding a choice between these27

two extreme inference methods, when a full confidence may not be in the prior28

information (see [2]).29
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Bancroft [12] was the first to consider a pre–test procedure when there is1

doubt that the prior information is not certain (uncertain prior information).2

After the pioneering study [12], pre–test estimators has gained much attention.3

Thompson [43] defined an efficient shrinkage estimator. Following [43], shrinkage4

estimation of the Weibull parameters has been discussed by a number of authors,5

including [41], [35], [36] and [42]. We also refer to the following book and papers6

among others: [22], [40], [39], [23].7

Now suppose that there is an uncertain prior information in the form of θ =8

θ0 where θ is the parameter of a distribution of interest. Our aim is to estimate9

θ using a pre–test estimation strategy and this prior information. Therefore, we10

consider the following hypothesis to check the validity of this information11

H0 : θ = θ0

H0 : θ 6= θ0

It is known that under H0, the asymptotic distribution of
√
D(θ̂ − θ0) is normal12

with N(0, σ2
θ̂
) and the related test statistics can be defined as follows13

WD =

(√
D(θ̂ − θ0)

σ
θ̂

)2

.

One can reject the null hypothesis when WD > χ2
1(λ) based on the distribution of14

WD where λ can be treated as the degree of trust in the prior information about15

the parameter such that θ = θ0, see [39] and [1]. Thus, the shrinkage pre–test16

estimator (SPT) can be defined as17

θ̂SPT = λθ0 + (1− λ)θ̂I
(
WD < χ2

1(λ)
)

where I(A) is the indicator of the set A.18

5. Monte Carlo Simulation Experiments

In this section, we conduct a simulation study to illustrate the perfor-19

mance of the different estimation techniques discussed in this paper by consid-20

ering (n,m) = (30, 15), different values of predetermined time T = 1.0, 2.0, and21

the real values of the parameters are chosen as α = 0.5 and β = 1.5 in all cases.22

The following three schemes are considered in the simulation23

� Scheme 1: R = (0m−1, n−m)24

� Scheme 2: R = (n−m, 0m−1)25

� Scheme 3: R = (25, 0m−6, n−m− 10)26
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It is noted that Scheme 1 is the type-II censoring such that n − m units are1

removed from the experiment at the time of the m-th failure; in Scheme 2, n −2

m units are removed at the time of the first failure. However, in Scheme 3,3

a progressive type-II censoring scheme allowing different numbers of censoring4

within the experiment is considered. The progressive type–II censored data from5

Weibull distribution is generated using algorithm proposed by Balakrishnan and6

Aggarwala [7]. The maximum likelihood estimators of α and β are obtained using7

NR, EM and SEM algorithms. In computing the Bayes estimates, two different8

priors are used such as the non–informative priors as a = b = c = d = 0 and the9

informative priors where we assume that we have past samples from Weibull(α, β)10

distribution, say K samples and their corresponding MLEs as
(
α̂j , β̂j

)
, j =11

1, 2, ...,K. Now, equating the sample means and variances of these values to the12

means and variances of gamma priors respectively and solving the equations for13

K = 1000, and n = 30 being the sample size of past samples, we obtain the14

following informative prior values, a = 43.77, b = 83.45, c = 24.24, d = 15.47.15

Bayes estimates are computed under SEL, LINEX, GEL loss functions.16

Notice that for the LINEX loss function, we considered two values of ν as ν =17

−0.5, 0.5 giving more weight to underestimation and overestimation respectively.18

Similarly, two choices of κ such as κ = −0.5, 0.5 are taken into account under GEL19

function. Moreover, 6000 MCMC samples are generated and MCMC estimations20

are computed under the listed loss function and respective parameter values. The21

first 1000 MCMC samples are considered as a burn–in sample so that the average22

values and MSEs are computed via the remaining 5000 samples for each replicate23

in the simulation.24

For the shrinkage estimators, the test statistic WD is calculated and then25

shrinkage pre–test (SPT) estimators are obtained. The distribution of the test26

statistic WD is computed under the null hypothesis, that is, H0 : θ = θ0. More-27

over, we take λ = 0.5 giving equal weight to both restricted and unrestricted28

estimators and the type one test error is set to 0.05 in testing the hypothesis,29

prior values of the parameters are taken as α0 = 0.7, β0 = 1.7 for practical pur-30

poses. The MLE shrinkage pre–test estimators are obtained using NR algorithm31

and also the Bayes estimator with T–K method under different loss functions.32

Totally, 5000 repetitions are carried out and average values (Avg), mean33

squared errors (MSE), confidence/ credible interval lengths (IL) and coverage34

probabilities (CP) are obtained for the purpose of comparison. MSEs of the35

estimators are computed as follows36

MSE
(
θ̂
)

=
1

5000

5000∑
i=1

(
θ̂i − θ

)2

where θ̂i is NR, EM, SEM, SPT estimators and Bayes estimators under SEL loss37

function in the ith replication. However, the MSEs of Bayes estimators under38
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Table 1:
Average values (Avg) and the corresponding MSEs of the esti-
mators NR, EM and SEM.

NR EM SEM
T R α β α β α β

1 Avg 0.5559 1.8433 0.5276 1.6415 0.5352 1.6669
MSE 0.0224 0.6931 0.0112 0.2207 0.0139 0.2788

1 2 Avg 0.5279 1.6480 0.5239 1.5958 0.5294 1.6065
MSE 0.0158 0.3385 0.0135 0.1772 0.0141 0.1946

3 Avg 0.5435 1.7540 0.5315 1.6490 0.5330 1.6485
MSE 0.0175 0.5108 0.0127 0.2552 0.0131 0.2647

1 Avg 0.5559 1.8433 0.5276 1.6416 0.5353 1.6670
MSE 0.0224 0.6930 0.0112 0.2206 0.0139 0.2788

2 2 Avg 0.5280 1.6412 0.5233 1.5947 0.5287 1.6020
MSE 0.0137 0.3045 0.0124 0.1723 0.0129 0.1869

3 Avg 0.5476 1.7676 0.5339 1.6578 0.5353 1.6567
MSE 0.0172 0.5001 0.0126 0.2494 0.0130 0.2593

Table 2:
Average values (Avg) and the corresponding MSEs of the Bayes
estimators with T-K approximation.

Informative Priors
SEL LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5
T R α β α β α β α β α β

1 Avg 0.5210 1.5773 0.5220 1.5946 0.5200 1.5600 0.5192 1.5665 0.5155 1.5449
MSE 0.0018 0.0257 0.0002 0.0036 0.0002 0.0029 0.0008 0.0012 0.0007 0.0011

1 2 Avg 0.5199 1.5632 0.5209 1.5807 0.5189 1.5460 0.5180 1.5522 0.5141 1.5302
MSE 0.0018 0.0252 0.0002 0.0034 0.0002 0.0029 0.0008 0.0012 0.0007 0.0012

3 Avg 0.5206 1.5702 0.5215 1.5869 0.5196 1.5537 0.5188 1.5598 0.5151 1.5389
MSE 0.0019 0.0273 0.0002 0.0037 0.0002 0.0031 0.0008 0.0013 0.0008 0.0012

1 Avg.3 0.5210 1.5773 0.5220 1.5946 0.5200 1.5600 0.5192 1.5665 0.5155 1.5449
MSE 0.0018 0.0257 0.0002 0.0036 0.0002 0.0029 0.0008 0.0012 0.0007 0.0011

2 2 Avg 0.5193 1.5605 0.5203 1.5772 0.5183 1.5442 0.5175 1.5501 0.5137 1.5291
MSE 0.0018 0.0268 0.0002 0.0036 0.0002 0.0031 0.0008 0.0013 0.0008 0.0013

3 Avg 0.5210 1.5719 0.5220 1.5885 0.5200 1.5554 0.5192 1.5615 0.5156 1.5408
MSE 0.0019 0.0271 0.0002 0.0037 0.0002 0.0031 0.0008 0.0013 0.0008 0.0012

Non-Informative Priors
SEL LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5
T R α β α β α β α β α β

1 Avg 0.5519 1.8793 0.5441 1.9056 0.5353 1.6135 0.5560 1.9979 0.5397 1.8118
MSE 0.0211 0.7592 0.0022 0.0746 0.0022 0.0329 0.0083 0.0243 0.0086 0.0250

1 2 Avg 0.5298 1.6345 0.5322 1.7031 0.5248 1.5557 0.5234 1.5990 0.5100 1.5181
MSE 0.0159 0.3310 0.0020 0.0425 0.0019 0.0355 0.0065 0.0140 0.0067 0.0144

3 Avg 0.5411 1.7500 0.5408 1.8062 0.5341 1.6223 0.5384 1.7550 0.5262 1.6597
MSE 0.0170 0.5159 0.0020 0.0582 0.0020 0.0402 0.0065 0.0166 0.0067 0.0172

1 Avg 0.5519 1.8793 0.5441 1.9057 0.5353 1.6136 0.5560 1.9979 0.5397 1.8118
MSE 0.0211 0.7591 0.0022 0.0746 0.0021 0.0329 0.0083 0.0243 0.0086 0.0250

2 2 Avg 0.5290 1.6203 0.5315 1.6773 0.5254 1.5573 0.5237 1.5920 0.5125 1.5253
MSE 0.0137 0.2934 0.0017 0.0366 0.0017 0.0322 0.0056 0.0118 0.0057 0.0122

3 Avg 0.5453 1.7632 0.5451 1.8196 0.5384 1.6361 0.5427 1.7685 0.5307 1.6741
MSE 0.0167 0.5052 0.0020 0.0568 0.0020 0.0389 0.0062 0.0152 0.0064 0.0159

LINEX and GEL loss functions are computed respectively by1

MSELINEX

(
θ̂
)

=
1

5000

5000∑
i=1

(
eν(θ̂i−θ) − ν

(
θ̂i − θ

)
− 1
)
,

MSEGEL

(
θ̂
)

=
1

5000

5000∑
i=1

((
θ̂i
θ

)κ
− κ ln

(
θ̂i
θ

)
− 1

)
.

All of the computations are performed using the R Statistical Program [38]. All2

the results are presented in Tables 1–5.3

Based on Table 1, we can conclude that EM and SEM estimates are quiet4

preferable to the NR method for all schemes and T s. Both MSEs and Avgs for5
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Table 3:
Average values (Avg) and the corresponding MSEs of the Bayes
estimators with MCMC method.

Informative Priors
SEL LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5
T R α β α β α β α β α β

1 Avg 0.5210 1.5770 0.5220 1.5944 0.5200 1.5601 0.5192 1.5663 0.5155 1.5448
MSE 0.0018 0.0262 0.0002 0.0039 0.0002 0.0030 0.0008 0.0015 0.0008 0.0012

1 2 Avg 0.5199 1.5631 0.5209 1.5806 0.5188 1.5462 0.5179 1.5522 0.5140 1.5304
MSE 0.0018 0.0253 0.0002 0.0037 0.0002 0.0029 0.0009 0.0014 0.0008 0.0012

3 Avg 0.5206 1.5703 0.5216 1.5871 0.5197 1.5540 0.5188 1.5599 0.5151 1.5391
MSE 0.0019 0.0277 0.0002 0.0041 0.0002 0.0032 0.0009 0.0016 0.0008 0.0013

1 Avg 0.5210 1.5770 0.5220 1.5944 0.5200 1.5601 0.5192 1.5663 0.5155 1.5449
MSE 0.0018 0.0262 0.0002 0.0039 0.0002 0.0030 0.0008 0.0015 0.0008 0.0012

2 2 Avg 0.5193 1.5604 0.5203 1.5770 0.5183 1.5442 0.5174 1.5500 0.5137 1.5292
MSE 0.0018 0.0271 0.0002 0.0039 0.0002 0.0031 0.0009 0.0015 0.0008 0.0013

3 Avg 0.5210 1.5720 0.5220 1.5887 0.5201 1.5558 0.5192 1.5617 0.5156 1.5410
MSE 0.0019 0.0275 0.0002 0.0040 0.0002 0.0031 0.0009 0.0016 0.0009 0.0013

Non-Informative Priors
SEL LINEX GEL

ν = −0.5 ν = 0.5 κ = −0.5 κ = 0.5
T R α β α β α β α β α β

1 Avg 0.5411 1.7748 0.5455 1.9792 0.5368 1.6503 0.5335 1.7117 0.5180 1.5932
MSE 0.0176 0.4644 0.0024 0.1791 0.0022 0.0412 0.0073 0.0273 0.0068 0.0121

1 2 Avg 0.5286 1.6289 0.5323 1.7081 0.5249 1.5607 0.5219 1.5890 0.5086 1.5091
MSE 0.0158 0.3208 0.0021 0.0665 0.0020 0.0370 0.0069 0.0159 0.0066 0.0127

3 Avg 0.5380 1.7158 0.5414 1.8220 0.5346 1.6347 0.5320 1.6738 0.5199 1.5910
MSE 0.0161 0.4175 0.0022 0.1139 0.0020 0.0445 0.0067 0.0201 0.0063 0.0127

1 Avg 0.5411 1.7748 0.5455 1.9793 0.5368 1.6504 0.5335 1.7117 0.5180 1.5933
MSE 0.0176 0.4643 0.0024 0.1791 0.0022 0.0412 0.0073 0.0273 0.0068 0.0120

1 2 Avg 0.5280 1.6166 0.5311 1.6804 0.5249 1.5604 0.5224 1.5839 0.5112 1.5181
MSE 0.0136 0.2856 0.0018 0.0582 0.0017 0.0338 0.0059 0.0137 0.0057 0.0110

3 Avg 0.5422 1.7293 0.5455 1.8353 0.5389 1.6483 0.5363 1.6876 0.5245 1.6057
MSE 0.0159 0.4065 0.0021 0.1128 0.0020 0.0432 0.0065 0.0192 0.0061 0.0117

Table 4:
Average values (Avg) and the corresponding MSEs of the SPT
estimators.

NR SEL LINEX GEL
T R α β α β α β α β

1 Avg 0.5911 1.8251 0.5879 1.6367 0.5870 1.6278 0.5828 1.6198
MSE 0.0263 0.7304 0.0113 0.0249 0.0111 0.0225 0.0106 0.0208

1 2 Avg 0.5576 1.6367 0.5771 1.6301 0.5759 1.6212 0.5708 1.6131
MSE 0.0190 0.1464 0.0104 0.0233 0.0102 0.0210 0.0097 0.0193

3 Avg 0.5708 1.7106 0.5749 1.6329 0.5738 1.6244 0.5690 1.6166
MSE 0.0205 0.2600 0.0102 0.0247 0.0101 0.0224 0.0096 0.0208

1 Avg 0.5911 1.8252 0.5879 1.6367 0.5870 1.6279 0.5828 1.6198
MSE 0.0263 0.7304 0.0113 0.0249 0.0111 0.0225 0.0106 0.0208

2 2 Avg 0.5556 1.6352 0.5698 1.6274 0.5686 1.6189 0.5631 1.6108
MSE 0.0173 0.1323 0.0097 0.0239 0.0095 0.0218 0.0090 0.0203

3 Avg 0.5750 1.7253 0.5750 1.6335 0.5738 1.6249 0.5689 1.6170
MSE 0.0204 0.2508 0.0102 0.0249 0.0101 0.0227 0.0096 0.0211

EM and SEM estimates are the close to each other and they are smaller than1

those of NR method. We also observe that as m increase, the values of MSEs2

and Avgs decrease, generally.3

The results of Bayes estimates based on TK and MCMC methods are re-4

ported in Tables 2–3. From these tables, it is evident that all the Bayes estimates5

based on informative priors have very small MSEs compared to the MLEs. We6

also see that the Bayes estimates based on informative priors are better than those7

that are based on non-informative priors in all schemes and (T, n,m)s. However,8

EM and SEM estimates are better than non-informative Bayes estimates based9

on SEL in terms of MSE and Avg. So we can conclude that Bayes estimates10

even with non informative priors are preferable to the NR, for all schemes and11
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Table 5:
Confidence intervals and coverage probabilities of NR and
MCMC methods. (U:upper, L:lower, IL: interval length, CP:
coverage probability

NR MCMC:Informative MCMC:Non-Informative

T R L U IL CP L U IL CP L U IL CP
1 α 0.2952 0.8166 0.5215 95.54 0.4063 0.6483 0.2420 99.90 0.3172 0.8193 0.5021 92.90

β 0.4102 3.2764 2.8661 97.12 1.1124 2.1299 1.0175 99.74 0.7989 3.4874 2.6885 92.80
1 2 α 0.2972 0.7585 0.4614 95.02 0.4027 0.6526 0.2498 99.88 0.3232 0.7854 0.4622 94.64

β 0.6301 2.6658 2.0357 95.78 1.0944 2.1159 1.0215 99.98 0.7981 2.7963 1.9982 94.52
3 α 0.3203 0.7668 0.4466 94.58 0.4067 0.6481 0.2414 99.90 0.3371 0.7796 0.4424 93.50

β 0.6540 2.8541 2.2001 96.38 1.1111 2.1114 1.0003 99.96 0.8604 2.9774 2.1170 92.98
1 α 0.2952 0.8167 0.5215 95.54 0.4063 0.6483 0.2420 99.90 0.3172 0.8193 0.5021 92.90

β 0.4103 3.2764 2.8661 97.12 1.1124 2.1299 1.0175 99.74 0.7990 3.4875 2.6885 92.80
2 2 α 0.3161 0.7400 0.4239 94.92 0.4044 0.6491 0.2447 99.66 0.3375 0.7609 0.4235 94.30

β 0.7199 2.5624 1.8426 95.68 1.1020 2.0980 0.9959 99.88 0.8484 2.6496 1.8013 93.82
3 α 0.3258 0.7695 0.4436 94.86 0.4074 0.6481 0.2407 99.86 0.3424 0.7820 0.4396 93.72

β 0.6702 2.8649 2.1947 97.20 1.1140 2.1110 0.9970 99.86 0.8740 2.9859 2.1119 93.46

T s. When we compare MSEs of T–K and MCMC methods, we observed that1

they are generally close to each other. However, T–K is better in some of the2

cases and vice versa in some others. However, the MCMC has the advantage of3

construction of the credible intervals. Thus, we can say that MCMC is preferable4

since it gives more information.5

The performances of SPT estimators are given in Table 4. According to6

Table 4, we can say that SPT estimators based on informative T–K method have7

better performance than SPT based on NR methods in the sense of both MSE8

and Avg, generally. Moreover, SPT with T–K method based on GEL function9

seems to have the least MSE values among others. SPT estimator based on10

NR method has smaller MSE values than NR estimator when we consider the11

parameter β, and both methods have closer MSE values for the parameter α.12

Finally, the confidence intervals and coverage probabilities are summarized13

in Table 5. It is observed that when we use non-informative priors the estimated14

CPs are smaller than the nominal CPs. Moreover, the expected ILs of non-15

informative methods are less than that of NR method. However, the estimated16

CPs of NR are slightly more than the non-informative method. Further, we17

observe that the CIs based on informative priors are better than the ones based18

on the non-informative priors and the once based on NR, in terms of having19

smaller ILs but higher CPs.20

6. Real Data Example

We consider a data set reported by [5] representing the strength measured21

in GigaPAscal (GPA) for single carbon fibres, and impregnated 1000-carbon fibre22

tows. Single fibres were tested under tension at gauge lengths of 10 mm. This23

data was analyzed by [3] considering a hybrid censoring scheme for the Weibull24

distribution. Following [3], we analyze this data set using two-parameter Weibull25

distribution after subtracting 1.75. The authors recorded that the validity of26

the Weibull model based on the Kolmogorov–Smirnov (K–S) test is full-filled,27
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namely, K–S = 0.072 and p-value = 0.885.1

To compute the Bayes estimates, since we have no prior information about2

the unknown parameters, we assume the non-informative priors by setting a =3

b = c = d = 0. Taking m = 40 and T = 2, we use the following schemes4

� Scheme 1: R = (039, 23)5

� Scheme 2: R = (23, 039)6

� Scheme 3: R = (2, 010, 23, 010, 23, 010, 33)7

Table 6:
Estimation values of listed methods for Carbon Fibre data

Sch 1 Sch 2 Sch 3
MLE Method α β α β α β
NR 2.2542 0.3980 2.3058 0.3918 2.1169 0.3884
EM 2.2641 0.3975 2.2952 0.3986 2.1128 0.3908
SEM 2.2515 0.3981 2.3046 0.3922 2.1304 0.3892
Tierney-Kadane Method
SEL 2.2505 0.3991 2.3041 0.3942 2.1104 0.3899
LINEX(ν = −0.5) 2.2764 0.4005 2.3310 0.3963 2.1303 0.3914
LINEX(ν = 0.5) 2.2260 0.3978 2.2793 0.3924 2.0915 0.3885
GEL(κ = −0.5) 2.2393 0.3958 2.2929 0.3893 2.1012 0.3863
GEL(κ = 0.5) 2.2169 0.3890 2.2704 0.3793 2.0827 0.3792
MCMC Method
SEL 2.2496 0.3980 2.3042 0.3933 2.1028 0.3915
LINEX(ν = −0.5) 2.2735 0.3994 2.3288 0.3953 2.1232 0.3929
LINEX(ν = 0.5) 2.2261 0.3967 2.2802 0.3914 2.0828 0.3900
GEL(κ = −0.5) 2.2390 0.3947 2.2937 0.3885 2.0932 0.3878
GEL(κ = 0.5) 2.2176 0.3880 2.2725 0.3788 2.0739 0.3805
Shrinkage Method
NR 2.2524 0.3985 2.3049 0.3930 2.1137 0.3892
SEL 2.2505 0.3991 2.3041 0.3942 2.1104 0.3899
LINEX(ν = 0.5) 2.2634 0.3998 2.3175 0.3953 2.1204 0.3906
GEL(κ = 0.5) 2.2449 0.3974 2.2985 0.3917 2.1058 0.3881

Table 7:
Confident intervals and interval lengths of NR and MCMC
methods for Carbon Fibre data (U:upper, L:lower, IL: interval
length)

α β
Scheme Method L U IL L U IL

1 NR 1.6321 2.8764 1.2443 0.2539 0.5420 0.2880
MCMC 1.6668 2.8725 1.2057 0.2682 0.5540 0.2857

2 NR 1.6740 2.9376 1.2636 0.2175 0.5660 0.3485
MCMC 1.7418 2.9404 1.1986 0.2408 0.5834 0.3426

3 NR 1.5703 2.6636 1.0933 0.2417 0.5351 0.2933
MCMC 1.5744 2.6737 1.0993 0.2584 0.5558 0.2974

We have produced 60000 MCMC samples and the first 10000 of them are8

considered as the burn-in sample. We have provided the histograms of the samples9

for each parameter in Figures 1–2 and also some diagnostics showing the efficiency10
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Figure 1:
Histogram of the MCMC samples of the parameter α
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Figure 2:
Histogram of the MCMC samples of the parameter β
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Figure 3:
MCMC samples of the parameter α vs iterations

of the MCMC algorithm in Figures 3–5. The acceptance rate after the burn-in1

sample is close to 0.36 and it is stable. Therefore, it can be said that the MCMC2

algorithm works well.3
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Figure 4:
MCMC samples of the parameter β vs iterations
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Figure 5:
Acceptance rate of MCMC samples

In SPT estimates, since we don’t have any prior information about param-1

eters, we use the Bayes estimates as a an estimated prior information. Then we2

substitute them in the SPT formulae as θ̂SPT = λθ0+(1−λ)θ̂BayesI
(
WD < χ2

1(λ)
)

3

by setting λ = 0.5 and α = 0.05.4

All the estimation methods considered in this paper are applied to this5

data and the estimated parameter values are reported in Table 6. We observe6

that the estimated values of α and β based on all the methods are closer to each7

other. Further, it can be seen that the Bayes estimates based on the two different8

methods are quite closer to each other which also show the stability of the MCMC9

algorithm. Moreover, asymptotic confidence intervals of NR method and HPD10

intervals of MCMC method are given in Table 7. According to this table, we can11

say that NR confidence intervals are mostly wider than the ones obtained via12

MCMC. This situation is also coincide with the simulation results.13
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7. Conclusive Remarks

In this paper, we discussed the estimation of parameters of Weibull distri-1

bution under type-I progressively hybrid censoring scheme using both classical2

and Bayesian strategies. Namely, MLE is obtained using NR, EM and SEM3

algorithms and Bayesian estimators are computed via T–K approximation and4

MCMC method under SEL, LINEX and GEL loss functions. We have also pro-5

posed the shrinkage preliminary test estimators based on NR and T–K with6

informative priors using equal weights on the prior information and the sample7

information. A real data application and extensive Monte Carlo simulations have8

been considered to compare the estimators in terms of MSE and Avg and also we9

compared the lengths of CIs and CPs. According to the results, EM algorithm10

beats the other ML estimates. However, we observed that both the T–K and11

MCMC methods perform quite closely. Finally, we found out that shrinkage pre-12

liminary test estimates have satisfactory performances in the presence of having13

proper prior information.14
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