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1. INTRODUCTION

Consider the following binary logistic regression model

(1.1) πi =
exp (x′iβ)

1 + exp (x′iβ)
, i = 1, ..., n

where x′i = (1 xi1 · · ·xiq) denotes the ith row of X which is an n× p (p = q + 1)
data matrix with q known covariate vectors, yi shows the response variable which
takes on the value either 0 or 1 with yi ∼ Bernoulli(πi), yi’s are supposed to be
independent of one another and β′ = (β0 β1 · · ·βq) stands for a p × 1 vector of
parameters.

Usually the maximum likelihood (ML) method is used to estimate β. The
corresponding log-likelihood equation of model (1.1) is given by

(1.2) L =

n∑
i=1

yilog (πi) + (1− yi) log (1− πi)

where πi is the ith element of the vector π, i = 1, 2, ..., n.

ML estimator can be obtained by maximizing the log-likelihood equation
given in (1.2). Since Equation (1.2) is non-linear in β, one should use an iterative
algorithm called iteratively re-weighted least squares algorithm (IRLS) as follows
(Saleh and Kibria, 2013):

(1.3) β̂t+1 = β̂t +
(
X ′V tX

)−1
X ′V t

(
y − π̂t

)
where πt is the estimated values of π using β̂t and V t = diag

(
π̂ti
(
1− π̂ti

))
such

that π̂ti is the ith element of π̂t. After some algebra, Equation (1.3) can be written
as follows:

(1.4) β̂ML =
(
X ′V X

)−1
X ′V z

where z′ = (z1 · · · zn) with ηi = x′iβ and zi = ηi + (yi − πi)(∂ηi/∂πi).

In linear regression analysis, multicollinearity has been regarded as a prob-
lem in the estimation. In dealing with this problem, many ways have been intro-
duced to deal with this problem. One approach is to study the biased estimators
such as ridge estimator (Hoerl and Kennard, 1970), Liu estimator (Liu, 1993),
Liu-type estimator (Huang et al., 2009), modified Liu-type estimator (Alheety
and Kibria, 2013) and improved ridge estimators (Yüzbaşı et al., 2017). Alterna-
tively, many authors such as Xu and Yang (2011) and Li and Yang (2011), have
studied the estimation of linear models with additional restrictions.

As in linear regression, estimation in logistic regression is also sensitive to
multicollinearity. When there is multicollinearity, columns of the matrix X ′V X
become close to be dependent. It implies that some of the eigenvalues of X ′V X
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become close to zero. Thus, mean squared error value of MLE is inflated so
that one cannot obtain stable estimations. Thus many authors have studied how
to reduce the multicollinearity, such as Lesaffre and Max (1993) discussed the
multicollinearity in logistic regression, Schaefer et al. (1984) proposed the ridge
logistic (RL) estimator, Aguilera et al. (2006) proposed the principal component
logistic regression (PCLR) estimator, Månsson et al. (2012) introduced the Liu
logistic (LL) estimator, by combining the principal component logistic regression
estimator and ridge logistic estimator to deal with multicollinearity. Moreover,
Inan and Erdoğan (2013) proposed Liu-type logistic estimator (LTL) and Asar
(2017) studied some properties of LTL.

In this study, by combining the principal component logistic regression
estimator and the Liu-type logistic estimator, the principal component Liu-type
logistic estimator is introduced as an alternative to the PCLR, ML and LTL to
deal with the multicollinearity.

The rest of the paper is organized as follows. In Section 2, the new estimator
is proposed. Some properties of the new estimator are presented in Section 3. A
Monte Carlo simulation is given in Section 4 and some concluding remarks are
given in Section 5.

2. THE NEW ESTIMATOR

The logistic regression model is expressed by Aguilera et al. (2006) in
matrix form in terms of the logit transformation as L = Xβ = XTT ′β = Zα
where T = [t1, ..., tp] shows an orthogonal matrix with Z ′V Z = T ′X ′V XT = Λ
and Λ = diag (λ1, ..., λp), λ1 ≥ ... ≥ λp is the ordered eigenvalues of X ′V X. Then

T and Λ may be written as T = (Tr Tp−r) and

[
Λr O
O Λp−r

]
where Z ′rV Zr =

T
′
rX
′V XTr = Λr and Z ′p−rV Zp−r = T ′p−rX

′V XTp−r = Λp−r. The Z matrix and

the α vector can be partitioned as Z = (Zr Zp−r) and α =
(
α′r α′p−r

)′
. The

handling of multicollinearity by means of PCLR corresponds to the transition
from the model L = Xβ = XTrT

′
rβ + XTp−rT

′
p−rβ = Zrαr + Zp−rαp−r to the

reduced model L = Zrαr. Then by Equation (1.1) and PCLR method we get the
PCLR estimator.

Inan and Erdoğan (2013) proposed Liu-type logistic estimator (LTL) as

(2.1) β̂ (k, d) = (X ′V X + kI)−1(X ′V z − dβ̂ML)

where −∞ < d <∞ and k > 0 are biasing parameters.

The principal component logistic regression estimator (Aguilera et al., 2006)
is defined as

(2.2) β̂r = Tr
(
T ′rX

′V XTr
)−1

T ′rX
′V z
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We can write (2.2) as follows:

(2.3) β̂r = Tr
(
T ′rX

′V XTr
)−1

T ′rX
′V z = TrT

′
rβ̂ML

Then we can introduce a new estimator by replacing β̂∗ (k, d) with β̂ML in (2.3),
and we get

β̂r (k, d) = TrT
′
rβ̂ (k, d)

= Tr
(
T ′rX

′V XTr + kIr
)−1 (

T ′rX
′V XTr − dIr

) (
T ′rX

′V XTr
)−1

T ′rX
′V z(2.4)

where −∞ < d <∞ and k > 0 are biasing parameters. We call this estimator as
the principal component Liu-type logistic regression (PCLTL) estimator.

Remark 2.1. It is obvious that

β̂r (k, d) = Tr
(
T ′rX

′V XTr + kIr
)−1 (

T ′rX
′V XTr − dIr

)
T ′rβ̂r.

Thus we can see the PCLTL estimator as a linear combination of the PCLR
estimator.

Remark 2.2. It is easy to obtain the followings:

(a) β̂r (0, 0) = β̂r = Tr (T ′rX
′V XTr)

−1 T ′rX
′V z, PCLR estimator

(b) β̂p (0, 0) = β̂ML = (X ′V X)−1X ′V z, ML estimator

(c) β̂p (k, d) = β̂ (k, d) = (X ′V X + kI)−1(X ′V z − dβ̂ML), LTL estimator.

Thus, the new estimator in (2.4) includes the PCLR, ML and LTL estimators as
its special cases.

In the next section, we will study the properties of the new estimator.

3. THE PROPERTIES OF NEW ESTIMATOR

For the sake of convenience, we present some lemmas which are needed in
the following discussions.

Lemma 3.1. (Farebrother, 1976; Rao and Tountenburg, 1999)
Suppose that M is a positive definite matrix, namely M > 0, α is some vector,
then M − αα′ ≥ 0 if and only if α′M−1α ≤ 1.
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Lemma 3.2. (Baksalary and Trenkler,1991)
Let Cn×p be the set of complex matrices and Hn×n be the Hermitian matrices.
Further, given L ∈ Cn×p, L∗, R (L) and κ (L) denote the conjugate transpose,
the range and the set of all generalized inverses, respectively of L. Let A ∈ Hn×n,
a1 ∈ Cn×1 and a2 ∈ Cn×1 be linearly independent, fij = a′iA

−aj , i, j = 1, 2 and
A ∈ κ (L), a1 /∈ R (A). Let

s =
[
a′1
(
I −AA−

)′ (
I −AA−

)
a2

]/[
a′1
(
I −AA−

)′ (
I −AA−

)
a1

]
Then A + a1a

′
1 − a2a

′
2 ≥ 0 if and only if one of the following sets of conditions

holds:

(a) A ≥ 0, ai ∈ R (A) , i = 1, 2, (f11 + 1) (f22 − 1) ≤ |f12|2

(b) A ≥ 0, a1 /∈ R (A) , a2 ∈ R (A : a1) , (a2 − sa1)
′
A− (a2 − sa1) ≤ 1− |s|2

(c) A = U∆U ′ − λvv′, ai ∈ R (A) , i = 1, 2, v′a1 6= 0, f11 + 1 ≤ 0, f22 − 1 ≤ 0,

(f11 + 1) (f22 − 1) ≥ |f12|2 ,

where (U : v) shows a sub-unitary matrix, λ is a positive scalar and ∆ is a pos-
itive definite diagonal matrix. Further, the condition (a), (b) and (c) denote all
independent of the choice of A−, A−stands for the generalized inverse of A.

To compare the estimators, we use the mean squared error matrix (MSEM)
criterion which is defined for an estimator β̌ as follows:

MSEM
(
β̌
)

= Cov
(
β̌
)

+Bias(β̌)Bias(β̌)′

where Cov
(
β̌
)

is the covariance matrix of β̌, and Bias(β̌) is the bias vector of β̌.

Moreover, scalar mean squared error (SMSEM) of an estimator β̌ is also given as

SMSE
(
β̌
)

= tr
{
MSEM(β̌)

}
.

3.1. Comparison of the new estimator (PCLTL) to the ML estimator

From (2.4), we can compute the asymptotic variance of the new estimator
as follows:

(3.1) Cov
(
β̂r (k, d)

)
= TrSr(k)−1Λ−1

r Sr(d)ΛrSr(d)Λ−1
r Sr(k)−1T ′r

where Sr(k) = Λr + kIr, Sr(d) = Λr − dIr.

Using (2.4), we get:

(3.2) E
(
β̂r (k, d)

)
= TrSr(k)−1Λ−1

r Sr(d)ΛrT
′
rβ
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By

(3.3) TrSr(k)−1ΛrT
′
r − Ip = −

(
Tp−rT

′
p−r + kTrSr(k)−1T

′
r

)
,

then we get the asymptotic bias of the new estimator as follows:

Bias
(
β̂r (k, d)

)
=
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
β.

Now, we can get the asymptotic mean squared error matrix of the new
estimator as follows

MSEM
(
β̂r (k, d)

)
= TrSr(k)−1Λ−1

r Sr(d)ΛrSr(d)Λ−1
r Sr(k)−1T ′r

+
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
β

×β′
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
.(3.4)

Theorem 3.1. Assume that d < k and d+k > 0 then the new estimator
is superior to the ML estimator under the asymptotic mean squared error matrix
criterion if and only if

β′Tr(k + d)2
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]−1
T ′rβ + β′Tp−rΛp−rT

′
p−rβ ≤ 1.

Proof: The asymptotic mean squared error matrix of MLE is given by

(3.5) MSEM
(
β̂
)

=
(
X ′V X

)−1
.

By Λ =

(
Λr O
O Λp−r

)
and T = (Tr, Tp−r), we may obtain

(
X ′V X

)−1
= TΛ−1T ′ = TrΛ

−1
r T ′r + Tp−rΛ

−1
p−rT

′
p−r.

Let us consider the difference ∆1 = MSEM
(
β̂
)
−MSEM

(
β̂r (k, d)

)
such that

∆1 = TrSr(k)−1
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]
Sr(k)−1T

′
r

+Tp−r
[
Λp−r − T ′p−rββ′Tp−r

]
T ′p−r − (k + d)2TrSr(k)−1

×T ′rββ′Sr(k)−1T
′
r + (k + d)TrSr(k)−1T

′
rββ

′Tp−rT
′
p−r

+(k + d)Tp−rT
′
p−rββ

′TrSr(k)−1T
′
r.(3.6)

Let

S∗ =

(
Sr(k)
k+d 0

0 Λp−r

)
and

(3.7) (Λ∗)−1 =

(
2(k+d)Ir+(k2−d2)Λ−1

r

(k+d)2
0

0 Λp−r

)
.
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Now we can write (3.6) as

(3.8) ∆1 = T (S∗)−1
[
(Λ∗)−1 − T ′ββ′T

]
(S∗)−1 T ′.

Thus ∆1 is a nonnegative definite matrix if and only if (Λ∗)−1 − T ′ββ′T is a
nonnegative definite matrix. Using Lemma 3.1, (Λ∗)−1−T ′ββ′T is a nonnegative
definite matrix if and only if β′TΛ∗T ′β ≤ 1. Invoking the notation of Λ∗in (3.7),
we can prove Theorem 3.1.

3.2. Comparison of the new estimator (PCLTL) to the PCLR estima-
tor

Theorem 3.2. Suppose that d < k and d+k > 0 then the new estimator
is better than the PCLR estimator under the asymptotic mean squared error
matrix criterion if and only if T ′rβ = 0.

Proof: Suppose that k = d in Equation (3.4), then we get

(3.9) MSEM
(
β̂r

)
= TrΛ

−1
r T ′r +

(
TrT

′
r − Ip

)
ββ′

(
TrT

′
r − Ip

)
.

Now let us consider the difference ∆2 = MSEM
(
β̂r

)
−MSEM

(
β̂r (k, d)

)
such

that

∆2 = TrSr(k)−1
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]
Sr(k)−1T

′
r

+
(
TrT

′
r − Ip

)
ββ′

(
TrT

′
r − Ip

)
+
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
β

×β′
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
.(3.10)

To apply Lemma 3.2, let A = TrBT
′
r, where

B = Sr(k)−1
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]
Sr(k)−1

and a1 = (TrT
′
r − Ip)β, a2 =

(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
β.

When d < k and d+k > 0, B is a positive definite matrix. Then we get the
Moore-Penrose inverses of A which is A+ = TrB

−1T ′r, and AA+ = TrT
′
r. Thus

a1 ∈ R (A) if and only if a1 = 0. Since a1 6= 0, we cannot use part (a) and (c) of
Lemma 3.2, we can only apply part (b) of Lemma 3.2. Using the definition of s,
we may obtain that s = 1. On the other hand, a2 − a1 = Aη, where

η = (d+ k)TrSr(k)
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]−1
T
′
rβ.
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Thus, we can easily obtain a2 ∈ R (A : a1). Then Using Lemma 3.2, we can get
that the new estimator is superior to the PCLR estimator under the asymptotic
mean squared error matrix criterion if and only if (a2 − a1)A− (a2 − a1) ≤ 0 or
η′Aη ≤ 0. In fact, (a2 − a1)A− (a2 − a1) ≥ 0, so the new estimator is better than
the PCLR estimator under the asymptotic mean squared error matrix criterion
if and only if η′Aη = 0, that is

β′Tr
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]−1
T
′
rβ = 0

and β′Tr
[
2(k + d)Ir + (k2 − d2)Λ−1

r

]−1
T
′
rβ = 0 if and only if T ′rβ = 0. Thus,

the proof is finished.

3.3. Comparison of the new estimator (PCLTL) to the Liu-type logis-
tic estimator

Theorem 3.3. The new estimator is superior to the Liu-type logistic
estimator under the asymptotic mean squared error matrix criterion if and only
if T ′p−rβ = 0.

Proof: Putting r = p into (3.4), we get

MSEM
(
β̂ (k, d)

)
= TS(k)−1S(d)Λ−1S(d)S(k)−1T ′

+(k + d)2TS(k)−1T ′ββ′TS(k)−1T ′(3.11)

where S(k) = Λ+kIp and S (d) = Λ−dIp. Now we study the following difference

∆3 = MSEM
(
β̂ (k, d)

)
−MSEM

(
β̂r (k, d)

)
where

∆3 = TS(k)−1S(d)Λ−1S(d)S(k)−1T ′

−TrSr(k)−1Λ−1
r Sr(d)ΛrSr(d)Λ−1

r Sr(k)−1T ′r

+(k + d)2TS(k)−1T ′ββ′TS(k)

−
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
β

×β′
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
.

Suppose that C = Tp−rDT
′
p−r, where

D = Sp−r(k)−1Sp−r(d)Λ−1
p−rSp−r(d)Sp−r(k)−1

and a3 = (d + k)TS(k)−1T ′β, a2 =
(
−Tp−rT ′p−r − (d+ k)TrSr(k)−1T

′
r

)
β. We

can apply part (b) of Lemma 3.2. The Moore-Penrose inverse of C is C+ =
Tp−rD

−1T ′p−r, and CC+ = Tp−rT
′
p−r. So a3 /∈ R (C), a2 ∈ R (C : a3), s = 1 and

a2 − a3 = Cη1, where

η1 = −Tp−rSp−r(k)−1Sp−r(d)Λ−1
p−rT

′
p−rβ.
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Then by Lemma 3.2, we obtain that the new estimator is superior to the Liu-type
logistic estimator under the asymptotic mean squared error matrix criterion if and
only if (a2 − a3)C− (a2 − a3) ≤ 0 or η′1Cη1 ≤ 0. In fact, (a2 − a3)C− (a2 − a3) ≥
0, so the new estimator is better than the Liu-type logistic estimator under the
asymptotic mean squared error matrix criterion if and only if η′1Cη1 = 0, that is
β′Tp−rΛp−rT

′
p−rβ = 0.

4. A MONTE CARLO SIMULATION STUDY

In this simulation study, we study the logistic regression model. In this
section, we present the details and the results of the Monte Carlo simulation which
is conducted to evaluate the performances of the estimators MLE, PCLR, and
LTL estimators and PCLTL. There are several papers studying the performance
of different estimators in the binary logistic regression. Therefore, we follow the
idea of Lee and Silvapulle (1988), Månsson et al. (2012), Asar (2017) and Asar
and Genç (2016) generating explanatory variables as follows

(4.1) xi j =
(
1− ρ2

)1/2
zi j + ρziq

where i = 1, 2, ..., n, j = 1, 2, ..., q and zi j ’s are random numbers generated from
standard normal distribution. Effective factors in designing the experiment are
the number of explanatory variables q, the degree of the correlation among the
independent variables ρ2 and the sample size n.

Four different values of the correlation ρ corresponding to 0.8, 0.9, 0.99
and 0.999 are considered. Moreover, four different values of the number of ex-
planatory variables consisting of q = 6, 8 and 12 are considered in the design of
the experiment. The sample size varies as 50, 100, 200, 500 and 1000. Moreover,
we choose the number of principal components using the method of percentage
of the total variability which is defined as

PTV =

∑r
j=1 λj∑p
j=1 λj

× 100.

In the simulation, PTV is chosen as 0.75 for q = 8 and 12 and 0.83 for q = 6 (see
Aguilera et al. (2006)).

The coefficient vector is chosen due to Newhouse and Oman (1971) such
that β′β = 1 which is a commonly used restriction, for example see Kibria (2003).
We generate the n observations of the dependent variable using the Bernoulli
distribution Be (πi) where πi = exiβ

1+exiβ
such that xi is the ith row of the data

matrix X. The simulation is repeated for 10000 times. To compute the simulated
MSEs of the estimators, the following equation is used respectively:

(4.2) MSE
(
β̃
)

=

∑10000
c=1

(
β̃c − β

)′ (
β̃c − β

)
10000
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Table 1: Simulated MSE values of the estimators when q = 6

n ρ 0.8 0.9 0.99 0.999

50 MLE 0.9942 0.8060 4.8571 41.7598
LTL 0.8645 0.7561 2.2694 14.5135

PCLR 0.9441 0.7780 1.9253 10.1568
PCLTL 0.8619 0.7480 0.9481 2.2783

100 MLE 0.7050 0.7478 4.1961 38.1615
LTL 0.7328 0.7613 2.6520 15.3411

PCLR 0.6913 0.7342 1.6385 14.3406
PCLTL 0.7169 0.7460 1.0849 2.5414

200 MLE 0.7286 0.8308 1.2978 5.8428
LTL 0.7784 0.7862 0.8506 1.6886

PCLR 0.7221 0.8223 1.1428 4.2635
PCLTL 0.7668 0.7879 0.8571 1.7816

500 MLE 0.7428 0.7620 1.3640 4.0893
LTL 0.8043 0.7665 1.0366 1.7055

PCLR 0.7417 0.7551 0.9309 2.3118
PCLTL 0.7895 0.7595 0.8193 1.2168

1000 MLE 0.7325 0.7512 0.9295 1.3950
LTL 0.7550 0.7930 0.8030 0.8265

PCLR 0.7317 0.7463 0.8421 1.1389
PCLTL 0.7449 0.7878 0.7766 0.8130

where β̃c is MLE, PCLR, LTL, and PCLTL in the cth replication. The conver-
gence tolerance is taken to be 10−6 in the IRLS algorithm.

We choose the biasing parameter as follows:

1. LTL: We refer to Asar (2017) and choose dLTL = 1
2 min

{
λj
λj+1

}p
j=1

where

min is the minimum function and kAM = 1
p

∑p
j=1

λj−d(1+λj α̂
2
j)

λj α̂2
j

.

2. PCLTL: We propose to use the modifications of the methods given above
as follows:

dPCLTL =
1

2
min

{
λj

λj + 1

}r
j=1

and

kPCLTL =
1

r

r∑
j=1

λj − dPCLTL
(

1 + λjα̂
2
j

)
λjα̂2

j

.

According to Tables 1-3, the following results are obtained:

1. MSE of the MLE is inflated when the degree of correlation is increased
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Table 2: Simulated MSE values of the estimators when q = 8

n ρ 0.8 0.9 0.99 0.999

50 MLE 0.9148 1.2089 3.8258 54.7686
LTL 0.8065 0.9414 1.2265 16.7926

PCLR 0.7669 0.8948 2.3655 12.4373
PCLTL 0.7237 0.8477 1.1400 3.2686

100 MLE 0.7917 0.8182 2.2287 35.6674
LTL 0.8264 0.7728 1.0472 14.5687

PCLR 0.7512 0.7857 1.5575 17.9893
PCLTL 0.8204 0.7573 1.0189 9.3816

200 MLE 0.7891 0.8598 1.7860 17.1105
LTL 0.8293 0.8094 1.0451 6.3030

PCLR 0.7710 0.7962 1.3309 7.4095
PCLTL 0.8150 0.7893 0.9678 3.2204

500 MLE 0.7359 0.8031 1.2199 3.9098
LTL 0.7612 0.8043 0.9003 1.4233

PCLR 0.7244 0.7608 1.0378 2.4107
PCLTL 0.7511 0.7959 0.8712 1.2120

1000 MLE 0.7502 0.7889 0.8576 5.0227
LTL 0.7873 0.7933 0.7935 2.6289

PCLR 0.7462 0.7516 0.8086 1.8239
PCLTL 0.7781 0.7800 0.7861 1.1132

and the sample size is low. On the other hand, the performance of MLE
becomes quite well when the sample size is high enough.

2. Similarly, if we consider PCLR and LTL, the MSE values are also inflated
for increasing values of the degree of correlation especially when n = 50.

3. MLE, PCLR and LTL produce high MSE values when the sample size is
low and the degree of correlation is high. However, PCLTL seems to be
robust to this situation in most of the cases.

4. Increasing the sample size makes a positive effect on the estimators in most
of the situations. However, there is a degeneracy in this property.

5. When the degree of correlation is low, there is no estimator beating all
others.

6. Overall, the new estimator PCLTL has the lowest MSE value in most of
the situations considered in the simulation.
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Table 3: Simulated MSE values of the estimators when q = 12

n ρ 0.8 0.9 0.99 0.999

50 MLE 1.1407 1.2743 11.0452 81.6076
LTL 0.8948 0.9622 3.4314 15.0524

PCLR 0.8437 0.9409 3.7290 12.2146
PCLTL 0.8157 0.8961 1.8368 2.0556

100 MLE 0.9247 1.4041 4.8286 22.7269
LTL 0.8618 1.0687 2.0033 3.4810

PCLR 0.7999 0.8438 1.3798 10.3112
PCLTL 0.8152 0.8585 0.8643 2.7653

200 MLE 0.8238 1.0956 1.9228 15.8403
LTL 0.8111 0.9612 0.9866 4.2617

PCLR 0.7959 0.8369 1.4330 5.6484
PCLTL 0.7940 0.8518 0.9760 1.9115

500 MLE 0.8009 0.8173 3.3133 11.2533
LTL 0.8387 0.8357 2.3419 4.4671

PCLR 0.7809 0.8042 1.0087 6.5955
PCLTL 0.8331 0.8150 0.8581 3.7834

1000 MLE 0.7798 0.8081 1.0899 4.4119
LTL 0.8205 0.8286 0.8784 1.7929

PCLR 0.7733 0.7965 1.0258 1.7815
PCLTL 0.8089 0.8212 0.9056 1.0085

5. CONCLUSION

In this paper, we develop a new principal component Liu-type logistic esti-
mator as a combination of the principal component logistic regression estimator
and Liu-type logistic estimator to overcome the multicollinearity problem. We
have proved some theorems showing the superiority of the new estimator over
the other estimators by studying their asymptotic mean squared error matrix
criterion. Finally, a Monte Carlo simulation study is presented in order to show
the performance of the new estimator. According to the results, it seems that
PCLTL is a better alternative in multicollinear situations in the binary logistic
regression model.
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