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1. INTRODUCTION

The Burr type XII distribution was first introduced in the literature by
Burr ([5]). It has gained special attention in the last two decades and applied in
different fields including the area of reliability, failure time modeling and accep-
tance sampling plan and so on. The two-parameter Burr type XII distribution
has the following probability density function

f(x;α, β) = αβxα−1(1 + xα)−(β+1), x > 0, α > 0, β > 0,(1.1)

where α and β represent the shape parameters. It is easy to see that when α = 1,
the Burr type XII reduces to the log-logistic distribution. Maximum likelihood
and Bayesian inferential issues for the unknown parameters of Burr type XII
distribution with different types of data were considered by several authors. See,
for example, Wang et al.([35]), Moore and Papadopoulos ([21]), Ghitany and Al-
Awadhi ([10]), Mousa and Jaheen ([22]), Wahed ([34]), Li et al. ([17]), Jaheen
and Okasha ([13]), Panahi and Asadi ([29]), Al-Baldawi et al. ([1]), Rao et al.
([31]), Belaghi et al. ([3]) and Hakim et al. ([12]).

All the earlier works on the estimation of the parameters of the Burr type
XII distribution have been done under the assumption of precise data. In the
classical estimation theory, we consider only one source of uncertainty available,
namely randomness. However, in many practical situations, in addition to the
randomness, we may face other source of uncertainties, namely, vague uncer-
tainty. Vagueness occurs as a result of imprecisely recording or measuring the
observations due to, for example, machine errors, human errors, etc. For instance,
the lifetime of a specific electric device may be recorded as vague statements like
”about 3 years”, ”approximately less than 2 years”, ”approximately 3 years”,
”approximately between 3 and 4 years” and so on.

In recent years, many papers extended the statistical methods to analysis
of fuzzy data for different distributions. Among others, Denœux ([8]), for a gen-
eral parametric statistical model, showed that the EM algorithm may be used for
analyzing statistical problems involving fuzzy data. Pak et al. ([26]) investigated
different classical and Bayesian methods for estimating the parameters of Weibull
distribution when the available data are in the form of fuzzy numbers. Pak et
al. ([27]) discussed different procedures for estimating the parameter of Rayleigh
distribution under doubly type II censoring when the available observations are
described by means of fuzzy information. They computed the maximum likeli-
hood, highest posterior density and method of moments estimators. Makhdoom
et al. ([20]) estimated the parameter of exponential distribution on the basis
of type II censoring scheme when the available data are in the form of fuzzy
numbers. The Bayes estimate of the unknown parameter was also obtained un-
der the assumption of gamma prior. Khoolenjani and Shahsanaie ([15]) derived
the maximum likelihood estimator of the mean of exponential distribution un-
der type II censoring scheme when the lifetime observations are in the form of
fuzzy numbers. They also obtained the estimate, via Bayesian method, of the
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unknown parameter. Pak ([23]) obtained the maximum likelihood estimation
and Bayesian estimation for Lindley distribution when the available observations
are reported in the form of fuzzy data. The classical and Bayesian inferences
for the Pareto distribution of life time fuzzy observations was studied by Shafiq
([32]). Chaturvedi et al. ([6]) presented procedures of parameter estimation of
the Rayleigh distribution based on type II progressively hybrid censored fuzzy
lifetime data. Classical as well as the Bayesian procedures for the estimation of
unknown parameters were investigated. Pak and Mahmoudi ([25]) estimated the
parameters of Lomax distribution when the available observations are described
by means of fuzzy information. They computed the maximum likelihood and the
Bayesian estimators. Basharat et al. ([2]) derived the distribution of a linear
combination of two independent exponential random variables. The parameter
estimates of the proposed distribution were obtained by using the maximum like-
lihood estimation method and the method of moments from fuzzy data. Finally,
Pak et al. ([28]) provided Bayesian inference for the parameters of the general-
ized exponential model under asymmetric and symmetric loss functions when the
observations are described in terms of fuzzy numbers.

To the best of our knowledge, there are no studies focused on the analy-
sis of fuzzy data on the parameter estimation of two-parameter Burr type XII
distribution. The main purpose of this paper is to investigate the inferential pro-
cedures for the distribution of the two parameters of Burr type XII, where the
available data is in the form of fuzzy data. In Section 2, we review the basic
notations and definitions of fuzzy set theory. In Section 3, we address the esti-
mation of the unknown parameters of the maximum likelihood estimates using
the Newton-Raphson and expectation-maximization (EM) algorithm. In Section
4, the Bayes estimates of the unknown parameters are obtained via Lindley’s ap-
proximation, Tierney-Kadane approximation and highest posterior distribution
estimation method under the assumption of Gamma priors. A Monte Carlo simu-
lation study is conducted in Section 5, to assess the performance of the proposed
estimators. For illustration, analyses of three datasets are provided. Finally,
some conclusions are provided in Section 6.

2. BASIC DEFINITION OF FUZZY SETS

In this section, we review some basic definitions and notations of fuzzy sets
and fuzzy probability theory used in this paper. Suppose a random experiment
with a probability space (Rm,Bm, Pθ), where Rm is a m-dimensional Euclidean
space, Bm is the smallest Borel σ-field defined on Rm and Pθ, θ ∈ Θ is a proba-
bility measure defined on Bm. In many applications, we have a situation that the
outcome of the experiment cannot be observed exactly and only partial informa-
tion is available. For example, the lifetime of a specific electric device may be
recorded as ”about 3 years”, ”approximately less than 2 years”, ”approximately
3 years”, ”approximately between 3 and 4 years” and so on. These lifetimes can
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be modeled and described in the form of fuzzy subset. A fuzzy set Ã in Rm is
characterized by a membership function µÃ : Rm → [0, 1], where µÃ(x), x ∈ Rm

represents the degree of membership of x in Ã. A fuzzy event is a fuzzy set whose
membership function is Borel measurable function. According to Zadeh ([36])
the probability of a fuzzy event Ã is computed by

P (Ã) =

∫
µÃ(x)dPθ.(2.1)

The most common fuzzy subsets that are frequently encountered in fuzzy statisti-
cal analysis are the fuzzy numbers and among them, the triangular fuzzy numbers
are the most common type. A triangular fuzzy number, written as x̃ = (a, b, c),
has the following membership function

µx̃(x) =


x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c
0 otherwise.

In particular, assume X to be a random variable with a probability density func-
tion (p.d.f.) g(x; θ) that is absolutely continuous with probability measure Pθ.
The conditional probability of a crisp (non-fuzzy) set A given a fuzzy set B̃ is
given by (see Denœux ([8]))

P (A|B̃) =

∫
A µB̃(x)g(x; θ)dx∫
µB̃(x)g(x; θ)dx

.

Consequently, the conditional density of X given B̃ can thus be computed by

g(x|B̃) =
µB̃(x)g(x; θ)∫
µB̃(x)g(x; θ)dx

.

3. MAXIMUM LIKELIHOOD ESTIMATION

Let X1, X2, · · · , Xn denote a random sample of size n from Burr type XII
distribution with p.d.f. given in (1.1). Let X = (X1, X2, · · · , Xn) denote the
corresponding random vector. If a realization x of X was exactly observed, the
likelihood function can be written as

L(α, β|x) =(αβ)n
n∏
i=1

xα−1i (1 + xαi )−β−1.(3.1)

Suppose now x is not observed precisely, and only partial information about x
is available in form of fuzzy observation x̃ = (x̃1, · · · , x̃n) with Borel measur-
able membership function µx̃(x) = (µx̃1(x), · · · , µx̃n(x)). Then, based on fuzzy
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observation x̃, the log-likelihood function reduces to

l(α, β|x̃) =n logα+ n log β +
n∑
i=1

log

∫
xα−1(1 + xα)−β−1µx̃i(x)dx

=n logα+ n log β +
n∑
i=1

log

∫
A(x)µx̃i(x)dx,(3.2)

where

A(x) = xα−1(1 + xα)−β−1.(3.3)

The maximum likelihood estimate of the parameters α and β can be obtained by
maximizing the log-likelihood l(α, β|x̃) with respect to α and β. First we need to
prove the following result.

Theorem 3.1. The MLEs of α and β for α > 0 and β > 0 exist and
unique.

Proof: The detailed proof of the theorem is deferred in the appendix.

By taking the partial derivatives of the log-likelihood l(α, β|x̃) with respect to
α and β and equating the resulted equations to zero, we get the following two
normal equations

∂l(α, β|x̃)

∂α
≡ lα =

n

α
+

n∑
i=1

∫
Aα(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0(3.4)

and

∂l(α, β|x̃)

∂β
≡ lβ =

n

β
+

n∑
i=1

∫
Aβ(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0,(3.5)

where

Aα(x) ≡ ∂A(x)

∂α
= (1 + xα)−β−2xα−1 log(x)[1− βxα]

Aβ(x) ≡ ∂A(x)

∂β
= −xα−1(1 + xα)−β−1 log(1 + xα).

Since there are no closed forms to the normal equations (3.4) and (3.5), iterative
numerical methods can be used to obtain the MLEs. In this section, we propose
two methods to compute the MLEs of α and β, namely; Newton-Raphson method
and EM method.
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3.1. Newton-Raphson algorithm

The Newton-Raphson (NR) method is a numerical approach that is com-
monly used to compute MLEs of the unknown parameters. In this method, the
solution of the likelihood function is obtained through an iterative procedure.
First, we obtain the second-order derivatives of the log-likelihood with respect to
α and β in order to implement the NR method.

lαα =
−n
α2

+

n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aαα(x)µx̃i(x)dx− (

∫
Aα(x)µx̃i(x)dx)2

(
∫
A(x)µx̃i(x)dx)2

(3.6)

lββ =
−n
β2

+
n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aββ(x)µx̃i(x)dx− (

∫
Aβ(x)µx̃i(x)dx)2

(
∫
A(x)µx̃i(x)dx)2

(3.7)

lαβ =

n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aαβ(x)µx̃i(x)dx−

∫
Aα(x)µx̃i(x)dx

∫
Aβ(x)µx̃i(x)dx

(
∫
A(x)µx̃i(x)dx)2

,

(3.8)

where

Aαα(x) =xα−1(log(x))2(1 + xα)−β−3
[
x2α(β + 1)(β + 2)

− 3xα(β + 1)(1 + xα) + (1 + xα)2
]

Aββ(x) =xα−1(1 + xα)−β−1(log(1 + xα))2

Aαβ(x) =x2α−2(1 + xα)−β−2 log(x)[(β + 1)x log(1 + xα)

− (1 + xα) log(1 + xα)− x].

Assume α(k) and β(k) are the values of α and β at the k-th iteration. Then at
(k + 1)-th iteration, the updated values of α and β are obtained as(

α(k+1)

β(k+1)

)
=

(
α(k)

β(k)

)
−
(
lαα lαβ
lαβ lββ

)−1
α=α(k),β=β(k)

(
lα
lβ

)
α=α(k),β=β(k)

,

which is equivalent to

α(k+1) =α(k) −
lαlββ − lβlαβ
lααlββ − l2αβ

∣∣∣
α=α(k),β=β(k)

(3.9)

β(k+1) =β(k) −
lβlαα − lαlαβ
lααlββ − l2αβ

∣∣∣
α=α(k),β=β(k)

.(3.10)

The iteration process then continues until convergence, i.e., |α(k+1) − α(k)| +
|β(k+1) − β(k)| < ε, for some pre-specified ε > 0.
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To estimate the standard error of maximum likelihood estimators, α̂ and β̂,
we use the observed information matrix method. The variance-covariance matrix
of the MLEs of α and β is defined as

Σ =

[
var(α̂) cov(α̂, β̂)

cov(α̂, β̂) var(β̂)

]
,

and can be estimated by using the inverse of the observed information matrix

I(α̂, β̂) =

(
−lαα −lαβ
−lαβ −lββ

)
α=α̂,β=β̂

,(3.11)

where lαα, lββ and lαβ are given in (3.6),(3.7) and (3.8), respectively. Then the
100(1−γ)% Wald confidence intervals of α and β using the observed information
matrix can be constructed, respectively, as

α̂± zγ/2
√

var(α̂) and β̂ ± zγ/2
√

var(β̂),

where zp is the upper pth percentile of the standard normal distribution.

It is known that Newton-Raphson method is very sensitive to the initial
values of parameters. In addition, the calculation of the second-order derivatives
of the log-likelihood based on fuzzy data sometimes can be rather tedious. So we
propose to use an alternative method to the Newton-Raphson method which is
the EM algorithm.

3.2. EM Algorithm

In this subsection, we propose to use the EM algorithm to calculate the
MLEs of the unknown parameters.

The EM algorithm, proposed by Dempster et al. ([7]), is a very powerful
technique used in parameter estimation based on incomplete or missing infor-
mation data. As stated by Pradhan and Kundu ([30]), the EM algorithm is an
iterative method and each iteration consists of two main steps; Expectation(E)-
step and Maximization(M)-step. In E-step, we form the ”pseudo-likelihood”
function by replacing the incomplete or missing observations in the likelihood
function with their corresponding expected values. In the M-step, we maximize
the ”pseudo-likelihood” function with respect to the parameters. Let us denote
the observed data set by X̃ = (X̃1, · · · , X̃n) and let the complete data denoted
by X = (X1, · · · , Xn). Define Z = (Z1, · · · , Zn) where Zi represents the condi-
tional expectation of the complete observation Xi given the corresponding fuzzy
observation X̃i with membership function µx̃i(x). Observe that

Zi = E(Xi|X̃i) =

∫
xf(x;α, β)µx̃i(x)dx∫
f(x;α, β)µx̃i(x)dx

, i = 1, · · · , n.(3.12)
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Then the pseudo likelihood function takes the form

Lc(α, β|z) =(αβ)n
n∏
i=1

zα−1i (1 + zαi )−β−1,(3.13)

with pseudo log-likelihood function

lc(α, β|z) = n logα+ n log β + (1− α)

n∑
i=1

log(zi)− (β + 1)

n∑
i=1

log(1 + zαi ).

(3.14)

By taking the partial derivatives of lc with respect to α and β, respectively, and
equating the resulted equations to zero we obtain the following equations

n

α
+

n∑
i=1

log(zi)− (β + 1)
n∑
i=1

zαi log(zi)

(1 + zαi )
= 0(3.15)

n

β
−

n∑
i=1

log(1 + zαi ) = 0.(3.16)

Therefore the EM algorithm is given by the following iterative process

Step 1 Given starting values of α and β, say α(0) and β(0), and take k=0.

Step 2 At the (k + 1)-th iteration,

Step 2.1 E-step. Evaluate Z = (Z1, · · · , Zn), where Zi ≡ Zi(α
(k), α(k))

is computed using the expression (3.12) with α and β are replaced by
α(k) and β(k), respectively.

Step 2.2 M-step. Solve the equations (3.15) and (3.16) and obtain the
next values α(k+1) and β(k+1) of α and β, respectively.

Step 3 If |α(k+1) − α(k)| + |β(k+1) − β(k)| < ε, for some pre-specified value
ε > 0, then set α(k+1) and β(k+1) as the maximum likelihood estimators of
α and β, otherwise, set k = k + 1 and go to Step 2.

Estimating the standard errors and constructing the confidence intervals in this
section are similar to that given in Section 2 with NR estimates are replaced by
EM estimates.

4. BAYESIAN ESTIMATION

In this section, we estimate the unknown parameters of Burr type XII
distribution using Bayesian method under squared error loss function. The Bayes
estimators are obtained using three different methods; Lindley’s approximation,
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Tierney-Kadane approximation and highest posterior density methods. Assume
that the parameters α and β have independent gamma priors such that α ∼
π1(α) = Gamma(a, b) and β ∼ π2(β) = Gamma(c, d). Based on the above priors,
the joint posterior density function of α and β given the data can be written as
follows

π(α, β|x̃) =

αn+a−1βn+c−1e−bα−dβ
n∏
i=1

∞∫
0

xα−1(1 + xα)−β−1µx̃i(x)dx

∞∫
0

∞∫
0

αn+a−1βn+c−1e−bα−dβ
n∏
i=1

∞∫
0

xα−1(1 + xα)−β−1µx̃i(x)dxdαdβ

.

(4.1)

Then, under a squared error loss function, the Bayes estimate of any function of
α and β, say g(α, β), is given by

E(g(α, β)|x̃) =

∫ ∞
0

∫ ∞
0

g(α, β)π(α, β|x̃)dαdβ.(4.2)

Note that Equation (4.2) cannot be obtained analytically; therefore, in the fol-
lowing, we propose to use three methods, namely; Lindley’s approximation and
Tierney-Kadane approximation and highest posterior density methods to solve it
and compute the Bayes estimators.

4.1. Lindley’s Approximation

Lindley’s approximation was proposed by Lindley ([18]) to approximate the
integrals involved in Bayes estimator. Lindley proposed a ratio of integrals of the
form

E(g(α, β)|x̃) =

∫∞
0

∫∞
0 g(α, β)eQ(α,β)dαdβ∫∞
0

∫∞
0 eQ(α,β)dαdβ

(4.3)

can be approximated by

ĝ(α, β) =g(α̂, β̂) +
1

2

[
(ĝαα + 2ĝαρ̂α)σ̂αα + (ĝαβ + 2ĝβ ρ̂α)σ̂αβ + (ĝαβ + 2ĝαρ̂β)σ̂αβ

(4.4)

+ (ĝββ + 2ĝβ ρ̂β)σ̂ββ

]
+

1

2

[
(ĝασ̂αα + ĝβσ̂αβ)(lααασ̂αα + 2l̂ααβσ̂αβ + l̂αββσ̂ββ)

+ (ĝασ̂αβ + ĝβσ̂ββ)(l̂ααβσ̂αα + 2l̂αββσ̂αβ + l̂βββσ̂ββ)
]
,

where

Q(α, β) = log[π1(α)π2(β)] + logL(α, β|x̃) ≡ ρ(α, β) + `(α, β|x̃).

The expressions l̂, ĝ, ρ̂ and σ̂ denote, respectively, the functions l, g, ρ and σ eval-
uated at α̂ and β̂, the MLEs of α and β. Here, the expressions ĝα, ĝβ, ĝαα, ĝαβ
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and ĝββ denote the first and the second order partial derivatives of g with respect
α and β evaluated at the MLEs of α and β. First note that, the expressions of
lα, lβ, lαα, lββ and lαβ are given in (3.4), (3.5), (3.6),(3.7) and (3.8), respectively.
The third order of partial derivatives of the log-likelihood function with respect
α and β are given

lααα =
2n

α3
+

n∑
i=1

C2
i Ci,ααα − 3CiCi,αCi,αα + 2C3

i,α

C3
i

lβββ =
2n

β3
+

n∑
i=1

C2
i Ci,βββ − 3CiCi,βCi,ββ + 2C3

i,β

C3
i

lαββ =

n∑
i=1

C2
i Ci,αββ − 2CiCi,βCi,αβ − CiCi,αCi,ββ + 2Ci,αC

2
i,β

C3
i

lααβ =

n∑
i=1

C2
i Ci,ααβ − 2CiCi,αCi,αβ − CiCi,ααCi,β + 2C2

i,αCi,β

C3
i

,

where

Ci =

∫
A(x)µx̃i(x)dx

Ci,α =

∫
Aα(x)µx̃i(x)dx,Ci,αα =

∫
Aαα(x)µx̃i(x)dx,Ci,ααα =

∫
Aααα(x)µx̃i(x)dx

Ci,β =

∫
Aβ(x)µx̃i(x)dx,Ci,ββ =

∫
Aββ(x)µx̃i(x)dx,Ci,βββ =

∫
Aβββ(x)µx̃i(x)dx

Ci,αβ =

∫
Aαβ(x)µx̃i(x)dx,Ci,ααβ =

∫
Aααβ(x)µx̃i(x)dx,Cαββ =

∫
Aαββ(x)µx̃i(x)dx

and

Aααα(x) =x2α−1(β + 1)(log(x))3(1 + xα)−β−4
[
− x2α(β + 2)(β + 3)

+ 6xα(1 + xα)(β + 2)− 7(1 + xα)2
]

+ xα−1(log(x))3(1 + xα)−β−1

Aβββ(x) =− xα−1(log(1 + xα))3(1 + xα)−β−1

Aαββ(x) =xα−1 log(1 + xα) log(x)(1 + xα)−β−2
[
− xα(β + 1) log(1 + xα)

+ 2xα + log(1 + xα)(1 + xα)
]

Aααβ(x) =(β + 1)(log(x))2x2α−1(1 + xα)−β−3
[
− xα(β + 2) log(1 + xα) + xα

+ 3(1 + xα) log(1 + xα)
]

+ (log(x))2x2α−1(1 + xα)−β−3
[
xα(β + 2)

− 3(1 + xα)
]
− (log(x))2xα−1(1 + xα)−β−1 log(1 + xα).

The function ρ given by

ρ(α, β) = (a− 1) log(α)− bα+ (c− 1) log(β)− dβ
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has the following partial derivatives

ρα =
∂ρ(α, β)

∂α
=
a− 1

α
− b

ρβ =
∂ρ(α, β)

∂β
=
c− 1

β
− d.

In addition (
σαα σαβ
σαβ σββ

)
=

(
−lαα −lαβ
−lαβ −lββ

)−1
.

If g(α, β) = α, we obtain gα = 1 and gαα = gβ = gββ = gαβ = 0. Thus the Bayes
estimator using Lindley’s approximation is given by

α̂ =α̂MLE + ρ̂ασ̂αα + ρ̂βσ̂βα +
1

2

[
σ̂αα(l̂ααασ̂αα + l̂ααβσ̂αβ + l̂ααβσ̂βα + l̂αββσ̂ββ)

+ (σ̂βα)(l̂ααβσ̂αα + l̂αββσ̂αβ + l̂αββ ˆσβα + l̂βββσ̂ββ)
]
.

If g(α, β)=β, we obtain gβ = 1 and gαα = gα = gββ = gαβ = 0. Then the Bayes
estimates of β is given by

β̂ = β̂MLE + ρ̂ασ̂βα + ρ̂βσ̂ββ +
1

2

[
σ̂αβ(l̂ααασ̂αα + l̂ααβσ̂αβ + l̂ααβσ̂βα + l̂αββσ̂ββ)

+ (σ̂ββ)(l̂ααβσ̂αα + l̂αββσ̂αβ + l̂αββσ̂βα + l̂βββσ̂ββ)
]
.

4.2. Tierney-Kadane approximation

In this subsection, we utilize another approximation of the integral (4.2)
to compute the Bayes estimators. Using Laplace transformation, Tierney and
Kadane [33] proposed an alternative method to approximate the ratio of integrals.
The advantage of using Tierney-Kadane method is that it requires only the first
and the second derivatives of the posterior density. The posterior expectation of
a g(α, β) can be written as

E(g(α, β|˜̃x)) =

∫∞
0

∫∞
0 enH

∗(α,β)dαdβ∫∞
0

∫∞
0 enH(α,β)dαdβ

,(4.5)

where

H(α, β) =
1

n

[
(a− 1) log(α)− bα+ (c− 1) log(β)− dβ + l(α, β|x̃)

]
H∗(α, β) = H(α, β) +

1

n
log(g(α, β)).

Then the integral given in Equation (4.5) can be approximated by

ĝ(α, β) =
(det∑∗
det
∑ ) 1

2
exp{n[H∗(ᾱ∗, β̄∗)−H(ᾱ, β̄)]},(4.6)
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where (ᾱ∗, β̄∗) and (ᾱ, β̄) maximize H∗ and H, respectively,
∑∗ and

∑
are the

negatives of the inverse Hessian matrix of H∗ and H evaluated at (ᾱ∗, β̄∗) and
(ᾱ, β̄), respectively. Therefore (ᾱ, β̄) can be obtained by solving the following two
equations.

Hα =
∂H(α, β)

∂α
=
a− 1

α
− b+ lα(α, β|x̃) = 0

Hβ =
∂H(α, β)

∂β
=
c− 1

β
− d+ lβ(α, β|x̃) = 0,

and from the second derivatives of H(α, β), the determinant of the negative of
the inverse Hessian of H (α, β) at (ᾱ, β̄) is given by

det
∑

=
(
H̄ααH̄ββ − H̄2

αβ

)−1
,

where

H̄αα ≡
∂H̄α

∂α
= −a− 1

ᾱ2
+ lαα(ᾱ, β̄|x̃)

H̄ββ ≡
∂H̄β

∂β
= −a− 1

β̄2
+ lββ(ᾱ, β̄|x̃)

H̄αβ ≡
∂H̄α

∂β
= lαβ(ᾱ, β̄|x̃).

Similarly, for the function H∗(α, β), the determinant of the negative of the inverse
Hessian of H∗(α, β) evaluated at (ᾱ∗, β̄∗) is given by

det
∑∗

= (H̄∗ααH̄
∗
ββ − H̄∗2αβ)−1.

For g(α, β) = α, we get

H∗α(α, β) = H(α, β) +
1

n
log(α)

and consequently, we have

H∗α,α =
∂H∗(α, β)

∂α
= Hα +

1

nα

H∗α,β =
∂H∗(α, β)

∂β
= Hβ

H∗α,αβ =
∂H∗(α, β)

∂αβ
= Hαβ

H∗α,αα =
∂H∗1
∂α

= Hαα −
1

nα2

H∗α,ββ =
∂H∗2
∂β

= Hββ .

For g(α, β) = β, we have

H∗β(α, β) =
1

n
log(β) +H(α, β)
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and

H∗β,α =
∂H∗(α, β)

∂α
= Hα

H∗β,β =
∂H∗(α, β)

∂β
= Hβ +

1

nβ

H∗β,αβ =
∂H∗(α, β)

∂αβ
= Hαβ

H∗β,αα =
∂D∗1
∂α

= Hαα

H∗β,αα =
∂D∗2
∂β

= Hββ −
1

nβ2
.

Finally, substituting the above expressions in (4.6), we obtain the Bayes estimates
of α and β.

4.3. Highest posterior density estimation

The highest posterior density estimation is another popular method used
to compute the Bayes estimates. The highest posterior density (HPD) estimate
represents the mode of the posterior density. The Bayes estimates using HPD
method can be obtained by solving the equations

∂π(α, β|x̃)

∂α
=
n+ a− 1

α
− b+

∫
Aα(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0,(4.7)

∂π(α, β|x̃)

∂β
=
n+ c− 1

β
− d+

∫
Aβ(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0.(4.8)

It can be seen that, the solutions of the above two equation cannot be obtained
explicitly and, similar to the maximum likelihood method, numerical methods
like Newton-Raphson can be used to solve them.

5. SIMULATION EXPERIMENTS

In this section, we conduct Monte-Carlo simulation experiments to show
how the various approaches work with different sample sizes. The performance of
the proposed approaches was compared on the basis of their expected biases, root
mean square error, average of standard errors and of 95% confidence intervals.
The true values of the parameters (α, β) are assumed to be (1.25, 1.5), (1.5, 0.5)
and (0.5, 0.75). respectively. The sample sizes are chosen as n = 25, 50 and 100
to represent small, moderate and large samples, respectively. Each observation
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from Burr type XII, xi, was then fuzzified with the corresponding membership
function µx̃i(x), where

µx̃i(x) =


x−(xi−ai)

ai
, if xi − ai ≤ x ≤ xi

(xi+ai)−x
ai

, if xi ≤ x ≤ xi + ai
0 ; otherwise

(5.1)

and ai = 0.05xi (see for example, Pak and Chatrabgoun ([24]), Pak et al. ([26]),
Chaturvedi ([6])). That is the observer is unable to provide exact value of ob-
servation and an interval of plausible values [xi − ai, xi + ai] is provided. For
example the triangular fuzzy number (0.1805, 0.1995) represents the observed
value 0.19 i.e. the interval of plausible values of 0.19 is [0.1805, 0.1995]. Then,
we compute the MLEs of α and β for the fuzzy sample via Newton-Raphson
(NR) and Expectation-Maximization (EM) algorithm. The process is replicated
1000 times. In each replication, we compute the average of biases (Bias), sam-
ple standard error (SSE) and the root mean squared error (RMSE) using the
expressions

Bias(θ) =
1

k

k∑
i=1

(θi − θ0)

SSE(θ) =

√√√√1

k

k∑
i=1

(θi − θ̄)2

and

RMSE(θ) =

√√√√1

k

k∑
i=1

(θi − θ0)2,

where θ represents α or β, θ0 is the true value of θ, θ̄ is the mean of the estimates
of θ and k is the number of replications. Moreover, to compute the estimated s-
tandard error (ESE) for the MLEs, we use the observed information matrix given
in (3.11). Approximated 95% confidence intervals for the MLE are constructed
using the observed information matrix. Moreover, in each iteration, we compute
the Bayes estimators using Lindley’s approximation, Tierney-Kadane approxima-
tion and highest posterior density (HP) methods. At the end, we compute the
averages of the absolute biases, sample standard deviation, estimated standard
deviation, root mean squared error and 95% confidence intervals. For computing
Bayes estimators, we consider gamma priors for α and β with hyperparameters
(a,b) and (c,d), respectively. To make the comparison meaningful, it is assumed
that the priors are non-informative a = b = c = d = 0 but these priors are
improper priors hence we have tried a = b = c = d = 0.001 to get proper priors.
However, these results are same as those obtained for improper priors. The sim-
ulation results of the MLEs and Bayes estimators are reported in Tables 1-2. We
have utilized R-4.0.3 software to compute the proposed estimators. The stopping
criteria for the algorithms is based on the sum of the absolute differences between
two consecutive values of parameters estimates less than 10−4.

From Table 1, we observe that the biases for all estimators, in general,
are reasonably small which indicate that the estimated values are close to the
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true parameter values. As expected, the biases of all estimators become better
when the sample size increases. The values of sample standard error (SSE) of
the MLEs are approximately close to estimated standard error (ESE) for all
the cases and hence the estimated standard error can be used to estimate the
standard error of the estimators. In addition, the Bias, SSE, ESE, RMSE and
the length of 95% confidence inetrvals of all MLEs are decreasing when sample
sizes increasing for all the cases. The estimated coverage probabilities of 95%
confidence intervals (CP) are very close to the nominal level for all the cases.
Hence, the performance of the MLEs are satisfactory in terms of the biases,
standard errors and coverage probabilities of the estimates. Moreover, the Bias
of the computed MLEs estimators using EM algorithm for most of the cases are
slightly higher than that of the MLEs computed using EM-algorithm. In addition,
the central processing time CPU required for NR per iteration is shorter than that
of EM algorithm. Figure 1 demonstrates the histograms for the MLEs of α and
β when n = 100 for the three sets of values. The histograms show approximately
normal distribution of the MLEs of α and β.

From Table 2, the biases of the Bayesian estimates of all three methods
are also reasonably small. It is clear that the Bias and RMSE are decreasing for
increasing values of sample sizes. Moreover, the Bias and RMSE of the Bayes
estimates obtained under highest posterior density (HP) are smaller than that
of Lindley’s method (LN) and Tierney-Kadane approximation (TK). Hence we
recommend to use HP method for computing Bayes estimator. From the above
results, we conclude that the estimation methods proposed in the article to com-
pute the MLEs and Bayes estimators perform very well.

6. APPLICATION EXAMPLES

In this section, we analyze three real data sets to explain how the pro-
posed approaches can be applied in real data analysis. We are assuming that
each observation in any of these datasets, xi, is reported as a fuzzy numbers with
membership function given in (5.1). For computing Bayes estimators in this sec-
tion, we assume gamma priors with hyperparameters a = b = c = d = 0.001. This
choice of hyperparameters will make the priors proper. However, we have tried
to consider different values of hyperparameters, for example, we have considered
the cases a = b = c = d = 1, and a = 2, b = 1, c = 2, d = 1 and the results are not
much different than that we have obtained from that case, and are not reported
due to the space.
Example 1. The first data set was considered and analyzed by Zimmer et
al. ([37]) and Lio et al. ([19]). The dataset contains the 19 times in minutes
to oil breakdown of an insulating fluid under high test voltage (34 kV). The
data set is listed as follows: 0.19, 0.78, 0.96, 0.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50,
7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71, 72.89. Lio et al. ([19]) showed that
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n Bias RMSE ESE SSE 95% CI Length CP

25

α = 1.25
NR 0.068 0.258 0.218 0.249 (0.95,1.82) 0.87 93.6
EM 0.069 0.255 0.218 0.245 (0.93,1.81) 0.88 93.8

β = 1.50
NR 0.072 0.353 0.321 0.345 (1.05,2.35) 1.30 94.1
EM 0.075 0.350 0.320 0.342 (1.01,2.30) 1.29 94.8

50

α = 1.25
NR 0.029 0.162 0.150 0.159 (1.02,1.61) 0.59 94.5
EM 0.031 0.160 0.152 0.160 (1.04,1.60) 0.56 94.6

β = 1.50
NR 0.027 0.226 0.220 0.224 (1.15,2.03) 0.88 95.0
EM 0.029 0.225 0.218 0.222 (1.11,1.98) 0.87 95.0

100

α = 1.25
NR 0.013 0.106 0.104 0.105 (1.07,1.48) 0.41 94.9
EM 0.015 0.108 0.103 0.105 (1.08,1.46) 0.38 94.8

β = 1.50
NR 0.012 0.153 0.154 0.153 (1.24,1.85) 0.61 95.0
EM 0.012 0.155 0.156 0.155 (1.24,1.83) 0.59 95.1

25

α = 1.50
NR 0.155 0.511 0.415 0.484 (1.01,2.72) 1.71 93.8
EM 0.157 0.515 0.413 0.486 (1.02,2.72) 1.70 93.6

β = 0.50
NR 0.007 0.143 0.135 0.146 (0.29,0.87) 0.58 94.8
EM 0.007 0.144 0.138 0.144 (0.30,0.87) 0.57 94.3

50

α = 1.50
NR 0.062 0.290 0.270 0.291 (1.12,2.19) 1.07 94.7
EM 0.067 0.297 0.269 0.290 ( 1.12,2.19) 1.07 94.5

β = 0.50
NR 0.002 0.098 0.098 0.097 (0.34,0.73) 0.39 95.0
EM 0.003 0.097 0.097 0.097 (0.34,0.73) 0.39 95.0

100

α = 1.50
NR 0.026 0.188 0.182 0.186 (1.21,1.93) 0.72 95.2
EM 0.027 0.187 0.180 0.185 (1.20,1.93) 0.73 95.4

β = 0.50
NR 0.002 0.069 0.069 0.070 (0.38,0.66) 0.28 94.9
EM 0.001 0.071 0.072 0.071 (0.38,0.65) 0.27 94.9

25

α = 0.50
NR 0.080 0.280 0.211 0.267 (0.51,1.37) 0.86 93.4
EM 0.082 0.270 0.210 0.265 (0.51,1.38) 0.87 93.8

β = 0.75
NR 0.006 0.140 0.140 0.143 (0.30,0.86) 0.56 94.4
EM 0.007 0.145 0.138 0.145 (0.30,0.86) 0.56 94.2

50

α = 0.50
NR 0.033 0.149 0.134 0.145 (0.56,1.10) 0.54 94.5
EM 0.034 0.150 0.132 0.143 (0.56,1.10) 0.56 94.6

β = 0.75
NR 0.002 0.096 0.095 0.095 (0.34,0.73) 0.39 95.0
EM 0.002 0.097 0.097 0.097 (0.34.0.73) 0.39 95.2

100

α = 0.50
NR 0.013 0.094 0.096 0.093 (0.60,0.97) 0.37 95.2
EM 0.013 0.092 0.091 0.094 (0.60,0.96) 0.36 95.5

β = 0.75
NR 0.003 0.069 0.070 0.069 (0.38,0.66) 0.28 94.9
EM 0.002 0.070 0.069 0.070 (0.38,0.65) 0.27 94.6

Table 1: Simulation results for MLEs of α and β.

the two-parameters Burr type XII fits the data set very well. The MLEs of
(α, β) using Newton-Raphson method are (1.440, 0.354) with standard errors
(0.435, 0.126) and 95% confidence intervals (0.588, 2.292) and (0.106, 0.601), re-
spectively, and MLEs using EM algorithm are (1.436, 0.357) with estimated s-
tandard error (0.431, 0.127) and 95% confidence intervals (0.590, 2.281) and
(0.108, 0.606). In addition, the Bayes estimates of (α, β) are (1.427, 0.338) us-
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α = 1.25 β = 1.5

n LN TK HPD LN TK HPD

25
Bias 0.068 0.065 0.040 0.068 0.067 0.014
RMSE 0.259 0.264 0.247 0.348 0.345 0.328

50
Bias 0.029 0.029 0.016 0.025 0.022 0.003
RMSE 0.162 0.160 0.158 0.224 0.220 0.218

100
Bias 0.013 0.012 0.006 0.011 0.009 -0.001
RMSE 0.106 0.105 0.105 0.153 0.152 0.151

α = 1.5 β = 0.5

25
Bias 0.191 0.199 0.140 0.015 0.015 -0.009
RMSE 0.529 0.556 0.504 0.141 0.143 0.140

50
Bias 0.084 0.080 0.058 0.006 0.004 -0.006
RMSE 0.309 0.309 0.295 0.096 0.096 0.095

100
Bias 0.030 0.034 0.022 0.007 0.004 -0.002
RMSE 0.191 0.190 0.187 0.069 0.071 0.068

α = 0.5 β = 0.75

25
Bias 0.103 0.105 0.075 0.014 0.015 -0.009
RMSE 0.298 0.306 0.276 0.142 0.144 0.141

50
Bias 0.042 0.040 0.029 0.005 0.006 -0.006
RMSE 0.152 0.154 0.147 0.096 0.092 0.095

100
Bias 0.018 0.017 0.011 0.004 0.002 -0.002
RMSE 0.095 0.092 0.093 0.069 0.070 0.068

Table 2: Simulation results for Bayesian estimates of α and β

ing Lindley’s approximation, (1.507, 0.364) using Tierney-Kadane approximation
and (1.427, 0.338) using highest posterior density method.
Example 2. Lawless ([16]) reported the time between failure of air conditioning
equipment in a particular type of aircraft. These observations are

0.500, 0.875, 1.083, 1.125, 1.208, 1.208, 2.00, 2.375,

2.458, 2.917, 3.083, 6.375, 13.583, 16.083, 20.917

Kayal et al. ([14]) concluded that Burr type XII model fits the data set quite
good. The MLEs of (α, β) using Newton-Raphson method are (3.571, 0.275) with
standard errors (1.488, 0.127) and 95% confidence intervals (0.654, 6.487) and
(0.026, 0.524), respectively, and MLEs using EM algorithm are (3.500, 0.284) with
estimated standard error (1.434, 0.129) and 95% confidence intervals (0.690, 6.311)
and (0.031, 0.537), respectively. In addition, the Bayes estimates of (α, β) are
(3.519, 0.260) using Lindley’s approximation, (3.921, 0.289) using Tierney-Kadane
approximation and (3.519, 0.260) using highest posterior density method.
Example 3. In this example, we analyze a dataset that represents the survival
time of animals observed due to different dosage of poison administered (see, Box
and Cox ([4])). The observations are listed as

0.18, 0.21, 0.22, 0.22, 0.23, 0.23, 0.23, 0.24, 0.25, 0.29, 0.29, 0.30,

0.30, 0.31, 0.31, 0.31, 0.33, 0.35, 0.36, 0.36, 0.37, 0.38, 0.38, 0.40,
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Figure 1: Histograms of the estimated values of the MLEs, α̂ and β̂, for
n = 100. The first line for (α = 1.25,β = 1.5), the second line
for (α = 1.5,β = 0.5) and the third line for (α = 0.5,β = 0.75)

0.40, 0.43, 0.43, 0.44, 0.45, 0.45, 0.45, 0.46, 0.49, 0.56, 0.61, 0.62,

0.63, 0.66, 0.71, 0.71, 0.72, 0.76, 0.82, 0.88, 0.92, 1.02, 1.10, 1.24.
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Kayal et al. ([14]) analyzed the above data and they concluded that the data
might have come from a two-parameter Burr type XII distribution. The M-
LEs of (α, β) using Newton-Raphson method are (2.346, 4.938) with standard er-
rors (0.231, 0.822) and 95% confidence intervals (1.893, 2.798) and (1.887, 2.785),
respectively, and MLEs using EM algorithm are (2.336, 5.075) with estimat-
ed standard error (0.229, 0.850) and 95% confidence intervals (3.326, 6.550) and
(3.408, 6.742), respectively. In addition, the Bayes estimates of (α, β) are (2.373,
4.928) using Lindley’s approximation, (2.338, 4.923) using Tierney-Kadane ap-
proximation and (2.304, 4.761) using highest posterior density method.

7. CONCLUSION

In this article, we have considered both classical and Bayesian analysis of fuzzy
survival time observations when the lifetime of the items follows two-parameter
Burr type XII distribution. The MLEs do not have explicit forms. Thus, Newton-
Raphson and Expectation-Maximization algorithms have been used to compute
the MLEs and both of them work quite well. The Bayes estimates under the
squared error loss function also do not exist in explicit form. In this case, we
have proposed to use Lindley’s approximation, Tierney-Kadane approximation
and highest posterior density method to compute the Bayes estimates when the
two unknown parameters have independent gamma priors. However, we have
considered gamma priors, but a more general prior, namely a prior which has the
log-concave p.d.f. may be used, and the method can be easily incorporated in that
case. Moreover, in Bayesian estimation, we proposed to use a very well-known
symmetric loss function which is the squared-error loss function. However, we
may extend the results of the paper by adopting other loss function like LINEX.
Another direction for extension is to consider censored fuzzy observations like
type II progressively censored fuzzy observations.
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Appendix

Proof of Theorems 3.1

Recall that, the log-likelihood function of α and β is given by

l(α, β|x̃) = n logα+ n log β +

n∑
i=1

log

∫
A(x)µx̃i(x)dx,

where

A(x) = xα−1(1 + xα)−β−1.(7.1)

Observe that, for fixed β > 0, we have

lim
α→0

l(α, β|x̃) = lim
α→∞

l(α, β|x̃) = −∞

and for fixed α > 0, we have

lim
β→0

l(α, β|x̃) = lim
β→∞

l(α, β|x̃) = −∞.

We can see that

∂2 log(A(x))

∂α2
= −(β + 1)(log(x))2xα

(1 + xα)2
< 0

for fixed β > 0 i.e. A(x) is strictly log-concave in α for fixed β > 0. Similarly,
we can prove that A(x) is log-concave in β for fixed α > 0. By Prekopa-Leindler
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inequality (see Gardner [11]) we obtain that
∫
A(x)µx̃i(x)dx is strictly log-concave

in α (or β) for fixed β > 0 (or α > 0). Therefore, for fixed α( or β), l(α, β|x̃) is
strictly concave and unimodal function with respect to β( or α). Moreover,

lim
α→0
β→0

l(α, β|x̃) = lim
α→0
β→∞

l(α, β|x̃) = lim
α→∞
β→0

l(α, β|x̃) = lim
α→∞
β→∞

l(α, β|x̃) = −∞,

The rest of the proof is the same as that of Dey et al. ([9]).
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