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However, our tests are inherently orthogonal invariant, an affine invariant version of
them is provided by using Tyler’s estimator of scatter. The limiting null distribution
of proposed tests is derived and the performance of the proposed tests is evaluated
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procedures in the literature.
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1. INTRODUCTION

Let X4i,...,X,, denote independent copies of the bivariate random vector
X = (X, XQ)T from a continuous bivariate population. One problem which has
been considered in the literature is to test whether the distribution is symmet-
ric about an unknown center against the alternative that the symmetry is lost
(Heathcote et al. [16], Koltchinskii and Li [22], Neuhaus and Zhu [33], Manzotti
et al. [30] and Henze et al. [17]). Moreover, in the univariate case, we can men-
tion to Cassart et al. [6]. Unlike the univariate case, there are several concepts
of multivariate symmetry including spherical, elliptical, central and angular sym-
metry. It is worth noting that the mentioned arrangement of the multivariate
symmetry concepts are ordered in increasing generality. To read more about
different types of multivariate symmetry see Serfling [38].

A different problem is the testing of the hypothesis that the bivariate dis-
tribution is symmetric about a known center p, against the alternative that the
distribution is symmetric about g # py. There is a substantial literature for
this problem. Under the multivariate normality assumption, it is common to use
Hotelling’s 7% test [20]. A multivariate affine-invariant sign test based on counts
called interdirections has been presented by Randles [35]. In the sequence, Peter
and Randles [41] based on the notion of interdirection, provided affine invari-
ant signed rank test and signed sum test, respectively. Optimal affine invariant
tests based on interdirections and pseudo-Mahalanobis ranks have been devel-
oped by Hallin and Paindaveine [12]. Hallin and Paindaveine [11] also presented
an alternative version of these procedures in which interdirections are replaced
by angles between the observations standardized via Tyler’s estimator of scatter
[40]. Mottonen and Oja [32] developed the tests based on spatial signs and ranks.
Hettmansperger et al. [18] and Hettmansperger et al. [19] extended the bivariate
tests of Brown and Hettmansperger [5] to the multivariate case. An affine in-
variant sign test by applying the Tyler’s transformation on data points has been
presented by Randles [36]. The affine invariant signed rank test, modified from
sign test of Randles [36], was suggested by Mahfoud and Randles [29]. The tests
described in preceding paragraph can serve as important preliminaries before ap-
plying these corresponding location tests. Moreover, there are several tests for
testing of the hypothesis that the bivariate distribution is symmetric against not
only location parameter but also regression and serial dependence alternatives
e.g. Hallin and Paindaveine [13], [14] and [15].

Another problem that has received attention is to test whether the distri-
bution is symmetric about known center p, against the alternative that either
the symmetry is lost or the location parameter is changed. Our paper deals with
the latter problem. Indeed, the purpose of this paper is to develop affine invari-
ant tests for testing the central symmetry of the bivariate distribution about a
known center p,. Baringhaus [4] introduced the rotation invariant tests, for test-
ing the spherical symmetry of the multivariate distribution about known center.
For central symmetry that it is a weaker assumption than spherical and elliptical
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symmetry, the tests have been developed employing the empirical characteristic
functions by Ghosh and Ruymgaart [10]. Aki [1] proposed a rotation invariant
test based on the empirical distribution function. An extension of McWilliams’
univariate run test (Mcwilliams [31]) into a test of bivariate central symmetry
based on the depth function have been presented by Dyckerhoff et al. [8]. Al-
though, this test is affine invariant, it suffers from low power in distinguishing
most of the alternative hypotheses to central symmetry. Recently Einmahl and
Gan [9] proposed two versions of a rotation invariant test based on empirical
measures of opposite regions.

In this paper, we aim to propose test statistics for central symmetry in such
a way that they would be affine invariant, distribution-free and have good power
against alternatives to the null hypothesis. The test statistics are created based
on sum of the signed-ranks where the sign and rank functions are determined
through the depth function. Based on a given depth function, this procedure
results in an orthogonal invariant test statistic. An affine invariant version of
this test is provided by applying Tyler’s transformation (Tyler [40]) on data
points. The affine invariance property ensures that the performance of the test
does not depend on the underlying coordinate system.

The word of depth has been used for the first time by Tukey [39] to intro-
duce the halfspace depth function. In the sequence, different depth functions have
been introduced and the multivariate data have been ordered as center-outward
based on them. This center-outward ranking has been widely applied in mul-
tivariate nonparametric inference. Liu and Singh [27] presented a quality index
and provided some multivariate rank tests for difference between two independent
distributions based on it. In the following, a distribution-free test was presented
based on both the depth function and the principal components by Rousson [37]
for the multivariate two-sample location-scale model. Based on DD plots (depth
vs. depth plots) introduced by Liu et al. [26], two tests have been provided by
Li and Liu [24] for location difference between two multivariate distributions. In
addition, Liu and Singh [28] introduced some rank tests for multivariate scale
difference between two or more independent populations. Depth-based run tests
for bivariate central symmetry is introduced by Dyckerhoff et al. [8].

The remainder of this paper is organized as follows. In section 2, we review
briefly the concept of depth function and ranking based on it. The proposed test
statistics will be described in section 3 and the asymptotic properties of those
are also investigated. Finally, in section 4, a Monte Carlo study evaluates the
finite sample performance of the proposed test statistics in accordance with other
tests. All technical proofs are deferred to the Appendix.
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2. DEPTH FUNCTION

Let X be a p-dimensional random vector defined on a probability space
(Q,F, P). We denote F as a distribution function corresponding to P. A depth
function associated with a distribution function F' on RP is defined to provide a
center-outward ordering of points of RP relative to F'. Based on depth function, a
corresponding notion of center or multidimensional median could be defined. The
higher depth values refer to the points near to the center, whereas the lower values
refer to the outer points of the center. A formal definition of "statistical depth
function” is presented by Zuo and Serfling [42] as a function D(.,F) : RP — R
satisfying the following properties:

P1. affine invariance: for any nonsingular p x p matrix A and p—vector b,
D(AX + b, FAx+b) = D(X, F)

P2. Maximality at center: If F is symmetric about 6 in some sense, then
D (O,F) = SUPxeRe D(Xa F)

P3.  Monotonicity relative to deepest point: if D(0, F) > D (x, F') for any x €
RP then D (0 + a(x—0),F) > D (x, F) for each a € [0,1] and x € RP.

P4.  Vanishing at infinity: as ||x|| — oo, D(x, F') — 0.

Let X4, ..., X,, be a random sample from p-dimensional distribution function F'.
The sample version of the depth function D (., F') will be obtained by replacing
F with the sample distribution F,.

Remark 2.1. If the sample depth function D(., F,,) satisfies property
P1, then it will also be invariant under data-dependent nonsingular transforma-
tions.

Different depth functions have been proposed by some authors, which the
definition of some of them that we deal with in this paper are given as follows.

Definition 2.1.  (Tukey [39]) The halfspace depth of x € RP with re-
spect to F' is defined as

HD (x,F) = iII—lIf {P(H): H isaclosed halfspace in R’ and x € H}

and the sample halfspace depth function is

min # {z ooulX; < uTX, 1 =1, ,n}
HD (x, Fy) = [[ul|=1
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Definition 2.2.  (Liu [25]) The simplicial depth of x with respect to F'
is defined as
SD (X, F) = Pr (X es [Xl, ...,XP_HD

where S| X4, ..., X,11] is a closed simplex with X, ..., X,;1 vertics. The sample
version of SD(x,F) is given by the fraction of the sample random simplices
containing the point x.

Definition 2.3.  (Liu [27]) The Mahalanobis depth of x with respect to
F' is given by .
T s—1
I+ (x—p) 57 (x—p)
where p and X are the mean vector and dispersion matrix of F' distribution,
respectively. The sample version of Mahalanobis depth is provided by replacing
p and ¥ with their sample estimates.

MD (x,F) =

Additionally, some other depth functions have been introduced such as Oja
depth (Oja [34]) and zonoid depth (Koshevoy and Mosler [23]). A more recent
proposal for data depth is the Monge-Kantorovich depth (Chernozhukov et al.
[7]) based on the Monge-Kantorovich theory of measure transportation.

Now, we present the definition of center-outward ranking of data points.

Definition 2.4.  Assume that X4, ..., X,, is a random sample from dis-
tribution function F' in RP. The center-outward rank X; within the sample
Xl, cony Xn is

#{X,; e {Xy,... X} D(X;,F,) >D (X, Fp)}

where F), is the sample distribution function.

Thus, the center-outward ranking is defined in such a way that a larger
rank is assigned to a more outlying point w.r.t. Xy, ..., X,. If there are no ties,
rank 1 and rank n are assigned to the deepest point and the most outlying point,
respectively.

3. THE PROPOSED TESTS

Let Xy, ..., X,, be independently and identically distributed as X = (X1, X. Q)T,
where X has an arbitrary bivariate continuous distribution F. The null hypothe-
sis of interest is that, the random vector X has a distribution centrally symmetric
about the known point py. The random vector X is centrally symmetric around
o provided X — po and pg — X have the same distribution. Since it is assumed
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that the symmetry point is known, it is possible to take p, = 0, without loss
of generality. So, the hypothesis that the probability distribution is centrally

symmetric about p, reduces to the hypothesis Hy : Xi —X, where 4 denotes
“equal in distribution”. We now describe the procedure for defining affine in-
variant tests. Let us look at tests that they are only invariant with respect to
orthogonal transformations of the data in subsection 3.1, and then proceed to
provide our main affine-invariant tests in subsection 3.2.

3.1. The orthogonal invariant tests

Let D(., F) be a depth function on R? associated with a distribution func-
tion F'. Now, under the given depth function D(., F’), we derive a test statistic
using depth-based ranks and signs of Xj,...,X,. To define the proposed test
statistic, we need to order the points X4, ..., X,, in terms of the evidence they
provide against the null hypothesis. To this end, we order the points Xy, ..., X,
as center-outward, such that the larger ranks correspond to the closer points to
the null symmetry center and the smaller ranks correspond to the outer ones. Let
F,, and F? denote the sample distribution function of random sample Xj, ..., X,
and the symmetrized sample (X4, ..., + X,,), respectively. Employing property
P2 of the depth function, to obtain center-outward rank of points relative to the
null symmetry center instead of the median of Xy, ..., X,,, the points are ordered
based on D(., F) rather than D(., F},). More precisely, define

(3.1) R;, = #{X] S {Xl,...,Xn} . D (Xj,F;:) > D(XZ,Fi)}, 1=1,...,n.

If ties occur in this ranking, the ranks within each ties-class have been assigned
based on increasing values at the corresponding index set of that. This assignment
is allocated to induce invariance property on proposed test statistic.

The test statistic is sum of the signed-ranks of points. The sign of each
bivariate point can be determined as the sign of the first or second component of
it. Specifically, the sign of a bivariate point is equal to 1 if its first (or second)
component is nonnegative and otherwise is equal to -1. This definition of sign,
leads to a test statistic which is not only noninvariant, but also it is not able to
detect all different types of departures from the null hypothesis. Moreover, The
sign of X;, i = 1,...,n, could be defined as the spatial sign vector X;/||X;|| where
||.|| denoting the Euclidean norm in R2. By this definition of sign, the resulted
test statistic is not strictly distribution-free. To overcome these limitations, we
will determine sign of points based on a data-dependent line passing through the
origin instead of the horizontal or vertical axis of the coordinate plane. In what
follows, we will describe how to obtain this line.

Let sample median M, is a point among X1, ..., X,, with maximum sample
depth D(., F}?). If there is more than one sample point with the highest depth
value D(., F?), M,, will be the point with minimum index among those data
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points. Let

M
Om, = —arctan (M:;) + g

be the angle between the bivariate vector M,, = (M1, M,2)" and the horizontal-
axis. Note that O\, € [0,7). Related point Z,; = (Zm-l,Zm-Q)T is given by
rotating X; counter-clockwise by angle 5~ Om,,, for all i = 1,...,n. Based on the

sample depth function D(., F},), the proposed test statistic is defined as

n 2
6
(3.2) Top = AT DE D) (; 5m-RZ-> :

where R; is expressed in (3.1) and the random variable d,; is defined as

1 Zniz 2 0
(3'3) Oni = { —1 Znio < 0

for all i = 1,...,n. The large values of the test statistic T}, p reject Hy in favor of
alternative hypothesis.

Note that the sign of bivariate points is determined based on a data-
dependent line passing through the origin that is perpendicular to depth based
median. Indeed, the reason for restricting to dimension two is that this procedure
is employed to divide plane R? into two unique halfspaces based on two points
(the origin and the depth based median), whereas by this procedure dividing
hyperplane RP, (p > 2) into two unique halfspaces would not be possible.

In what follows, we present the desirable property of orthogonal invari-
ance of T, p and asymptotic distribution of T}, p under the null hypothesis is
developed. The proofs are provided in the Appendix.

Theorem 3.1.  If the sample depth function D(., F},) satisfies property
P1, then the test statistic T,, p will be invariant under orthogonal transforma-
tions; that is
Tnp (X1,...X) =T, p(AXy, ..., AX,),

for any 2 x 2 orthogonal matrix A.

Theorem 3.2.  If the sample depth function satisfies property P1, then
under the null hypothesis of centrally symmetric about 0, T,, p converges in dis-
tribution to a chi-square random variable with 1 degree of freedom.

By applying this theorem, the null hypothesis will be rejected at level a when
Tn,D > X%,lfa

where X%,lfa denotes the 1 — o quantile of the chi-square distribution with 1
degree of freedom.
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As mentioned in Theorem 3.2, the asymptotic null distribution of the test
statistics presented here is chi-square with one degree of freedom. One would
expect, for location alternatives, a chi-square with two degrees of freedom (the
dimension of the information matrix for location). It should be remembered that
the main object of this paper is proposing several test statistics for testing that
the distribution is symmetric about a specified value against the alternative that
either the symmetry is lost or the location parameter is changed. Indeed, this
alternative is different from location alternatives.

In our proof of Theorem 3.2 we show that R;’s, ¢ = 1,...,n, are identically
and uniformly distributed on the set {1,2,...,n} and d,;’s, i = 1,...,n are i.i.d.
random variables as distributed independently of R; and taking the values 1 and
-1 each with probability 1/2. These traits immediately imply that under the null
hypothesis and the conditions of Theorem 3.2, our test statistic T}, p is strictly
distribution-free.

3.2. The affine invariant tests

As shown, Theorem 3.1 indicates that T}, p is orthogonal invariant. In this
subsection, we would extend T}, p to be affine invariant, preserving the asymptotic
behavior of 7;, p. To achieve the affine invariant version of the proposed test
statistics, we can apply the Tyler’s auxiliary transformation (Tyler [40]) on data
points. Tyler [40] proposed the data-dependent p x p scatter matrix V,,, that is
a positive definite and symmetric matrix, satisfying trace(V,) = p and

1<~/ T,X; r,X; \\' 1
(3.4) 1 ( )( ) _ 1
nz T Xl ) \||ITy X p?

i=1

where X;, ¢ = 1,...,n is a random vector in RP, I‘ZI‘n = V;l such that T',, is an
upper triangular nonsingular matrix with 1 on the first element on the diagonal
and I, is the p-dimensional identity matrix. This scatter matrix is unique up to
multiplication by a positive constant if the sample comes from a continuous p-
dimensional distribution and n > p(p— 1) (Tyler [40]). An iterative computation
scheme has been developed to compute this matrix by Randles [36].

We define Wy,; = T, X, i =1,...,n and Fy,  as the sample distribution of
the symmetrized sample (£W,1, ..., £ W, ). Let

(3.5)

and

M.
Om,,, = —arctan (M::;) + g

where My, = (M, 1, Man)T refers to the sample median among W1, ..., Wy,
based on D(., Fy, ). In the following, points W, ..., Wy, are rotated counter-

clockwise by angle g — OM,,,, » which we call them as Viy1,..., V.
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Now, based on D(., F},), the affine invariant test statistic is defined as

n 2
6
(36) D n(n+1)(2n + 1) (;7 )

where ,; is specified in the same way as d,;, through V,; instead of Z,;, for all
1=1,...,n.

It is worth to note that, the test statistic T;; p is also distribution-free. The
affine invariance property and asymptotic null distribution of T ,, are presented
in the following Theorems.

Theorem 3.3.  If the sample depth function D(., F},) satisfies property
P1 and n > 2, the test statistic T;:,D will be affine invariant; that is,

Top( X1, Xn) =T, p(AXy,...., AXy)
for any 2 x 2 nonsingular matrix A.
Theorem 3.4.  If the sample depth function satisfies property P1, then

under the null hypothesis of centrally symmetric about 0, T, ; p converges in dis-
tribution to a chi-square random variable with 1 degree of freedom.

4. Simulation study

In this section, an extensive simulation study is conducted to evaluate the
finite sample behavior of the proposed test procedure. Two characteristics of in-
terest are the empirical level and power of the proposed testing procedure. To
assess the effects of different depth rankings on the performance of our test statis-
tic, we determined three versions of 7T;, p, derived from the simplicial, halfspace,
and Mahalanobis depth functions as T}, sp, Ty, gp and T, v p, respectively. In
the same way, T spp, T} yp, T, prp Will be defined corresponding to 777 ,. The
performance of our test statistics is compared with the affine invariant run test
based on the simplicial depth function that we refer to R, sp hereafter (Dyck-
erhoff et al. [8]) and the two rotation invariant tests QL and Q2 proposed by
Einmahl and Gan [9]. Q} refers to their main test, and Q2 is given by Q} adding
a weight function to it (we avoid presenting the details of these test statistics).

To illustrate the effect of the sample size on the finite sample behavior of our
proposed test statistics, we set the sample sizes as n = 100 and 200. Moreover,
the nominal level was set at 0.05 throughout. In each setting, 2000 independent
random samples were generated to calculate the proportion of replications for
which the null hypothesis is rejected. To examine the finite sample behavior
of test statistics under the null and alternative hypotheses, we have simulated
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samples from several bivariate distribution families, including Azzalini’s skew-
normal distribution (Azzalini and Dalla Valle [3]), Azzalini’s skew-t distribution
(Azzalini and Capitanio [2]), perturbed symmetric beta distribution (Azzalini and
Capitanio [2]) and sinh-arcsinh distribution (Jones and Pewsey [21]). Indeed, we
consider different types of skewness over very light-tailed distributions to very
heavy-tailed ones. In what follows, we provide an overview of these families.

o Bivariate skew-normal distribution: Let X be defined as

Y if Z>ATY,
X = . T
-Y if Z<ATY,

where Y ~ Ny (0,%), A = (Al,Ag)T is the shape parameter, and Z is
distributed independently of Y according to N (0,1). The random vector
X is known as bivariate skew-normal random vector and it may be written

as X ~ SN(0,%,A).

. Bivariate skew-t distribution: Let T = Vf%X, where the random vector X
follows the distribution SN2(0,3, A) and vV is distributed independently
of X according to a chi-squared distribution with v degrees of freedom.
We will say that T has a bivariate skew-t distribution and write T ~
STQ(O, 2, A, I/)

o Bivariate perturbed symmetric beta distribution: Let Y = (2B1 — 1,2By — 1)T,
where B; and By have beta distributions B (a,a) and B (b, b), respectively.
The random vector Y can be treated as a central and non-elliptical sym-
metric random vector. Define the random vector X as

<_[Y if Z<w(Y),
“1-Y  if Z>w(Y),

where Z (independently of Y) has distribution function G(.). The distri-
bution function G(.) and function w(.) are given as

G(z) = c and w(y) = sin (p1y1 + p2yo) 7
1+ cos (qiy1 + q2y2)

where p1, p2, 1 and g2 are additional parameters. Then, we will say that X
has a perturbed symmetric beta distribution.

. Bivariate sinh-arcsinh distribution: This family is generated by sinh-arcsinh
transformation on a primary symmetric distribution. We consider the bi-
variate normal distribution as the primary distribution. The desirable prop-
erty of this transformation is to induce skewness on the primary distribution
and distributions with heavier/lighter tails than the primary one. Suppose
random vector Z = (Z1, Z)* follows N (0, X). Define the bivariate vector
X = (Xl,XQ)T as

(4.1) X;:am{%@Mr%zﬁ+Aﬁ, j=1,2,
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where A; and §; denote the measure of skewness and tail weight in direction
of jth component of Z, respectively. Amount of skewness increases with
increasing positive A; or decreasing negative A;. Additionally, distribu-
tions with heavier and lighter tails than the bivariate normal distribution
are generated by taking 0 < d; < 1 and J; > 1, respectively.

In this study, we generate samples from the aforementioned distribution
families with ¥ = (1 — p)Is + pJo with p = —0.5,0 and 0.5, and J3 denoting
the 2 x 2 matrix with all entries equal 1 and A; = kn, ¢ = 1,2 with
n = (0.15,0.15)7 and k = 0,1,2 and 3. We consider v = 1,3,6,10 and 20
for bivariate skew-t distribution and §; = 0.5,0.75,1,2 and 5, i = 1,2 for
bivariate sinh-arcsinh distribution.

Table 1 and Figures 1 and 2 provide the empirical rejection probabilities for
sample size n = 100 and for bivariate skew-normal, skew-t and sinh-arcsinh
distribution, respectively. Inspection of the table and figures confirms that
the performance of our test statistics is not affected by different depth
ranking. In all of them, the empirical rejection probabilities corresponding
to k = 0 represents the proportion of rejection under the null hypothesis.
These results demonstrate that all the tests would be accurate in estimating
the nominal level, except R, gp which it has been underestimated in some
cases. Since the performance of test statistics, even affine invariant test
statistics are affected by correlation structure of primary distribution, we
provide three possibilities for p as -0.5, 0 and 0.5. From the represented
results in Table 1 and Figure 1, it is obvious that all empirical powers will
be increased by increasing the value of p for bivariate skew-normal and
skew-t distributions. This situation is reversed for bivariate sinh-arcsinh
distribution in Figure 2 except for T}, p.

Table 1 shows that T;; p outperforms R, sp and Q2 in all cases, performs
virtually as well as QL for k = 1 and 2 and has slightly lower power than
QL for k = 3. Moreover, T, p outperforms R, sp in all cases, Q? when
p=0and 0.5 and Q} when p = 0.5. Figure 1 indicates that T" 5 and T, p
outperform R, sp for all values of v and p. In addition T:{, D7 has higher
power than Q? except when v = 1, and T, p overcomes Q? except when
v =1and p = —0.5. In comparison on Q., T  performs better when
k=1,2,v==6,20 and all values of p, and T}, p pefforms better when k = 1
and 2, v = 6,20 and p = 0 and 0.5. Indeed, the empirical power of our
tests increases as degrees of freedom increases. In Figure 2, superiority of

our affine invariant tests is clear in most cases especially for p = 0.5 and
k=1 and 2.

Tables 2 provide the empirical rejection probabilities for sample size n =
200 and for bivariate skew-normal distribution. In Figures 3 and 4, we
plot the empirical rejection probabilities against k corresponding to some
values of parameters of the same populations and tests with Figures 1 and 2
respectively, for sample size n = 200. Note that, as expected, the empirical
powers increase with the sample size. These simulations lead to almost the
same conclusions as in n = 100.
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These simulations demonstrate that our tests are more powerful for small
and moderate departures from the null hypothesis and for light-tailed dis-
tributions. As expected, the performance of affine invariant tests T, ;, is
less affected by changing the value of p rather than the orthogonal invariant
tests T, p. The results show that, compared to Ti p test, T, p performs
better when p = 0.5, is comparable when p = 0 and performs worse when
p=—0.5.

Finally, to complete our simulations, for sample sizes n = 100 and 200, we
generate samples from bivariate perturbed symmetric beta distribution with
several choices of the parameters such that different situations of asymmetry
can be considered. A thorough investigation of Table 3 and 4 indicated that
our tests overcome R, sp and Q% in all cases and Q}L in some cases.
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A second Monte Carlo study is provided in order to evaluate the perfor-
mance of our tests for pure location alternatives. In this study the performance of
tests considered in first Monte Carlo study compared with the Hotelling’s 72 and
the tests due to Hallin and Paindaveine [12] computed with the sign score func-
tion, van der Waerden score function and Wilcoxson score function and denoted
by HS,, HN, and HR,,, respectively.

We set the sample size as n = 50. In each setting, 2000 independent ran-
dom samples were generated to calculate the proportion of replications for which
the null hypothesis is rejected. For each replication, the all tests were performed
at the significance level a = 0.05. To examine the finite sample behavior of test
statistics under the null and alternative hypotheses, we have simulated samples
from the t family of distributions and the exponential power family of distribu-
tions. In what follows, we provide an overview of these families.

A p-dimensional random vector X has a multivariate t distribution with v
degree of freedom if its density function has the form

I'((p+v)/2)

T (v/2) (rv)?/?

—(p+v)/2
fux (x) = }

1
=214 ) B e )

where p = (1, ..., ,up)T € R?P and ¥ is a symmetric p X p positive definite matrix.

The density function of a p-dimensional random vector X from the expo-
nential power family of distributions is

NS o () g | =S x|
quE( ) - F(p—|—2’u) (ﬂ_co)p/Q‘E’ p{ co }
where

o= PL(p/20)

T T ((p+2)/20)

and p and X are defined as above.

We generate samples from the aforementioned distribution families with
Y =Tand p = kA with A = (0.2,0.2)7 and A = (0.1,0.1) for the t family of
distributions and the exponential power family of distributions, respectively and
k=0,1,2,3. We consider v = 1,6 and 10 for t-distribution family and v = 0.5, 1
and 2 for the exponential power family of distributions.

Inspection of Tables 5 and 6 demonstrated that the performance of our
tests is comparable to the other tests. The proposed tests overcome R, sp and
Q? in most cases and Q! in some cases. It worth to note that all tests which
are defined in the similar way of our proposed test e.g. R, sp, QL and Q2 are
not expected to perform as well as 72, HS,, HN, and HR,. In other hand,
the results confirm that the performance of our test statistics is not affected by
different depth ranking.
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5. Conclusion

This paper concerns with the problem of detecting central symmetry of
a bivariate distribution. To this end, based on depth function, we introduced
a family of signed-rank test which is orthogonal invariant and distribution-free.
Affine invariant tests were obtained by applying our proposed test to the stan-
dardized data with Tyler’s matrix. The proposed orthogonal and affine invariant
tests have the same asymptotic properties. In simulation study, the finite sample
behavior of the proposed test procedure was evaluated over distributions family
from very light to very heavy-tailed distributions with different kinds of skew-
ness. The simulations confirmed that our affine invariant tests successfully can
distinguish different asymmetries and shifting the location parameter. Moreover,
we observed that they performed as good as their competitors and actually in
many cases they even outperform them.

6. Appendix

Proof of Theorem 3.1: According to the construction of Z,;, it is clear
that Z,; = Bx,X;, ¢ =1,...,n where

_ [cos(5 —6m,) —sin(5 —6m,)
(6.1) Bx, = [sin (2 —6m,) cos(Z—6m,) |

Let A be an arbitrary 2 x 2 orthogonal matrix. Define Zm = Bax, AX; for all
t=1,...,n, where
cos (

— 0 —sm(g—em)
BAXn — ) n n
Sin (

—Oyp, cos <§ - GMJ 7
with 0y € [0,7), as the angle between horizontal-axis and the sample median

M,, that is obtained in the same way as M, through AX,’s instead of X;’s,
1 = 1,...,n. The orthogonality of matrix A implies that there exists an angle
a € [0,27) such that

ISERENTE

62) A= [cos(oz) —sin(a)] AL [cos(oz) sin (a) ]

sin () cos (@) ~ | sin(a) —cos(a)
Property P1 of the sample depth function shows that
(6.3) M, = AM,,.
Let matrix A be defined as the left side of (6.2), then (6.3) results in

a+Owu, 0<a+6bm, <m,
QMn: a+bOn, — T ™ <a+ 6w, <2,
a+6m, — 21 2r < a+0ym, <37
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Using the trigonometric relationships, it is straightforward to verify that Bax, A =
an, or BAX”A = —an. Thus

(64) an == an or an == —Zm‘, 1= 1, ceey 10
Now, let matrix A be according to the right side of (6.2), similarly we have

a—O0m, +1 —m<a-—bm, <0,
91\7In: OJ—QMn Oﬁa—QMn<7T,
oa—0On, —T ™ <a-—06y, <2,

and
—-10

01

10

Bax,A = { 0 -1

:| an or BAXnA = |: :| an.
Hence
(65) an = (—Zml, ng)T or Zm = (Znﬂ, —Zm‘g)T, 1= 1, ey N

The proof of affine invariance of T}, p will be completed by using (6.4), (6.5) and
property P1 of the sample depth function.

Proof of Theorem 3.2: Under the null hypothesis, X, ..., X,, are i.i.d. from
F, where F(.) is centrally symmetric distribution about the origin. Hence, we
have

d
(66) (Xl,.‘.,Xn) =(n1X1,...,nan).

where n;’s, 1 = 1,...,n are i.i.d. random variables taking the values 1 and -1 each
with probability 1/2. Tt is clear that

(67) (:l:Xl, ceey zl:Xn) = (:|:771X1, ceey :|:7’]an) .

Additionally, M,, = M(X{y, ..., X,,) is considered as a point with maximum sample
depth with respect to the symmetrized sample (£Xj, ..., £X,,), (if there is more
than one sample point with the highest depth value, M,, will be defined as the
point with minimum index among those data points). By this definition of M,,,
there exists i € {1,...,n} that

(6.8) M(X1, ..., X,) = X;.

Frorm property P1 and equation (6.7),

(6.9) M(m X1, .oy N Xn) = 7:X;
Hence from (6.8) and (6.9), we have

(6.10) M(Xy, ..., Xp) = nM(m1 X1, o, X))

where n = 1 or —1. Thus Bx,, where is defined as (6.1) will be same whether it
is obtained from either X;, ..., X,, or 71Xy, ...,7,X,,. Hence (6.6) implies that

d
(6.11) (Bx, X1, ....Bx, Xn) =(mBx, X1, ..., 1aBx,, Xy).
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This yields that d,;’s, i = 1, ..., n are independent and identically distributed ran-
dom variables that take the values 1 and -1 with probability 1/2. Let Zy; = 6,; Y i
where Y,; = (Ypi1, Yoso)? foralli = 1,...,n. (6.11) denotes that Zyy, ..., Zy, dis-
tributed as centrally symmetric random vectors about origin. Thus for y =
(y1,y2)T cR?andi=1,..,n

Pry (Ynit < 1, Yniz < 92,00 = 1) = Py (0niYnit < Y1, 0niYni2 < Y2,0ni = 1)
= Py, (Znit <Y1, Zniz < Y2,0ni = 1)
= Py (Znit <Y1, Zniz < Y2, Zniz > 0)
= Pry (Znin < 41,0 < Znia < y2)
= Pry (—Zni1 < 91,0 < —Zpiz < y2)
(
(
(
(
(

= Pry (Znit 2 =1, Zniz 2 —Y2, Zniz < 0)
= Py (—Znit < Y1, —Zniz < Y2,6ni = —1)
= P, (0niZni1 < Y1,0niZniz < Y2, 0ni = —1)
Yoir < y1, Yoiz < yo2,0n = —1)

and for j # i

Pry (Ynit < y1, Yniz < 2,605 = 1) = Pry (Ynin < y1, Ynie < y2,600i = 1,0, = 1) +

Pry (Ynin < y1, Yniz < y2,0p = —1,0p; = 1)

= Pry (Znit < Y1, Zniz < Y2, Zniz > 0, Zpjo > 0) +
Pry (Znin > —Y1, Zniz > —Y2, Zniz < 0, Zyj2 > 0)

= Pry, (Znit < Y1, Zniz < Y2, Zniz > 0, Zpjo < 0) +
Priy (Znit > —=Y1, Zniz > —Y2, Zniz < 0, Zpj2 < 0)

= Pry (Ynit <1, Ynio < y2,0n = 1,0p5 = —1) +
Pry (Ynir < w1, Yoo < 2,00 = —1,0n5 = —1)

= Pry (Ynit < y1, Yniz < y2,0,5 = —1).

Hence these imply that §,; for i = 1,...,n, is independent of Y1, ..., Y,,. Now,
suppose that F7 and Iy, be the sample distribution functions of {£Zn1, ..., 2Zpp }
and {+Y1, ..., £ Y, }, respectively. Since {£Zp1,..., 2Zpn} = {£Yn1, ..., £Y 0},
it is clear that F; = Fy, . This equality, along with D (Zm, Fén) =D (—Zm-, Fén)
(resulted from property P1 by considering A = —Iy and b = 0) conclude that
D (Zm-,F%n) =D (Yni,Ff(n), for all ¢ = 1,...,n. Additionally, from property
P1 of the sample depth function and Remark 2.1, we see that D (X;, F?) =
D (Zy;, Fy ). Hence D (X;, F5) = D (Yy;, F ). This shows that R; is a func-
tion of Yu1,..., Ynun and thus is independent of d,;, ¢ = 1,2,...,n. Under null
hypothesis, Ry, ..., R, have the discrete uniform distribution on {1,...,n}. Then

. . 1/2 .
the expectation and variance of Tn/D are given as

2\ _ 6 - _
B <T’1I2)) o \/n(n +1)(2n + 1)E (; 5mRi) =0
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and
Va?“( nD)_n(n+1 2n+1 Z; n+ )(2n+1 ;;E 5n16anR)
17

=1

Y

respectively. Because of the dependency between summands in Ti/ 2, the central

limit theory is not applied. In the other hand, T, / is equal in distribution to

6 _—
Kn = \/n(n+ D(2n+1) ;5”

where ¢;’s, ¢ = 1,...,n are independent random variables with probability 1/2
of being 1 or -1. Since K, is sum of independent random variables and the

Lyapunov’s condition

5 (2+8) , 218 n (2+8)/2 n 5
: +8) _ n- 246 _
TLILH(}O (\/n(n+1)(2n+1)> Z(E‘(SZD ”lgrolo < 3 > Z -

=1

is satisfied for § = 1, then the asymptotic null distribution is obtained by Lya-
punov’s central limit theorem.

Proof of Theorem 3.3: It is clear that V,,; = Bw, Wy, ¢ = 1,...,n where

_ cos( — 0m ) —sin (f — Om ")
(6.12) Bw, = Lm (2 GM\\:”) cos (f — GMV\:,n ’

Let A be an arbitrary 2 x 2 nonsingular matrix and define \~7m =B Awnwm
where

cos (T — 0 > —sin < — 0 )
2 Mw
Baw, = N " Wn
2

sin ( £ — GMwn) cos (2 Ox1
with O € [0,7), as the angle between horizontal-axis and the sample median

Mwn that is obtained in the same way as Mw,,, through W,,;’s instead of W.,.’s,
i =1,...,n. Moreover, W,,; = I'ax, AX;, where I'px,, is Tyler’s matrix defined
in terms of the transformed data points AX;, forallt=1,...,n

If n > 2, Randles [36] indicated that I',, satisfies the condition
(6.13) A'T)x Tax,A=kI!T,

where k is a positive scalar that may depends on A and the data. This equation
clearly shows that there exists an orthogonal matrix H = k~1/2T'sx, AT, ! such
that

(6.14) VEHT,, = Tax A.
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It follows easily that
(6.15) W,; = Tax,AX; = VKHT, X; = VEHW,,,.

Additionally, property P1 of the sample depth function along with Remark 2.1
and equation (6.15) show that My, = vkHMwy, . Thus, the result follows from
Theorem 3.1.

Proof of Theorem 3.4: The Tyler’s matrix I';, = I'(Xy, ..., X,,) is invariant
under sign changes among the X;’s (Randles [36]), that is

(616) F(Xl,,Xn) == I‘(le,...,nan).

Hence, by (6.6) we have

4

(6.17) (BWnI‘nXl, ceey BwnFan) (nlBWnFnXh ceey T]nBWnFan).

where By, is defined as (6.12). Additionally, from property P1 of the sample
depth function and Remark 2.1, it is straightforward to verify that R,; = R; for
all = 1,...,n. The rest of the proof proceeds as in Theorem 3.2.

REFERENCES

[1]  AKI, S. (1993). On nonparametric tests for symmetry in R™. Annals of the Insti-
tute of Statistical Mathematics 45, 4, 787-800.

[2]  Azzauni, A. and CAPITANIO, A. (2003). Distributions generated by perturbation
of symmetry with emphasis on a multivariate skew t distribution. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 65, 2, 367-389.

[3] Azzauini, A. and DALLA VALLE, A. (1996). The multivariate skew-normal dis-
tribution. Biometrika, 83, 4, 7T15-726.

[4]  BARINGHAUS, L. (1991). Testing for spherical symmetry of a multivariate distri-
bution. Annals of Statistics, 19, 2, 899-917.

[5] BrowN, B. M. and HETTMANSPERGER, T. P. (1987). Affine invariant rank
methods in the bivariate location model. Journal of the Royal Statistical Society.
Series B (Methodological). 301-310.

[6] CaAssArT, D., HaLLiN, M. and PAINDAVEINE, D. (2011). A class of optimal

tests for symmetry based on local Edgeworth approximations. Bernoulli, 17, 3,
1063-1094.

[7] CHERNOZHUKOV, V., GALICHON, A., HAaLLIN, M. and HENRY, M. (2017).
MongeKantorovich depth, quantiles, ranks and signs. The Annals of Statistics, 45,
1, 223-256.

[8] DYCKERHOFF, R., LEY, C. and PAINDAVEINE, D. 2015). Depth-based runs tests
for bivariate central symmetry. Annals of the Institute of Statistical Mathematics,
67, 5, 917-941.



28

[18]

[19]

S. Dehghan and M. R. Faridrohani

EINMAHL, J. H., and GAN, Z. (2016). Testing for central symmetry. Journal of
Statistical Planning and Inference, 169, 27-33.

GHOSH, S., and RuymGaARrT, F. H. (1992). Applications of empirical charac-
teristic functions in some multivariate problems. Canadian Journal of Statistics,
20, 4, 429-440.

HALLIN M., and PAINDAVEINE D. (2002a) Multivariate Signed Ranks: Randles’
Interdirections or Tyler’s Angles. Statistical Data Analysis Based on the L1-Norm
and Related Methods, 271-282.

HALLIN M., and PAINDAVEINE D. (2002b). Optimal tests for multivariate loca-
tion based on interdirections and pesudo-mahalanobis ranks, The Annals of Statis-
tics, 30, 4, 1103-1133.

HaLLIN M., and PAINDAVEINE D. (2002), Optimal procedures based on interdi-
rections and pseudo-Mahalanobis ranks for testing multivariate elliptic white noise
against ARMA dependence. Bernoulli, 8, 6, 787-815.

HALLIN M., and PAINDAVEINE D. (2004). Rank-based optimal tests of the ade-
quacy of an elliptic VARMA model, Annals of Statistics, 32, 2642-2678.

HALLIN M., and PAINDAVEINE D. (2005), Affine-invariant aligned rank tests for
the multivariate general linear model with VARMA errors. Journal of Multivariate
Analysis, 93, 1, 122-163.

HEATHCOTE, C. R., RACHEV, S. T. and CHENG, B. (1995). Testing multivariate
symmetry. Journal of Multivariate Analysis, 54, 1, 91-112.

HENZE, N., KLAR, B. and MEINTANIS, S. G. (2003). Invariant tests for sym-
metry about an unspecified point based on the empirical characteristic function.
Journal of Multivariate Analysis, 87, 2, 275-297.

HETTMANSPERGER, T. P., NYBLOM,J. and OJja, H. (1994). Affine invariant

multivariate one-sample sign tests. Journal of the Royal Statistical Society. Series
B (Methodological). 221-234.

HETTMANSPERGER, T. P., MOTTONEN,J, and OJa, H. (1997). Affine-invariant

multivariate one-sample signed-rank tests. Journal of the American Statistical As-
soctation, 92, 440, 1591-1600.

HoTELLING, H. (1931). The generalization of Student’s ratio. Annals of Mathe-
matical Statistics, 2, 3, 360-378.

JoNEs, M. C., and PEWSEY, A. (2009). Sinh-arcsinh distributions. Biometrika,
96, 4, 761-780.

KovrrcHinskil, V. 1., and Li, L. (1998). Testing for spherical symmetry of a
multivariate distribution. Journal of Multivariate Analysis, 65, 2, 228-244.

KosHEVEY, G. and MOSLER, K. (1997). Zonoid trimming for multivariate
distributions. The Annals of Statistics, 1998-2017.

L1, J., and L1iu, R. V. (2004). New nonparametric tests of multivariate locations
and scales using data depth. Statistical Science, 19, 4, 686-696.

Liu, R. Y. (1988). On a notion of simplicial depth. Proceedings of the National
Academy of Sciences, 85, 6, 1732-1734.

Liu, R. Y., PAREeLIUS, J. M. and SiNGH, K. (1999). Multivariate analysis by
data depth: descriptive statistics, graphics and inference,(with discussion and a
rejoinder by Liu and Singh). Annals of Statistics, 27, 3, 783-858.



Depth-Based Signed-Rank Tests 29

[27]

[28]

Liu, R. Y., and SiNGH, K. (1993). A quality index based on data depth and
multivariate rank tests. Journal of the American Statistical Association, 88, 421,
252-260.

Liu, R. Y., and SINGH, K. (2006). Rank tests for multivariate scale difference
based on data depth. DIAMCS Series in Discrete Mathematics and Theoretical
Computer Science, 72, 17-35.

MaHFOUD, Z. R., and RANDLES, R. H. (2005). On multivariate signed-rank
tests. J. Nonparametric Statistics, 17, 201-216.

ManzoTTl, A., PEREZ, F. J. and QUIROZ, A. J. (2002). A statistic for testing
the null hypothesis of elliptical symmetry. Journal of Multivariate Analysis, 81, 2,
274-285.

McWiLLiams, T. P. (1990). A distribution-free test for symmetry based on a
runs statistic. Journal of the American Statistical Association, 85, 412, 1130-1133.

MoTTONEN, J. and OJa, H. (1995). Multivariate Spatial Sign and Rank Meth-
ods. Journal of Nonparametric Statistics, 5, 201-213.

NEUHAUS, G., and L. X. ZHU (1998). Permutation tests for reflected symmetry.
Journal of Multivariate Analysis, 67, 2, 129-153.

0JA, H. (1983). Descriptive statistics for multivariate distributions. Statistics &
Probability Letters, 1, 6, 327-332.

RANDLES, R. H. (1989). A distribution-free multivariate sign test based on in-
terdirections. J. Amer. Statist. Assoc., 84, 1045-1050.

RANDLES, R. H. (2000). A simpler, affine-invariant, multivariate, distribution-
free sign test. Journal of the American Statistical Association, 95, 452, 1263-1268.

RoussoN, V. (2002). On distribution-free tests for the multivariate two-sample
location-scale model. Journal of Multivariate Analysis, 80, 1, 43-57.

SERFLING, R. J. (2006). Multivariate symmetry and asymmetry. Encyclopedia
of Statistical Sciences.

TUKEY, J. W. (1975). Mathematics and the picturing of data. In Proceedings of
the International Congress of Mathematicians, 2, 523-531.

TYLER, D. E. (1987). A distribution-free M-estimator of multivariate scatter.
Annals of Statistics, 15, 1, 234-251.

PETERS D. and RANDLES R. H. (1990). A multivariate signed-rank test for the
one-sample location problem, J. Amer. Statist. Assoc., 85, 552-557.

Zuo, Y., and SERFLING, R. (2000). General notions of statistical depth function.
Annals of Statistics, 28, 2, 461-482.



	1 INTRODUCTION
	2 DEPTH FUNCTION
	3 THE PROPOSED TESTS
	3.1 The orthogonal invariant tests
	3.2 The affine invariant tests

	4 Simulation study
	5 Conclusion
	6 Appendix

