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1. INTRODUCTION AND PRELIMINARY RESULTS

It seems that Bates and Neyman [3] were first to introduce Negative multi-
nomial (NMn) distribution in 1952. They obtained it by considering a mixture of
independent Poisson distributed random variables (r.vs) with one and the same
Gamma distributed mixing variable. Their first parameter could be a real num-
ber. Wishart [25] considers the case when the first parameter could be only
integer. He calls this distribution Pascal multinomial distribution. At the same
time Tweedie [24] obtained estimators of the parameters. Sibuya et al. [18] make
a systematic investigation of this distribution and note that the relation between
Binomial distribution and Negative binomial (NBi) distribution is quite similar
to that between the Multinomial distribution and NMn distribution. The latter
clarifies the probability structure of the individual distributions. The bivariate
case of the compound power series distribution with geometric summands (i.e.
n = 1 and k = 2) is partially investigated in [12]. Another related work is [10].

A version of k-variate negative binomial distribution with respect to risk
theory is considered in [2, 26]. The authors show that it can be obtained by mix-
ing of iid Poisson random variables with a multivariate finite mixture of Erlang
distributions with one and the same second parameter. Further on they interpret
it as the loss frequencies and obtain the main characteristics. Due to covariance
invariance property, the corresponding counting processes can be useful to model
a wide range of dependence structures. See [2, 26] for examples. Using probabil-
ity generating functions, the authors present a general result on calculating the
corresponding compound, when the loss severities follow a general discrete distri-
bution. The similarity of our paper and papers [2, 26] is that both consider the
aggregate losses of an insurer that runs through several correlated lines of busi-
ness. In (2.1) and (2.2) [2] consider Mixed k-variate Poisson distribution (with
independent coordinates, given the mixing variable) and the mixing variable is
Mixed Erlang distributed. More precisely the first parameter in the Erlang dis-
tribution is replaced with a random variable. The mixing variable is multivariate
and the coordinates of the compounding vector are independent. In our case the
mixing variable is one and the same and the coordinates of the counting vector
are dependent.

Usually Negative Multinomial (NMn) distribution is interpreted as the one
of the numbers of outcomes Ai, i = 1, 2, ..., k before the n-th B, in series of
independent repetitions, where Ai, i = 1, 2, ..., k and B form a partition of the
sample space. See e.g. Johnson et al [7]. Let us recall the definition.

Definition 1.1. Let n ∈ N, 0 < pi, i = 1, 2, ..., k and p1 + p2 + ... +
pk < 1. A vector (ξ1, ξ2, ..., ξk) is called Negative multinomially distributed with
parameters n, p1, p2, ..., pk, if its probability mass function (p.m.f.) is
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P (ξ1 = i1, ξ2 = i2, ..., ξk = ik) =

=

(
n+ i1 + i2 + ...+ ik − 1

i1, i2, ..., ik, n− 1

)
pi11 p

i2
2 ...p

ik
k (1− p1 − p2 − ...− pk)n,

is = 0, 1, ..., s = 1, 2, ..., k. Briefly (ξ1, ξ2, ..., ξk) ∼ NMn(n; p1, p2, ..., pk).

If A1, A2, ..., Ak describe all possible mutually exclusive ”successes” and the
event A1∩A2∩ ...∩Ak presents the ”failure”, then the coordinates ξi of the above
vector, can be interpreted as the number of ”successes” of type Ai i = 1, 2, ..., k
until n-th ”failure”.

This distribution is a particular case of Multivariate Power series distri-
bution. (The definition is recalled below.) Considering this distribution for
k = 1, we obtain a version of NBi distribution used in this paper. We de-
note the membership of a random variable ξ1 to this class of distributions by
ξ1 ∼ NBi(n; 1− p1).

Notice that the marginal distributions of NMn distributed random vector
are NBi(n, 1 − ρi), ρi = pi

1−
∑
j 6=i pj

. More precisely their probability generating

function (p.g.f.) is Gξ(z) = Ezξi =
(

1−ρi
1−ρiz

)n
, |z| < 1

ρi
i = 1, 2, ..., k.

The distribution in Definition 1 is sometimes called Multivariate Negative
Binomial distribution.

For n = 1 the NMn distribution is a Multivariate geometric distribution.
Some properties of the bivariate version of this distribution are considered e.g.
by Phatak et al. [15]. A systematic investigation of multivariate version could
be found e.g. in Srivastava et al. [21].

If (ξ1, ξ2, ..., ξk) ∼ NMn(n; p1, p2, ..., pk), its probability generating function
(p.g.f.) is

(1.1) Gξ1,ξ2,...,ξk(z1, z2, ..., zk) =

{
1− p1 − p2 − ...− pk

1− (p1z1 + p2z2 + ...+ pkzk)

}n
,

|p1z1 + p2z2 + ...+ pkzk| < 1.

For m = 2, 3, ..., k − 1, its finite dimensional distributions (f.d.ds) are,
(ξi1 , ξi2 , ..., ξim) ∼ NMn(n; ρi1 , ρi2 , ..., ρim), with

(1.2) ρis =
pis

1−
∑

j 6∈{i1,i2,...,im} pj
, s = 1, 2, ...,m.

and for the set of indexes i1, i1, ..., ik−m that complements i1, i2, ..., im to the set
1, 2, ..., k its conditional distributions are,

(ξi1 , ξi2 , ..., ξik−m |ξi1 = n1, ξi2 = n2, ..., ξim = nm) ∼

(1.3) ∼ NMn(n+ n1 + n2 + ...+ nm; pi1 , pi2 , ..., pik−m),



Using the “revstat.sty” Package 5

More properties of NMn distribution can be found in Bates and Neyman [3] or
Johnson et al. [7].

The set of all NMn distributions with one and the same p1, p2, ..., pk is
closed with respect to convolution.

Lemma 1.1. If r.vs Si ∼ NMn(ni; p1, p2, ..., pk), i = 1, 2, ...,m are in-
dependent, then the random vector

(1.4) S1 + S2 + ...+ Sm ∼ NMn(n1 + n2 + ...+ nm; p1, p2, ..., pk).

One of the most comprehensive treatments with a very good list of refer-
ences on Multivariate discrete distributions is the book of Johnson et al. [7].

The class of Power Series (PS) Distributions seems to be introduced by
Noack (1950) [13] and Khatri (1959) [11]. A systematic approach on its properties
could be found e.g. in Johnson et al. [8]. We will recall now only the most
important for our work.

Definition 1.2. Let ~a = (a0, a1, ...), where ai ≥ 0, i = 0, 1, ... and θ ∈ R
is such that

(1.5) 0 < g~a(θ) =
∞∑
n=0

anθ
n <∞.

A random variable (r.v.) X is Power series distributed, associated with the func-
tion g~a and the parameter θ (or equivalently associated with the sequence ~a and
the parameter θ), if it has p.m.f.

(1.6) P (X = n) =
anθ

n

g~a(θ)
, n = 0, 1, ...

Briefly X ∼ PS(a1, a2, ...; θ) or X ∼ PS(g~a(x); θ). The radius of convergence of
the series (1.5) determines the parametric space Θ for θ. Further on we suppose
that θ ∈ Θ.

Notice that given a PS distribution and the function g~a the constants θ
and a1, a2, ... are not uniquely determined, i.e. it is an ill-posed inverse problem.
However, given the constants θ and a0, a1, ...(or the function g~a(x) and θ) the
corresponding PS distribution is uniquely determined. In this case, it is well
known that:

• the p.g.f. of X is

(1.7) EzX =
g~a(θz)

g~a(θ)
, zθ ∈ Θ.
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• The type of all PS distributions is closed under convolution and more pre-
cisely if X1 ∼ PS(g1(x); θ) and X2 ∼ PS(g2(x); θ) are independent and
θ ∈ Θ1 ∩Θ2, then

(1.8) X1 +X2 ∼ PS(g1(x)g2(x); θ).

• The mean is given by

(1.9) EX = θ
g′~a(θ)

g~a(θ)
= θ[log(g~a(θ))]

′.

From now on we denote the first and the second derivative of g(x) with
respect to x briefly by g′(x) and g′′(x).

• The variance of X has the form

(1.10) V arX = θ2[log(g~a(θ))]
′′ + EX;

• The Fisher index is given by

FIX = 1 + θ
[log(g~a(θ))]

′′

[log(g~a(θ))]′
.

We show that the class of Compound Power Series Distributions with Neg-
ative Multinomial Summands is a particular case of Multivariate Power series
distribution (MPSD) considered by Johnson et al. [7]. Therefore let us remind
the definition and its main properties.

Definition 1.3. Let θj > 0, j = 1, 2, ..., k be positive real numbers and
a(i1,i2,...,ik), ij = 0, 1, ..., be non-negative constants such that

(1.11) A~a(θ1, θ2, ..., θk) =

∞∑
i1=0

...

∞∑
ik=0

a(i1,i2,...,ik)θ
i1
1 θ

i2
2 ...θ

ik
k <∞.

The distribution of the random vector ~X = (X1, X2, ..., Xk) with probability mass
function

P (X1 = n1, X2 = n2, ..., Xk = nk) =
a(n1,n2,...,nk)θ

n1
1 θn2

2 ...θnkk
A~a(θ1, θ2, ..., θk)

is called Multivariate Power Series Distribution (MPSD) with parameters A~a(~x),
a(i1,i2,...,ik) and ~θ = (θ1, θ2, ...., θk). Briefly ~X ∼ MPSD(A~a(~x), ~θ). As follows,

Θk denotes the set of all parameters ~θ = (θ1, θ2, ..., θk) that satisfy (1.11).

This class of distributions seems to be introduced by Patil(1965) [14] and
Khatri(1959). A very useful necessary and sufficient condition that characterise
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this family is obtained by Gerstenkorn(1981). It is well known (see e.g. Johnson
et al. [7]) that the p.g.f. of ~X is

(1.12) EzX1
1 zX2

2 ...zXkk =
A~a(θ1z1, θ2z2, ..., θkzk)

A~a(θ1, θ2, ..., θk)
, (θ1z1, θ2z2, ..., θkzk) ∈ Θk.

Through the paper k = 2, 3, ..., is fixed and it corresponds to the number of

the coordinates. We denote by
d
= the coincidence in distribution, by ” ∼ ” the fact

that a r.v. belongs to a given class of distributions, by Gξ1,ξ2,...,ξk(z1, z2, ..., zk) =

E(zξ11 ...z
ξk
k ), the joint p.g.f. of a random vector (ξ1, ξ2, ..., ξk) and by FIξ the index

of dispersion of the r.v. ξ (i.e. the variance of ξ divided by the corresponding
mean).

One can consider the different concepts for compounds. We use the follow-
ing one.

Definition 1.4. Let
−→
ξ i = (ξ

(1)
i , ξ

(2)
i , ..., ξ

(k)
i ) i = 1, 2, ... be i.i.d. random

vectors and N be a discrete r.v. independent on them. We call compound, a

random vector ~XN = (X
(1)
N , X

(2)
N , ..., X

(k)
N ), defined by

X
(j)
N = I{N>0}

N∑
i=1

ξ
(j)
i =

{∑N
i=1 ξ

(j)
i if N > 0

0 , otherwise
j = 1, 2, ..., k.

The distribution of ξ is called compounding distribution.

Further on we are going to use the following properties:

1. G ~XN
(z) = GN (G~ξ

(z)).

2. If EN <∞ and E~ξ <∞, then E ~XN = ENE~ξ, see [17] Cor. 4.2.1.

3. If V arN < ∞ and coordinate-wise V ar ~ξ < ∞, V ar ~XN = V arN(E~ξ)2 +
EN V ar~ξ, see [17] Cor. 4.2.1.

4. FI ~XN = FI N E~ξ + FI~ξ.

Notice that properties 2. and 3. are particular cases of the well known Wald’s
equations.

Here we consider a multivariate distribution which coordinates are depen-
dent compounds. In the notations of the Definition 4, N is PS distributed and
~ξ is NMn distributed. The cases when N is Poisson distributed is partially
investigated in 1962, by G. Smith [20]. In Section 2, following the traditional ap-
proach about definition of distributions, first we define this distribution through
its p.m.f., then we investigate its properties. We consider the case when the
summands are NMn distributed. We obtain its main numerical characteristics
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and conditional distributions. Finally explain its relation with compounds and
mixtures. We prove that the class of Compound Power Series Distributions with
Negative Multinomial Summands is a particular case of Multivariate Power series
distribution and find the explicit form of the parameters. We show that con-
sidered as a Mixture this distribution would be (possibly Zero-inflated) Mixed
Negative Multinomial distribution with possibly scale changed Power series dis-
tributed first parameter. Using these relations we derive several properties and
its main numerical characteristics. In Section 3 the risk process application is
provided, together with simulations of the risk processes and estimation of ruin
probabilities in a finite time interval.

2. DEFINITION AND MAIN PROPERTIES OF THE COMPOUND
POWER SERIES DISTRIBUTION WITH NEGATIVE MULTI-
NOMIAL SUMMANDS

Let us first define Compound Power series distribution with Negative multi-
nomial summands and then to investigate its properties.

Definition 2.1. Let πj ∈ (0, 1), j = 1, 2, ..., k, π0 := 1−π1−π2−...−πk ∈
(0, 1), as ≥ 0, s = 0, 1, ... and θ ∈ R be such that

(2.1) 0 < g~a(θ) =
∞∑
n=0

anθ
n <∞.

A random vector ~X = (X1, X2, ..., Xk) is called Compound Power series dis-
tributed with negative multinomial summands and with parameters g~a(x), θ; n;
π1, ..., πk, if for i = 1, 2, ..., k, mi = 0, 1, 2, ..., and (m1,m2, ...,mk) 6= (0, 0, ..., 0),

P (X1 = m1, X2 = m2, ...Xk = mk) =

(2.2)
πm1
1 πm2

2 ...πmkk
g~a(θ)

∞∑
j=1

ajθ
j

(
jn+m1 +m2 + ...mk − 1
m1,m2, ...,mk, jn− 1

)
πnj0 ,

P (X1 = 0, X2 = 0, ...Xk = 0) =
g~a(θπ

n
0 )

g~a(θ)
.

Briefly ~X ∼ CPSNMn(g~a(x), θ; n, π1, π2, ..., πk) or ~X ∼ CPSNMn(~a, θ; n,
π1, π2, ..., πk).

1

In the next theorem we show that this distribution is a particular case of
MPSD(A(~x), ~θ) considered in Johnson et al. [7].

1For n = 1 and k = 2 see [12].
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Theorem 2.1. Suppose πi ∈ (0, 1), i = 1, 2, ..., k, π0 := 1 − π1 − π2 −
...− πk ∈ (0, 1), ai ≥ 0, i = 0, 1, .. and θ ∈ R are such that (2.1) is satisfied. If

~X ∼ CPSNMn(g~a(x), θ;n, π1, π2, ..., πk),

then

1. ~X ∼ MPSD(A(~x), ~θ), where ~θ = (π1, π2, ...., πk), a(0,....0) = g~a(θπ
n
0 ). For

(i1, i2, ..., ik) 6= (0, 0, ..., 0),

a(i1,i2,...,ik) =

∞∑
j=1

ajθ
j

(
jn+ i1 + i2 + ...ik − 1
i1, i2, ..., ik, jn− 1

)
πnj0 ,

A(x1, x2, ..., xk) = g~a

{
θ

πn0
[1− (x1 + x2 + ...+ xk)]n

}
.

xi ∈ (0, 1) i = 1, 2, ..., k and x1 + x2 + ...+ xk ∈ (0, 1).

2. For |π1z1 + π2z2 + ...+ πkzk| < 1,

GX1,X2,...,Xk(z1, z2, ..., zk) =
g~a

[
θ
(

π0
1−(π1z1+π2z2+...+πkzk)

)n]
g~a(θ)

=

=
g~a

[
θ
(

π0
π0+π1(1−z1)+π2(1−z2)+...+πk(1−zk)

)n]
g~a(θ)

.

3. For all r = 2, 3, ..., k,

(Xi1 , Xi2 , ..., Xir) ∼ CPSNMn(g~a(x), θ;n,
πi1

π0 + πi1 + πi2 + ...+ πir
,

πi2
π0 + πi1 + πi2 + ...+ πir

, ...,
πir

π0 + πi1 + πi2 + ...+ πir
).

4. For i = 1, 2, ..., k, Xi ∼ CPSNBi(g~a(x), θ;n, πi
π0+πi

),

GXi(zi) =
g~a

[
θ
(

π0
π0+πi(1−zi)

)n]
g~a(θ)

, |πizi| < π0 + πi,

EXi = nθ[log(g~a(θ))]
′ πi
π0

= nθ
πi
π0

g′~a(θ)

g~a(θ)
,

V arXi = n
πiθ

π20

[
nπiθ[log(g~a(θ))]

′′ + [log(g~a(θ))]
′ (π0 + πi(n+ 1))

]
.

F IXi = 1 +
πi
π0

(
nθ

[log(g~a(θ))]
′′

[log(g~a(θ))]′
+ n+ 1

)
.
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5. For i 6= j = 1, 2, ..., k, (Xi, Xj) ∼ CPSNMn(g~a(x), θ;n, πi
π0+πi+πj

,
πj

π0+πi+πj
)

GXi,Xj (zi, zj) =
g~a

[
θ
(

π0
π0+(1−zi)πi+(1−zj)πj

)n]
g~a(θ)

,

, |πizi + πjzj | < π0 + πi + πj .

cov(Xi, Xj) =
nπiπjθ

π20
{nθ[log g~a(θ)]′′ + (n+ 1)[log g~a(θ)]

′}.

cor(Xi, Xj) =

√
(FIXi − 1)(FIXj − 1)

FIXi FIXj
.

6. For i, j = 1, 2, ..., k j 6= i,

(a) For mj 6= 0

P (Xi = mi|Xj = mj) =

(
π0 + πj

π0 + πi + πj

)mj πmii
mi!(π0 + πi + πj)mi

.

.

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!

(
π0

π0+πi+πj

)ns
∑∞

s=1 asθ
s (sn+mj−1)!

(sn−1)!

(
π0

π0+πj

)ns , mi = 0, 1, ...

(b)

(Xi|Xj = 0) ∼ CPSNMn

[
as, θ̃ = θ

(
π0

π0 + πj

)n
;n,

πi
π0 + πi + πj

]
P (Xi = mi|Xj = 0) =

=
πmii

mi!(π0 + πi + πj)mi

∑∞
s=1 as

(sn+mi−1)!
(sn−1)!

[
θ
(

π0
π0+πj

)n]s
g~a

[
θ
(

π0
π0+πj

)n] , mi ∈ N,

P (Xi = 0|Xj = 0) =
g~a

[
θ
(

π0
π0+πi+πj

)n]
g~a

[
θ
(

π0
π0+πj

)n] .

(c) For i, j = 1, 2, ..., k j 6= i, mj = 1, 2, ...

E(zXii |Xj = mj) =

=

(
π0 + πj

π0 + πj + πi − ziπi

)mj ∑∞s=1 as
(sn+mi−1)!

(sn−1)!

[
θ
(

π0
π0+πj+πi−ziπi

)n]s
∑∞

s=1 as
(sn+mj−1)!

(sn−1)!

[
θ
(

π0
π0+πj

)n]s .

E(zXii |Xj = 0) =
g~a

[
θ
(

π0
π0+πj+(1−zi)πi

)n]
g~a

[
θ
(

π0
π0+πj

)n] .
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(d) For zj = 1, 2, ...

E(Xi|Xj = zj) =
πi

π0 + πj

∑∞
s=1 as

(sn+zj)!
(sn−1)!

[
θ
(

π0
π0+πj

)n]s
∑∞

s=1 as
(sn+zj−1)!
(sn−1)!

[
θ
(

π0
π0+πj

)n]s ,
E(Xi|Xj = 0) =

nπi
π0 + πj

∑∞
s=1 sas

[
θ
(

π0
π0+πj

)n]s
∑∞

s=0 as

[
θ
(

π0
π0+πj

)n]s =

=
nθπn0πi

(π0 + πj)n+1

g′~a

[
θ
(

π0
π0+πj

)n]
g~a

[
θ
(

π0
π0+πj

)n] .
7. X1 +X2 + ...+Xk ∼ CPSNBi(g~a(x), θ;n, 1− π0)

8. For i = 1, 2, ..., k

(Xi, X1 +X2 + ...+Xk −Xi) ∼ CPSNMn(g~a(x), θ;n, πi, 1− π0 − πi).

9. For i = 1, 2, ..., k, m ∈ N

(Xi|X1 +X2 + ...+Xk = m) ∼ Bi(m, πi
1− π0

).

Sketch of the proof: 1) We substitute of the considered values and func-
tion A in the necessary and sufficient condition, given in p. 154, Johnson et al.
[7] for MPSD and prove that the following two conditions are satisfied:

P (X1 = 0, X2 = 0, ..., Xk = 0) =
a(0,0,...,0)

A(θ1, θ2, ..., θk)

P (X1 = n1 +m1, X2 = n2 +m2, ..., Xk = nk +mk)

P (X1 = n1, X2 = n2, ..., Xk = nk)

=
a(n1+m1,n2+m2,...,nk+mk)

a(n1,n2,...,nk)
θm1
1 θm2

2 ...θmkk , mi, ni = 0, 1, ..., i = 1, 2, ..., k

2-3) Analogously to [12], who works in case n = 1 and k = 2. Here we have
used the definition of p.g.f., the definition of g~a(x) and the formula,

∞∑
i1=0

∞∑
i2=0

...

∞∑
ik=0

(i1 + i2 + ...+ ik + r − 1)!

i1!i2!...ik!(r − 1)!
xi11 x

i2
2 ...x

ik
k =

1

(1− x1 − x2 − ...− xk)r
.

6a) For mi = 0, 1, ... we substitute the proposed parameters and function
in the formula of p.m.f. of PS distribution and obtain the above formula
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P (Xi = mi|Xj = mj) =

=

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!mi!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)mi
∑∞

k=0

∑∞
s=1 asθ

s (sn+k+mj−1)!
(sn−1)!k!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)k =

=

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!mi!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)mi
∑∞

s=1
as

(sn−1)!θ
s
(

π0
π0+πi+πj

)ns∑∞
k=0

(sn+k+mj−1)!
k!

(
πi

π0+πi+πj

)k =

=

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!mi!

(
π0

π0+πi+πj

)ns (
πi

π0+πi+πj

)mi
∑∞

s=1
as

(sn−1)!θ
s
(

π0
π0+πi+πj

)ns (sn+mj−1)![
1−
(

πi
π0+πi+πj

)]sn+mj
=

1

mi!

(
πi

π0 + πi + πj

)mi ( π0 + πj
π0 + πi + πj

)mj
.

∑∞
s=1 asθ

s (sn+mi+mj−1)!
(sn−1)!

(
π0

π0+πi+πj

)ns
∑∞

s=1
asθs(sn+mj−1)!

(sn−1)!

(
π0

π0+πj

)ns .

c) and d) are analogous to [12], who work in case n = 1 and k = 2.

9) For i = 1, 2, ..., k, m ∈ N we use 7), 8) the definitions about CPSNMn
distribution and conditional probability and obtain

P (Xi = s | X1 +X2 + ...+Xk = m) =

=
P (Xi = s,X1 +X2 + ...+Xk = m)

P (X1 +X2 + ...+Xk = m)
=

=
P (Xi = s,X1 +X2 + ...+Xk −Xi = m− s)

P (X1 +X2 + ...+Xk = m)
=

=

πsi (1− π0 − πi)m−s
∑∞

j=1 ajθ
j

(
jn+m− 1

s,m− s, jn− 1

)
πnj0

(1− π0)m
∑∞

j=1 ajθ
j

(
jn+m− 1
m, jn− 1

)
πnj0

=

=
πsi (1− π0 − πi)m−s

∑∞
j=1 ajθ

j (jn+m−1)!
s!(m−s)!(jn−1)!π

nj
0

(1− π0)m
∑∞

j=1 ajθ
j (jn+m−1)!
m!(jn−1)! π

nj
0

=

=

(
m
s

)(
πi

1− π0

)s(
1− πi

1− π0

)m−s
, s = 0, 1, ...,m.

We use the definition of Binomial distribution and complete the proof.

Note 2.1. The conclusion 1) in this theorem states that also in the
univariate case the CPSMNn distribution is just a particular case of PSD with
more complicated coefficients.

The next theorem presents this distribution as a mixture.
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Theorem 2.2. Suppose n ∈ N , πi ∈ (0, 1), i = 1, 2, ..., k, π0 := 1−π1−
π2 − ...− πk ∈ (0, 1), aj ≥ 0, j = 0, 1, .., θ ∈ R are such that (2.1) is satisfied and
~X ∼ CPSNMn(g~a(x), θ;n, π1, π2, ..., πk). Then there exists a probability space
(Ω,A,P), a r.v. M ∼ PSD(g~a(x), θ) and a random vector ~Y = (Y1, Y2, ..., Yk)
defined on it, such that ~Y |M = m ∼ NMn(nm, π1, π2, ..., πk), m = 1, 2, ..,

P (Y1 = 0, Y2 = 0, ..., Yk = 0|M = 0) = 1,

and ~X
d
= ~Y . Moreover

1. For |π1z1 + π2z2 + ...+ πkzk| < 1,

GX1,X2,...,Xk(z1, z2, ..., zk) =

= GM

[(
π0

π0 + π1(1− z1) + π2(1− z2) + ...+ πk(1− zk)

)n]
.

2. For i = 1, 2, ..., k,

EXi = nEM
πi
π0
, i = 1, 2, ..., k.

V arXi = V arM n2
π2i
π20

+ EM n
πi(π0 + πi)

π20

= n
πi
π0
EM [

πi
π0

(nFI M + 1) + 1].

F IXi = 1 +
πi
π0

(nFI M + 1) .

3. For i 6= j = 1, 2, ..., k,

cov(Xi, Xj) = n
πiπj
π20
{nFI M + 1}EM.

cor(Xi, Xj) =

√
(FIYi − 1)(FIYj − 1)

FIYi FIYj
.

Note 2.2. Following analogous notations of Johnson et al. [7], the above
two theorems state that CPSNMn distribution coincides with

I{M>0}NMn(nM, π1, π2, ..., πk)∧
M
PSD(g~a(x); θ),

where IM>0 is a Bernoulli r.v. or indicator of the event ”M > 0”.

The following representation motivates the name of CPSNMn distribution.

Theorem 2.3. Suppose πi ∈ (0, 1), i = 1, 2, ..., k, π0 = 1−π1− ...−πk ∈
(0, 1), ak ≥ 0, k = 0, 1, .. and θ ∈ R are such that such that (2.1) is satisfied.
Let M ∼ PS(g~a(x); θ) and (Y (1), ..., Y (k)) ∼ NMn(n;π1, ..., πk) be independent.
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Denote by I{M>0} the Bernoulli r.v. that is an indicator of the event {M > 0} and

defined on the same probability space. Define a random vector (T
(1)
M , T

(2)
M , ..., T

(k)
M )

by

(2.3) T
(j)
M = I{M>0}

M∑
i=1

Y
(j)
i =

{∑M
i=1 Y

(j)
i if M > 0

0 , otherwise
, j = 1, 2, ..., k.

Then

1. For m ∈ N, (T
(1)
M , T

(2)
M , ..., T

(k)
M |M = m) ∼ NMn(nm;π1, π2, ..., πk);

2. (T
(1)
M , T

(2)
M , ..., T

(k)
M ) ∼ CPSNMn(g~a(x), θ;n, π1, π2, ..., πk);

3. (T
(1)
M , T

(2)
M , ..., T

(k)
M |M > 0) ∼ CPSNMn(g~̃a(x), θ;n, π1, π2, ..., πk), where

ã0 = 0, ãi = ai, i = 1, 2, ...

Sketch of the proof: We apply (1.4) and Theorem 2. 2 is analogous to
[12], who work in case n = 1 and k = 2.

If we have no weights at coordinate planes we need to consider the following
distribution.

Definition 2.2. Let πj ∈ (0, 1), j = 1, 2, ..., k, π0 := 1−π1−π2−...−πk ∈
(0, 1), as ≥ 0, s = 0, 1, ... and θ ∈ R be such that

g~a(θ) =
∞∑
n=0

anθ
n <∞.

A random vector ~X = (X1, X2, ..., Xk) is called Compound Power series dis-
tributed with negative multinomial summands on Nk and with parameters g~a(x),
θ; n; π1, ..., πk, if for i = 1, 2, ..., k, mi = 1, 2, ...,

P (X1 = m1, X2 = m2, ...Xk = mk) =

(2.4) =
1

ρ

πm1
1 πm2

2 ...πmkk
g~a(θπ

n
0 )

∞∑
j=1

ajθ
j

(
jn+m1 +m2 + ...mk − 1
m1,m2, ...,mk, jn− 1

)
πnj0 ,

ρ = 1−
k∑

m=1

(−1)m+1
∑

1≤i1<i2<...<im≤k

g~a [θπn0 (π0 + πi1 + ...+ πim)−n]

g~a(θ)
.

Briefly ~X ∼ CPSNMnNk(g~a(x), θ;n, π1, π2, ..., πk).

The relation between CPSNMn and CPSNMnNk distributions is given
in the following theorem.

Theorem 2.4. If ~X ∼ CPSNMn(g~a(x), θ;n, π1, π2, ..., πk), then

(X1, X2, ..., Xk|X1 6= 0, X2 6= 0, ..., Xk 6= 0) ∼ CPSNMnNk(g~a(x), θ;n, π1, π2, ..., πk).
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3. APPLICATIONS TO RISK THEORY

In [9] we obtained the approximations of Compound Poisson risk process
mixed with Pareto r.v. and provide a brief summary of previous results about risk
process approximations. In this section we provide risk process application of the
CPSNMn. Here k, n ∈ N, pM ∈ (0, 1), πi ∈ (0, 1), i = 1, 2, ..., k, π1 + ...+πk < 1
and π0 = 1− π1 − π2 − ...− πk.

3.1. The counting process

Here we consider a discrete time counting process, satisfying the following
conditions.

C1 The insurance company have no claims at moment t = 0.

C2 In any other moments of time t = 1, 2, ... a group of claims can arrive with
probability pM independently of others. We denote the number of groups
of claims, arrived in the insurance company over an interval [0, t] by M(t)
and by 0 < TG,1 < TG,2, ... the moments of arrivals of the corresponding
group, i.e. TG,k is the occurrence time of the k-th group. By definition
M(0) = 0.

C3 The claims can be of one of k mutually exclusive and totaly exhaustive
different types A1, A2, ..., Ak, e.g. claims of one individual having several
pension insurances.

C4 In any of the time points 0 < TG,1 < TG,2 < ..., we denote the number of
claims of type i = 1, 2, .., k, arrived in the insurance company by Yi,j , j =
1, 2, .... We assume that the random vectors (Y1,j , Y2,j , ..., Yk,j), j = 1, 2, ...
are i.i.d. and

(Y1,j , Y2,j , ..., Yk,j) ∼ NMn(n, π1, π2, ..., πk).

Note 3.3. Conditions C1 − C2 means that the counting process of the
groups of claims up to time t > 0 is a Binomial process. In case when the claim
sizes are discrete they are considered e.g. in [5, 19, 4, 22]. The number of groups
arrived up to time t is M(t) ∼ Bi(t, pM ) and the intervals TG,1, TG,2−TG,1, TG,3−
TG,2, ... between the groups arrivals are i.i.d. Geometrically distributed on 1, 2,
..., with parameter pM .

C4 means that it is possible to have zero reported losses of one or of all k-
types of insurance claims within one group. In that case there is a group arrived,
however, the number of participants in the group is zero. This can happen e.g.
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when there is a claim, but it is not accepted, or it is estimated by zero value by
the insurer.

Let us denote the number of claims of type i = 1, 2, ..., k, arrived in the com-
pany in the interval [0, t] by Ni,t. Conditions C1−C4 imply that (N1(0), N2(0), ...,
Nk(0)) = (0, 0, ..., 0) and for all t = 1, 2, ...,

Ni(t) = I{M(t) > 0}
M(t)∑
j=1

Yi,j , j = 1, 2, ..., k.

Therefore

(N1(t), N2(t), ..., Nk(t)) ∼ CPSNMn((1 + x)t,
pM

1− pM
;n, π1, π2, ..., πk)

and P (N1(t) +N2(t) + ...+Nk(t) = 0) = (1−pM )t

(1−pMπn0 )t
.

3.2. The total claim amount process and its characteristics

Consider the total claim amount process defined as

(3.1) S(t) = I{N1(t)>0}

N1(t)∑
j1=1

Z1,j1+I{N2(t)>0}

N2(t)∑
j2=1

Z2,j2+...+I{Nk(t)>0}

Nk(t)∑
jk=1

Zk,jk ,

t = 1, 2, ... satisfying C1 − C4.

We impose the following conditions on the claim sizes:

C5 In any of the time points 0 < TG,1 < TG,2 < ..., we denote the claim
sizes of the claims of type i = 1, 2, .., k by Zi,j , j = 1, 2, .... We assume
that the random vectors (Z1,j , Z2,j , ..., Zk,j), j = 1, 2, ... are i.i.d. and the
coordinates of this vector are also independent, with absolutely continuous
c.d.fs. correspondingly Fi, i = 1, 2, .., k concentrated on (0,∞).

C6 The claim arrival times and the claim sizes are assumed to be independent.

Proposition 3.1. Consider the total claim amount process defined in
(3.1) and satisfying conditions C1 − C6.

1. If EZi,j = µi <∞, i = 1, 2, ..., k, then

(3.2) ES(t) =
ntpM (1− pM )

π0
(µ1π1 + µ2π2 + ...µkπk).
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2. If additionally V ar Zi,j = σ2i <∞, i = 1, 2, ..., k, then
(3.3)

V ar S(t) = nt
pM
π0


k∑
i=1

πi(σ
2
i + µ2i ) +

(1− pM )n+ 1

π0

(
k∑
i=1

µiπi

)2
 .

F I S(t) =

∑k
i=1 πi(σ

2
i + µ2i ) + (1−pM )n+1

π0

(∑k
i=1 µiπi

)2
(1− pM )(µ1π1 + µ2π2 + ...µkπk)

.

Proof: [1.] is a consequence of the double expectation formula.

[2.] Using the double expectation formula, the facts that EM(t) = tpM ,
V arM(t) = tpM (1− pM ) and Th. 2 we obtain:

V ar S(t) =
k∑
i=1

ntpM
πi
π0
σ2i + ntpM

k∑
i=1

[
(1− pM )n

π2i
π20

+
πi(π0 + πi)

π20

]
µ2i

+ 2
∑

1≤i<j≤k
µiµjcov(Ni(t), Nj(t))

= nt
pM
π0

{
k∑
i=1

πiσ
2
i +

k∑
i=1

[
(1− pM )n

π2i
π0

+
πi(π0 + πi)

π0

]
µ2i

}
+ 2

∑
1≤i<j≤k

µiµjcov(Ni(t), Nj(t))

= nt
pM
π0

{
k∑
i=1

πi(σ
2
i + µ2i ) +

k∑
i=1

[
(1− pM )n

π2i
π0

+
π2i
π0

]
µ2i

}
+ 2

∑
1≤i<j≤k

µiµjcov(Ni(t), Nj(t))

= nt
pM
π0

{
k∑
i=1

πi(σ
2
i + µ2i ) +

(1− pM )n+ 1

π0

k∑
i=1

µ2iπ
2
i

}
+ 2

∑
1≤i<j≤k

µiµjcov(Ni(t), Nj(t))

= nt
pM
π0

{
k∑
i=1

πi(σ
2
i + µ2i ) +

(1− pM )n+ 1

π0

k∑
i=1

µ2iπ
2
i

}

+ 2ntpM
[n(1− pM ) + 1]

π20

∑
1≤i<j≤k

µiµjπiπj

= nt
pM
π0


k∑
i=1

πi(σ
2
i + µ2i ) +

(1− pM )n+ 1

π0

(
k∑
i=1

µiπi

)2
 .

F I S(t) =
V ar S(t)

ES(t)
=

∑k
i=1 πi(σ

2
i + µ2i ) + (1−pM )n+1

π0

(∑k
i=1 µiπi

)2
(1− pM )(µ1π1 + µ2π2 + ...µkπk)

.
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3.3. The risk process and probabilities of ruin

Consider the following discrete time risk process
(3.4)

Ru(t) = u+ct−I{N1(t)>0}

N1(t)∑
j1=1

Z1,j1−I{N2(t)>0}

N2(t)∑
j2=1

Z2,j2−...−I{Nk(t)>0}

Nk(t)∑
jk=1

Zk,jk ,

t = 0, 1, ..., satisfying C1−C6. If we consider the claims in a group as one claim,
we can see that it is a particular case of the Binomial risk process. 2

The r.v. that describes the time of ruin with an initial capital u ≥ 0 is
defined as

τu = min{t > 0 : Ru(t) < 0}.

The probability of ruin with infinite time and initial capital u ≥ 0 will be
denoted by Ψ(u) = P (τu < ∞). The corresponding probability to survive is
Φ(u) = 1−Ψ(u). Finally, Ψ(u, t) = P (τu ≤ t) is for the probability of ruin with
finite time t = 1, 2, ....

If we assume that EZi,j = µi <∞, i = 1, 2, ..., k and in a long horizon, the
expected risk reserve for unit time is positive

lim
t→∞

ERu(t)

t
> 0.

The last is equivalent to

c > lim
t→∞

ES(t)

t
.

c >
npM (1− pM )

π0
(π1µ1 + π2µ2 + ...+ πkµk).

Note that this condition does not depend on u and it means, the incomes at any
t = 1, 2, ... to be bigger that the mean expenditures at that time.

cπ0
npM (1− pM )(π1µ1 + π2µ2 + ...+ πkµk)

> 1.

Therefore the safety loading ρ, should be defined as usually as the proportion
between the expected risk reserve at time t with zero initial capital, i.e. ER0(t)
and the expected total claim amount at same moment of time, for any fixed
t = 1, 2, ....

ρ =
cπ0

npM (1− pM )(π1µ1 + π2µ2 + ...+ πkµk)
− 1.

2See e.g. [5, 19, 4, 22].
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Thus the above condition is equivalent to the safety loading condition ρ > 0. If
this condition is not satisfied, the probability of ruin in infinite time would be 1,
for any initial capital u.

The proof of the next theorem is analogous to the corresponding one in
the Cramer-Lundberg model3 and in particular to those of the Polya-Aepply risk
model4.

Theorem 3.1. Consider the Risk process defined in (3.4) and satisfying
conditions C1 − C6. Given the Laplace transforms lZi,1(s) = Ee−sZi,1 , of Zi,1,
i = 1, 2, ..., k are finite in −s,

1. the Laplace transform of the risk process is

Ee−sR0(t) = e−g(s)t, t = 0, 1, 2, ...,

where

g(s) = sc− log
{

1− pM + pM

[
π0

1− [π1lZ1,1(−s) + ...+ πklZk,1(−s)]

]n}
.

2. The process R∗0(t) = e−sR0(t)+g(s)t, t ≥ 0 is an AR0(≤t) = σ{R0(s), s ≤ t}-
martingale.

3.
Ψ(u, t) ≤ e−su sup

y∈[0,t]
e−yg(s) t = 1, 2, ...

4.
Ψ(u) ≤ e−su sup

y≥0
e−yg(s).

5. If the Lundberg exponent ε exists, it is a strictly positive solution of the
equation

(3.5) g(s) = 0.

In that case Ψ(u) ≤ e−εu.
3See e.g. [1] or [6], p. 10, 11.
4[23] Proposition 6.3.
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Proof: [1.]

Ee−sR0(t) = Ee−s{ct−I{N1(t)>0}
∑N1(t)
j1=1 Z1,j1

−...−I{Nk(t)>0}
∑Nk(t)

jk=1 Zk,jk} =

= e−sctGN1(t),N2(t),...,Nk(t)(lZ1,1(−s), lZ2,1(−s), ..., lZk,1(−s)) =

= e−sctGM(t)

[(
π0

1− (π1lZ1,1(−s) + π2lZ2,1(−s) + ...+ πklZk,1(−s))

)n]
=

= e−sct
{

1− pM + pM

(
π0

1− (π1lZ1,1(−s) + π2lZ2,1(−s) + ...+ πklZk,1(−s))

)n}t
=

= e−scte
tlog

{
1−pM+pM

(
π0

1−(π1lZ1,1
(−s)+π2lZ2,1

(−s)+...+πklZk,1
(−s))

)n}
=

= e
−t
{
sc−log

[
1−pM+pM

(
π0

1−(π1lZ1,1
(−s)+π2lZ2,1

(−s)+...+πklZk,1
(−s))

)n]}
= e−tg(s).

[2.] Consider t = 0, 1, 2, ... and y ≤ t, then because the process {S(t), t =
0, 1, 2, ...} has independent and time homogeneous additive increments,

E(R∗0(t)|AR0(≤y)) = E(e−sct+sS(t)+g(s)t|AR0(≤y)) =

= E(e−scy+sS(y)+g(s)y−sc(t−y)+s(S(t)−S(y))+g(s)(t−y)|AR0(≤y)) =

= E(R∗0(y)e−sc(t−y)+s(S(t)−S(y))+g(s)(t−y)|AR0(≤y)) =

= R∗0(y)E(e−sc(t−y)+sS(t−y)+g(s)(t−y)) =

= R∗0(y)E(e−sR0(t−y)+g(s)(t−y)) =

= R∗0(y)E(e−sR0(t−y))eg(s)(t−y) =

= R∗0(y)e−g(s)(t−y)eg(s)(t−y) = R∗0(y)

[3.] Following the traditional approach we start with the definition of
R∗0 and use that for R∗0(0) = 1. Because τu is a random stopping time, by
Doob’s martingale stopping theorem, the stopped process R∗0(min(τu, t)), is again
a martingale. Therefore for any 0 ≤ t <∞ by the double expectations formula

1 = R∗0(0) = ER∗0(0) = ER∗0(min(τu, t)) =

= E(R∗0(min(τu, t))|τu ≤ t)P (τu ≤ t) + E(R∗0(min(τu, t))|τu > t)P (τu > t) ≥
≥ E(R∗0(min(τu, t))|τu ≤ t)P (τu ≤ t) =

= E(e−sR0(min(τu,t))+g(s)min(τu,t)|τu ≤ t)P (τu ≤ t) ≥
= esuE(eg(s)min(τu,t)|τu ≤ t)P (τu ≤ t) ≥
≥ esuE(eg(s)τu |τu ≤ t)P (τu ≤ t) =

= esuE(eg(s)τu |τu ≤ t)Ψ(u, t) ≥ esu inf
y∈[0,t]

eg(s)yΨ(u, t).

[4.] This is an immediate consequence of 3., when t→∞.

[5.] This is an immediate consequence of the inequality

1 ≥ E(e−εR0(min(τu,t))+g(ε)min(τu,t)|τu ≤ t)P (τu ≤ t),

applied for t→∞ and the fact that R0(s) = Ru(s)− u.
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Remark 3.1. In general to compute solution of the equation (3.5) is
a difficult task and it can be done only numerically, since e.g. for exponential
claims it involves roots of algebraic equations of high order. These solutions can
be however also negative or/and complex conjugates. To illustrate the complexity
of this setup, let us consider k = 1 and respective equation (for special choice of
parameters) s = log(1−0.5+0.5((1−p)/(1−p/(1−s)))n). Then, real solutions are
plotted at Figure 1 for n = 1, .., 10, p ∈ (0, 1), therein we can see the complexity
of such computations.

Theorem 3.2. Consider the Risk process defined in (3.4) and satisfying
conditions C1 −C6. Suppose that it satisfies the net profit condition. Denote by

σS =
√
V ar S(1) =

√√√√√n
pM
π0


k∑
i=1

πi(σ2i + µ2i ) +
(1− pM )n+ 1

π0

(
k∑
i=1

µiπi

)2
.

Define

Rm(t) =
um + cmt− S(mt)

σS
√
m

,

where
um
σS
∼ u0

√
m, m→∞

and
ρmµS
σS

∼ ρ0√
m
, m→∞,

µS = ES(1) =
npM (1− pM )

π0
(µ1π1 + µ2π2 + ...µkπk),

then
Rm(t) =⇒ u0 + ρ0t+W (pM t), m→∞.

3.4. Simulations of the risk processes and estimation of the probabil-
ities of ruin

In this subsection we provide a brief simulation study on probabilities of
ruin in a finite time in the model (3.4). For any of them 10000 sample paths were
created and the relative frequencies of those which goes at least once below zero
was determined. The number of groups is k = 20. The parameters of the NMn
distribution are n = 40 and p = (0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016,
0.018, 0.02, 0.022, 0.024, 0.026, 0.028, 0.03, 0.032, 0.034, 0.036, 0.038, 0.04). Differ-
ent parameters on different coordinates allow higher flexibility of the model. The
probability of arrival of a group in a fixed time point is pM = 0.4, and premium
income rate is c = 0.1.
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Example 3.1. Exponential claim sizes. For computations of ruin
probabilities under exponential claims we consider parameter vector λ = (10, 20,
30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200). The
i − th coordinate describe the parameter of the Exponential distribution of the
claim sizes within the i−th group. The resulting probabilities for ruin for different
initial capitals u and time intervals [0, t] are presented in the Table 1. The
corresponding 10000 sample paths of the risk process are depicted on Figure 2.

t
u 2 5 10 20 50 100

0 0.3224 0.5581 0.7037 0.8053 0.9016 0.9515

1 0.0001 0.0036 0.0370 0.1546 0.4234 0.6586

2 0 0 0.0005 0.0072 0.1131 0.3386

3 0 0 0 0.0001 0.0159 0.1366

4 0 0 0 0 0.0012 0.0364

5 0 0 0 0 0 0.0081

Table 1: Probabilities of ruin for exponential claims

Example 3.2. Gamma claim sizes. Table 2 presents the probabilities
for ruin in case, when the claim sizes are Gamma distributed with parameters
α = seq(from = 0.001, to = 0.001 + (k − 1) ∗ 0.005, by = 0.005) and β =
seq(from = 1, to = 1 + (k − 1) ∗ 0.2, by = 0.2), where seq is the function for
creating a sequence in R software, see [16]. The corresponding 10000 sample
paths of the risk process are depicted on Figure 3.

t
u 2 5 10 20 50 100

0 0.164 0.294 0.442 0.529 0.706 0.787

1 0.042 0.085 0.183 0.273 0.490 0.578

2 0.017 0.046 0.086 0.160 0.317 0.458

3 0.010 0.024 0.051 0.098 0.202 0.358

4 0.003 0.008 0.019 0.057 0.139 0.248

5 0.000 0.002 0.013 0.027 0.071 0.171

Table 2: Probabilities of ruin for gamma claims

Example 3.3. Uniform claim sizes. The ruin probabilities presented
in the Table 3 are calculated under assumption for uniform claim sizes with
left and right bounds of the intervals, presented correspondingly via parameter
vectors Umin = seq(from = 0.0001, to = 0.0001 + (k− 1) ∗ 0.0001, by = 0.0001),
and Umax = Umin+ 0.01.
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t
u 2 5 10 20 50 100

0 0.133 0.253 0.361 0.402 0.392 0.412

1 0.000 0.000 0.000 0.001 0.001 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000

Table 3: Probabilities of ruin for uniform claims

The corresponding 10000 sample paths of the risk process are depicted on
Figure 4.

Analogously, the probabilities for ruin in a finite time interval, for different
claim sizes with finite variance, and related with the risk process (3.4) can be
estimated. The corresponding confidence intervals can be calculated using the
Central Limit Theorem, applied to relative frequencies.

4. CONCLUSIONS

The paper shows that CPSMNn distribution is easy to work with, and it be
can be very useful for modelling of the number of claims in Risk theory. Recently
[26] and [2] have published another important application of multivariate negative
binomial distribution in actuarial risk theory. Both models show that they are
suitable for capturing the overdispersion phenomena. These distributions provide
a flexible modelling of the number of claims that have appeared up to time t. The
number of summands of the random sum reflects the number of groups of claims
that have occurred up to this moment. The negative multinomial summands
and their dependence structure describe types of claims within a group which
are different from those given by [26] and [2]. From mathematical point of view
our paper describes completely novel presentations of the CPSNMn distributions.
Thus we can conclude by following conclusions:

• These distributions are a particular case of Multiariate PSD.

• Considered as a mixture, CPSMNn would be called (possibly Zero-inflated)
Mixed NMn with scale changed PSD first parameter. More precisely

I{M>0}NMn(nM, π1, π2, ..., πk)∧
M
PSD(g~a(x); θ),

where IM>0 is a Bernoulli r.v. or indicator of the event ”M > 0”.
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• CPSMNn is particular case of compounds or random sums (T
(1)
M , T

(2)
M , ..., T

(k)
M ),

where

T
(j)
M = I{M>0}

M∑
i=1

Y
(j)
i =

{∑M
i=1 Y

(j)
i if M > 0

0 , otherwise
, j = 1, 2, ..., k.

These observations allow us to make the first complete characterization of Com-
pound power series distribution with negative multinomial summands and to give
an example of their application in modelling the main process in the Insurance
risk theory.
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Figures

Figure 1: Real solutions of equation (3.5) for πM = π0 = π1 = 0.5.

Figure 2: 10000 sample paths of the risk process (3.4) for Exponential
individual claim sizes, t = 100
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Figure 3: 10000 sample paths of the risk process (3.4) for Gamma indi-
vidual claim sizes, t = 100

Figure 4: 10000 sample paths of the risk process (3.4) for Uniform indi-
vidual claim sizes, t = 100


