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1. INTRODUCTION

We describe first the real-life application which sets the directions and
frames the questions pursued in this work (Section 1.1). We then outline the
contributions and the structure of this work (Section 1.2).

1.1. Motivation

This work is motivated by applications to ship motions and, more specifi-
cally, their stability in irregular seas. See, for example, Lewis [25], Benford [7],
Belenky and Sevastianov [4], Neves et al. [28] for more information on this re-
search area. When it comes to ship stability, the focus is on several variables
characterizing the ship motion including roll and pitch angles, which are, respec-
tively, the rotational movements around longitudinal (stern-to-bow) and lateral
(starboard-to-port side or right-to-left side) axes, as well as vertical and lateral
accelerations in various locations on the ship. See Figure 1. The ship stability
failures are related directly to the exceedance of certain values by these vari-
ables. For example, the exceedance of a certain roll angle can lead to a cargo
shift (which then can lead to capsizing), loss or damage of cargo in containers on
deck, or down-flooding internal volumes of a ship. A large enough acceleration
can lead to serious injuries or even death of a crew and passengers, as well as
cargo damage. Such occurrences are well known not only among the researchers
working in the area but also often make it to the popular media.1
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Figure 1: The motions of the ship.

The measured variables of interest to stability are understandably affected

1Recent examples of accidents related to intact stability failures include: Ro/Ro Ferry Aratere
on 3rd March 2006 (Maritime New Zealand, 2007), Cruise ship Pacific Sun on 30 July 2008 (Ma-
rine Accident Investigation Branch, 2009), Ferry Ariake on 13 November, 2009 (Transportation
Safety Board, 2011), to name but a few.
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by the geometry and loading of the ship, the operational parameters and the
surrounding sea. The operational side includes the heading (the angle between
the vector of ship speed and predominant direction of wave propagation) and
the value of speed of the ship. The state of the sea is usually described by a
spectrum of wave elevations. Note that a wide range of conditions (the values
of the above descriptors) are possible. What can be expected under a particular
condition is often suggested from the understanding of the dynamics governing
the ship motion.

An appealing but also critical feature of the research area is the availability
of computer programs simulating ship motions, see the recent state-of-the-art
review by Reed et al. [30]. In this work, we use a fast volume-based ship motion
simulation algorithm developed in Weems and Wundrow [37]. The developed
code does not incorporate finer hydrodynamics features of ship motions such
as the influence of a ship motion on wave pressure field (i.e. wave diffraction
and radiation; cf. Large Amplitude Motion Program or LAMP, see Lin and Yue
[26]). But it is considered qualitatively representative of ship motions and their
extremes. Moreover, the code is fast enough (in fact, the only such realistic
method available) to be used in validation, where very long time histories of ship
motions are necessary (see Section 3 below).
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Figure 2: The roll and pitch angle series for 10 minutes.

Figure 2 depicts the time series of roll and pitch angles obtained by the
above referenced code for a 10 minute time window at 0.5 second measurement
intervals. The ship geometry is that of the ONR tumblehome top (Bishop et al.
[8]). The heading is at 45 degrees, the speed is 6 knots, the waves are character-
ized by significant height of 9m and mean zero-crossing period of 10.65s which
corresponds to 15s of the modal period, using Bretschneider spectrum in open
ocean (Lewis [25]).

A basic problem is to estimate the probability of roll, pitch or other variable
of interest exceeding a critical value, as well as to provide a confidence interval.
For example, in the condition of Figure 2, one could be interested in the roll angle



Confidence intervals for exceedance probabilities... 5

exceeding 60 degrees (in either positive or negative direction). Inference would
have to be made from the roll series of, for example, 100 hours, which would
typically not contain such extreme occurrences. Again, the critical angle is often
suggested from real-life considerations.

A method suggested for the problem above (and, more specifically, the
associated confidence intervals) can be assessed through a validation procedure.
The computer code mentioned above can be used to generate millions of hours
of ship motion data which would contain exceedances of the target of interest.
The “true” exceedance probability can then be estimated directly from this long
history of the ship motion. In the validation procedure, the performance of the
suggested method could be checked against the “true” exceedance probability at
hand. See Section 3 for further details and a solution to the estimation problem.

1.2. Description of work and contributions

A natural mathematical framework to address the problem of estimating
exceedance probabilities described above is the peaks-over-threshold (POT) ap-
proach (see, for example, Embrechts et al. [18], Coles [9], Beirlant et al. [2], as
well as de Carvalho et al. [11], Ferreira and de Haan [19] for more recent related
work). According to this approach, the probability of exceeding a given target
of interest is computed as the product of the probability of exceeding a smaller
threshold and the (conditional) probability of exceeding the target above the
threshold. The former probability is estimated simply as the proportion of data
above the chosen threshold. The peaks over the threshold are modeled using
the generalized Pareto distribution (GPD), whose complementary distribution
function has the form
(1.1)

Fµ,ξ,σ(x) :=
(

1+
ξ(x− µ)

σ

)−1/ξ
+

:=





(
1 + ξ(x−µ)

σ

)−1/ξ
, µ < x, if ξ > 0,

e−
x−µ
σ , µ < x, if ξ = 0,(

1 + ξ(x−µ)
σ

)−1/ξ
, µ < x < µ− σ

ξ , if ξ < 0,

where ξ is the shape parameter, σ is the scale parameter and µ is a threshold.
Note that the GPD has an upper bound (−σ/ξ) (above the threshold) for a
negative shape parameter ξ < 0. When ξ = 0, the GPD is the usual exponential
distribution.

We are interested here in what confidence intervals should be used for an ex-
ceedance probability. As indicated above, in the POT approach, this exceedance
probability is the product of two probabilities, one of them being the exceedance
probability for GPD. The questions then is what confidence intervals should be
used for the exceedance probability in the GPD framework. The probability of
the GPD exceeding a fixed target c (above the threshold), and its estimator are
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given by:

(1.2) pc = pc(ξ, σ) =
(

1 +
ξc

σ

)−1/ξ
, p̂c = pc(ξ̂, σ̂) =

(
1 +

ξ̂c

σ̂

)−1/ξ̂
,

where ξ̂ and σ̂ are some estimators of the shape and scale parameters, respectively.
Somewhat surprisingly, the question of confidence intervals for the exceedance
probability in (1.2) has apparently not been considered in much depth in the
literature on extreme values. The paper by Smith [33], which laid the mathe-
matical foundations for the ML estimators of the GPD, considers the problem
of estimating the exceedance probability and provides the asymptotic normality
result for the probability estimator (Section 8 of Smith [33]). This can in turn
be used for confidence intervals but the normality assumption is not particularly
appropriate (see Section 2 below).

Estimation of exceedance probabilities has also been considered by others
but with different goals in mind. For example, Smith and Shively [34] are in-
terested in trends for exceedance probabilities. Exceedance probabilities in the
spatial context appear in Draghicescu and Ignaccolo [16]. Considerable interest
in exceedance (also sometimes referred to as failure) probabilities is when working
with multivariate extremes. See, for example, de Haan and Sinha [13], de Haan
and de Ronde [12], Heffernan and Tawn [20], Drees and de Haan [17].

Much of the focus in the extreme value analysis, on the other hand, has
been on the related inverse problem of quantile estimation (see, for example,
Embrechts et al. [18], Coles [9], Beirlant et al. [2]). The quantiles have been of
greater practical interest in many applications driving the extreme value analy-
sis, including finance (VaR calculations), insurance and hydrology (1-in-T years
event). A closer look at the confidence intervals for quantiles can be found in
Hosking and Wallis [22], Tajvidi [36] and also Section 4.3.3 of Coles [9], Section
5.5 of Beirlant et al. [2].

In applications to ship motions, as indicated in Section 1.1, it is common
to look at the probabilities of exceeding a particular target rather than quantiles.
Though perhaps not surprisingly, the two perspectives are also complementary.
In fact, one of our findings is that the confidence intervals for exceedance prob-
abilities perform well if constructed from those for quantiles. Another reason to
focus on probabilities rather than quantiles is that probabilities can be aggregated
naturally into “lifetime” probabilities, when integrated over a set of conditions of
interest (as discussed, for example, in Section 1 of Belenky and Sevastianov [4]).

We study a number of ways to construct confidence intervals for the ex-
ceedance probability of the GPD and, more generally, in the POT framework in
Section 2. We consider both direct methods, which are based on the functional
form of exceedance probability (1.2) and the sampling distribution of the under-
lying estimators ξ̂, σ̂, and indirect (inverse) methods, which construct confidence
intervals from those for quantiles.

The application of the considered confidence intervals to ship motions can
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be found in Section 3. In the validation procedure, the performance of the con-
fidence intervals is analogous to that found under the idealized GPD framework.
In particular, the methods recommended under the GPD framework also perform
well and best in the application to ship motions. It should also be noted that the
proposed solution is the first to address satisfactorily the estimation problem of
the exceedance probabilities in ship stability. Some earlier attempts include Be-
lenky and Campbell [5] who used the Weibull distribution (instead of the GPD)
to fit peaks over threshold, and McTaggart [27].

Finally, in Section 4, we discuss the issue of uncertainty (the size of confi-
dence intervals) and its reduction. Conclusions can be found in Section 5.

2. CONFIDENCE INTERVALS FOR EXCEEDANCE PROBABIL-
ITIES

2.1. Methods for GPD

We study and assess here several ways to construct confidence intervals
for the exceedance probability pc of the GPD given in (1.2). The probability is
estimated through p̂c in (1.2) where we use the ML estimators ξ̂ and σ̂ computed
from the sample y1, . . . , yn of size n. The large sample asymptotics of the ML
estimators (Smith [33]) is the bivariate normal,

(2.1)
√
n
(
ξ̂ − ξ0
σ̂ − σ0

)
d→ N (0,W−1),

where ξ0, σ0 denote the true values and

(2.2) W−1 =

(
1 + ξ0 −σ0
−σ0 2σ20

)
.

In practice, the limiting covariance matrix can be estimated by replacing ξ0 and
σ0 with their respective estimators ξ̂ and σ̂. Another common choice is to ap-
proximate nW through the observed information matrix

(2.3) nŴ =

(
− ∂2

∂ξ2
l(ξ, σ) − ∂2

∂ξ∂σ l(ξ, σ)

− ∂2

∂ξ∂σ l(ξ, σ) − ∂2

∂σ2 l(ξ, σ)

)

(ξ,σ)=(ξ̂,σ̂)

,

where l(ξ, σ) =
∑n

i=1 ln fξ,σ(yi) is the log-likelihood and fξ,σ(y) denotes the den-
sity of the GPD. Strictly speaking, the asymptotic result (2.1) holds for ξ > −1/2
only (Smith [33]). It should also be noted that other estimation methods than
the MLE are possible for ξ0 and σ0. See, for example, a review paper by de Zea
Bermudez and Kotz [14, 15] and references therein. Some of these estimators
outperform the ML estimators for small samples. For the sample sizes relevant
to our problem of interest, the ML estimators seem to perform quite well and,
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in particular, to be approximately normal as stated in (2.1), and will be used
throughout this work.

The exceedance probability pc = pc(ξ, σ) in (1.2) is a function of ξ and
σ, and is estimated through (1.2) by replacing the two parameters ξ and σ by
their ML estimates. A confidence interval for pc can then naturally be obtained
through the standard delta method, using the asymptotic result (2.1). This is
the approach seemingly adopted by Smith [33], Section 8. However, we found the
delta method to perform poorly, in part because pc can be very small and the
normal approximation of p̂c may be sufficiently wide to include negative values.
We have also tried the delta method for log pc but the normal approximation
did not appear to provide a good fit to log p̂c. Consequently, we consider be-
low several, potentially more accurate ways to construct confidence intervals for
the exceedance probabilities: the normal and lognormal methods, the boundary
method, the bootstrap method, the profile likelihood method and the quantile
method. The terminology behind the normal, lognormal, boundary and quantile
methods are ours.

Normal method: The idea behind the normal method is still to use
(2.1), which as mentioned earlier provides a good approximation in practice,
but not to linearize the function pc(ξ, σ) (or log pc(ξ, σ)) as in the unsatisfactory
delta method. In fact, assuming the bivariate normal approximation for ξ̂ and σ̂
according to (2.1), we can derive the exact distribution of p̂c as follows. Observe
that the distribution function of p̂c is: for 0 ≤ z ≤ 1,

Fp̂c(z) = P
((

1+
ξ̂c

σ̂

)−1/ξ̂
≤ z
)

= P
((

1+
ξ̂c

σ̂

)−1/ξ̂
≤ z, 1+

ξ̂c

σ̂
> 0
)

+P
(

1+
ξ̂c

σ̂
≤ 0
)
,

where we use the fact that p̂c = 0 if 1 + ξ̂c/σ̂ ≤ 0. This can further be expressed
as

Fp̂c(z) = P
(
σ̂ ≤ ξ̂c

z−ξ̂ − 1
, σ̂ > −ξ̂c

)
+ P (σ̂ ≤ −ξ̂c),

if we assume that σ̂ takes only positive values. (Note also that ξ̂/(z−ξ̂ − 1) > 0
for both ξ̂ < 0 and ξ̂ > 0.) Note, however, that it is not possible to have
σ̂ > ξ̂c/(z−ξ − 1) and σ̂ ≤ −ξ̂c. Indeed, this is certainly not possible if ξ̂ > 0,

since then −ξ̂c < 0 and ξ̂c/(z−ξ̂ − 1) > 0. If ξ̂ < 0, on the other hand, this is not

possible since −ξ̂c ≤ ξ̂c/(z−ξ̂ − 1) or, equivalently, z−ξ̂ < 1. Hence, we also have

(2.4) Fp̂c(z) = P
(
σ̂ ≤ ξ̂c

z−ξ̂ − 1

)
=

∫

σ≤ξc/(z−ξ−1)
g
ξ̂,σ̂

(ξ, σ)dξdσ,

where g
ξ̂,σ̂

(ξ, σ) denotes the bivariate normal density of the limit law (2.1) (re-

placing ξ0 and σ0 by ξ̂ and σ̂). In practice, the distribution function Fp̂c(z) is
computed numerically and the 100(1 − α)% confidence interval is set as (z1, z2)
where zj = inf{z : Fp̂c(z) ≥ αj}, j = 1, 2, where α1 = α/2 and α2 = 1 − α/2.
We use the generalized inverse in the last expression since Fp̂c(z) can have a
discontinuity (mass) at z = 0.
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Lognormal method: In the normal method above, we assumed that σ̂
does not take negative values or that, from a practical perspective, the probability
of σ̂ being negative according to (2.1) is negligible. This may not be the case
for smaller values of σ and sample sizes n. A natural way to address this is by
parameterizing the GPD through ξ and lnσ, instead of σ. The difference is that
lnσ now takes possibly negative values. The asymptotic normality result then
becomes

(2.5)
√
n
( ξ̂ − ξ0

l̂nσ − lnσ0

)
d→ N (0,W−11 ),

where

(2.6) W−11 = diag{1, σ−10 }W−1diag{1, σ−10 }.

Arguing as in the normal method above, we have

(2.7) Fp̂c(z) = P
(

l̂nσ ≤ ln
ξ̂c

z−ξ̂ − 1

)
=

∫

lnσ≤ln(ξc/(z−ξ−1))
g
ξ̂,l̂nσ

(ξ, lnσ)dξd lnσ,

where g
ξ̂,l̂nσ

(ξ, lnσ) denotes the bivariate normal density of the limit law (2.5).
The confidence interval can then be computed as in the normal method above.
We shall refer to this as the lognormal method. A nice feature of the normal
and lognormal methods is that they provide confidence intervals even in the case
when ξ̂ < 0 and the target is beyond the estimated support bound (−σ̂/ξ̂).

Boundary method: The normal and lognormal methods described above
involve a relatively intensive numerical computation of the integrals (2.4) and
(2.7). An approximate confidence interval which is fast to compute and easy to
implement, can be constructed through the following boundary method. That is,
take the confidence interval as

(2.8)
(

min
j,k=1,2

pc(ξj , σk), max
j,k=1,2

pc(ξj , σk)
)
,

where ξ1, ξ2 and σ1, σ2 are suitable critical values of the distributions of ξ̂ and σ̂,
respectively. If ξ̂ and σ̂ were asymptotically uncorrelated, it would be natural to
consider ξj = ξ̂ ± C√αse

ξ̂
and σk = σ̂ ± C√αseσ̂, where se stands for standard

error, Cβ denotes the 100(β/2)% quantile of the standard normal distribution and
(1 − α)% is the confidence level sought. To account for the correlation between
ξ̂ and σ̂, we take

(2.9)

(
ξj
σk

)
= V

(
ξ0,j − ξ̂
σ0,k − σ̂

)
+

(
ξ̂
σ̂

)
,

where n−1W−1 = V DV ′ with a diagonal D = diag{d1, d2} and ξ0,j = ξ̂±C√α
√
d1

and σ0,k = σ̂ ± C√α
√
d2. Note that the confidence intervals obtained by the

boundary method are expected to be conservative. Indeed, the region determined
by the points (ξj , σk) can be thought as the 100(1 − α)% confidence region for
the parameters ξ0 and σ0. But since pc(ξ, σ) is not a one-to-one function, there
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are points (ξ, σ) outside the confidence region for which the value pc(ξ, σ) falls
inside the confidence interval (2.8).

Bootstrap method: The bootstrap method is somewhat standard with
the confidence interval determined by the 100(α/2)% and 100(1−α/2)% quantiles
of the bootstrap distribution of the exceedance probability.

Profile (likelihood) method: The profile (likelihood) method refers to
another standard method to construct confidence intervals based on the profile
likelihood. This is achieved by first expressing σ as a function of ξ and the
exceedance probability pc,

σ =
ξc

p−ξc − 1
,

then parameterizing the likelihood in terms of ξ and pc (instead of σ), and finally
constructing the confidence interval based on the profile likelihood in a standard
way. (See Coles [9] for the same approach when estimating a return level, instead
of an exceedance probability.) Since the exceedance probability is constrained to
be nonnegative, the use of the profile likelihood may be questionable.

Quantile method: Finally, the quantile method actually refers to a set
of methods. The basic idea is the following. Exceedance probabilities p (pc
above) are associated with respective return levels (quantiles) xp (c above) of the
GPD distribution. A return level xp can be estimated with a confidence interval
x̂p ± mp. Any of the methods discussed above (normal, lognormal, boundary,
bootstrap and profile) can be adapted to construct a confidence interval for xp –
the difference being that the function (1.2) is now the return level

(2.10) xp = xp(ξ, σ) =
σ

ξ

(
p−ξ − 1

)
.

Moreover, the plot of (− ln p, x̂p) with added confidence intervals is known as
a return level plot (e.g. Coles [9]). To indicate the underlying method used to
set confidence intervals for return levels, we will refer to the quantile method as
quantile-boundary, quantile-lognormal, etc. A natural way to set a confidence
interval for the exceedance probability pc of the level c is then

(2.11) (p1, p2),

where p1 = inf{p : x̂p+mp ≥ c} and p2 = inf{p : x̂p−mp ≥ c} (with inf{∅} = 0).
See Figure 3. For the parameter values considered below, the functions x̂p +mp

and x̂p−mp are increasing and continuous in the argument (− ln p). The quantile
approach is appealing in that it makes estimation of exceedance probabilities and
return levels consistent.

In the reliability context and for a location-scale family of distributions, the
quantile approach was studied in Hong et al. [21] (see also Section I-C therein
for earlier uses of connections between confidence intervals for quantiles and ex-
ceedance probabilities).
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x̂p

x̂p +mp

x̂p −mp

− ln p

xp

c

p1 p2p̂c

Figure 3: The quantile method to set confidence intervals for exceedance prob-
ability.

2.2. Simulation study for GPD

We examine here the confidence intervals proposed in Section 2.1 through
a simulation study. The empirical coverage frequencies of the confidence intervals
(based on 500 Monte Carlo replications) are reported in Tables 1 and 2 for the
sample sizes n = 100 and n = 50, respectively. The sample size of approximately
n = 100 is a typical value that we encounter in the application to ship motions
described in Section 3 below. The results are also presented for the smaller sample
size n = 50, since in practice, one does not expect many peaks over a threshold
for which the GPD is used as a model.

The first four columns in the tables present the true values of the parameters
ξ0, σ0, and also the target c and the corresponding exceedance probability pc. The
values of ξ0 = ±.1 are some of the typical values encountered in our application
of interest. When ξ0 = .6, the GPD has infinite variance but finite mean. σ0 is
just a scale parameter, which we fix at 1. For the other two true parameters, we
fix the exceedance probability pc and compute the respective target c.

The other columns of the tables correspond to the methods considered.
The normal, lognormal and boundary methods use the limiting covariance matrix
W−1/n in (2.1). It is approximated by the inverse of the observed information
matrix (2.3), which we found to yield better results than using, for example, the
expression (2.2) (with ξ0, σ0 replaced by ξ̂, σ̂). The bootstrap method is based on
500 bootstrap replications. Finally, for the quantile methods, we consider three
ways to construct confidence intervals for the return levels: lognormal, boundary
and profile.

A number of observations can be drawn from Tables 1 and 2. The nor-
mal and lognormal methods are slightly anti-conservative, with the lognormal
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method preferred. The reason for the methods being anti-conservative is the es-
timation of the limiting covariance matrix W−1/n in (2.1). The intervals have
the expected coverage probability if the true covariance matrix (2.2) is taken (the
exact coverage probabilities not reported here). As claimed in Section 2.1, the
boundary method yields slightly conservative confidence intervals. The bootstrap
and profile methods do not work well, especially for the value of ξ0 close to zero
or negative. Again, we suspect that this is due to the fact that the probability
cannot be negative. Issues with bootstrap for the GPD were also reported and
studied in Tajvidi [36].

Turning to the quantile methods, the quantile-lognormal method is slightly
anti-conservative, as is the direct lognormal method. The quantile-boundary
method is, on the other hand, slightly conservative. The quantile-profile method
seems to perform best, with the coverage probabilities consistently close to the
nominal level. Note that the profile-likelihood method for return levels does not
have such pronounced limitation of the same method for exceedance probabilities
– although it is true that a return level cannot be negative, the confidence interval
would rarely reach zero. Note also that the results for n = 100 and n = 50 are
comparable. One notable difference is that the quantile methods become slightly
more anti-conservative when the sample size is reduced from n = 100 to n = 50.

In conclusion, the quantile method based on profile likelihood seems to
perform best among the methods considered. The (log)normal and boundary
methods, for both direct and indirect (quantile) approaches, can also be recom-
mended but keeping in mind their (anti)conservative nature. Finally, we also
note that the direct (log)normal and boundary methods are computationally less
intensive compared to the indirect (quantile) methods.

true values direct methods quantile methods

ξ0 σ0 c pc norm logn bound boot profl logn bound profl

−.1 1 6.02 10−4 90.4 90.8 96.2 68.2 76.2 92 97 95
6.84 10−5 95.2 95.6 97.6 65.6 78.8 88.8 96.6 94.6
7.49 10−6 94 94.6 96 74.6 80.8 91.2 96.8 94.2

.1 1 15.12 10−4 92.6 93.2 98 87 98.4 89.6 97 94.2
21.62 10−5 90.6 91.2 97.2 82.8 97.6 92.4 98.6 95.2
29.81 10−6 91.2 92.6 97.6 81.2 97.8 91.2 98.4 94.6

.3 1 49.5 10−4 91.8 92.4 98 89 97.2 89.4 97.4 92.2
102.08 10−5 88.8 89.2 98.4 86.6 97.6 92.2 97.8 95
206.99 10−6 93.4 94.2 99 91.8 98.6 92.6 98.4 94.4

.6 1 416.98 10−4 90.8 90.8 97.8 91 93.8 92.4 98.6 94.2
1665 10−5 92.8 93.2 98 92.6 95.6 92.6 98.4 94

6633.45 10−6 94 93.8 98.6 92 95.8 93.4 99.4 95.2

Table 1: Coverage frequencies for confidence intervals when n = 100
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true values direct methods quantile methods

ξ0 σ0 c pc norm logn bound boot profl logn bound profl

−.1 1 6.02 10−4 90.2 91.8 96.2 65.8 78 83.6 94 92.8
6.84 10−5 96 96 94.4 69.8 71.8 89.6 95.4 93.4
7.49 10−6 95.4 95.8 93.8 74.4 75.4 88.2 94.4 92.2

.1 1 15.12 10−4 91.4 92.2 97.6 75.6 98.4 89.9 97.4 92.6
21.62 10−5 87.6 89 96.6 67 98.2 88.4 96.8 94
29.81 10−6 90.8 92.2 96.2 70 98.2 88.8 96.4 93

.3 1 49.5 10−4 88.2 91 96 88 99 90 97.2 95.8
102.08 10−5 85.8 87.8 94.4 82.6 98.6 90.2 96.8 93.4
206.99 10−6 88.4 90 96.8 85.4 98.2 90.8 96.6 93.8

.6 1 416.98 10−4 80.4 90.6 98.2 88 96.4 89.8 98.4 93.4
1665 10−5 80.8 91.4 97 89.8 98.2 89.4 96.8 93

6633.45 10−6 83.4 90.2 97.8 89.4 98 92.6 97.4 92.8

Table 2: Coverage frequencies for confidence intervals when n = 50

2.3. The POT framework

Suppose now that x1, . . . , xN are i.i.d. observations of a general (i.e. non-
GPD) random variableX, and that we are interested in estimating the probability
P (X > xcr) of the variable X exceeding a critical value xcr. Again, in the peaks-
over-threshold (POT) approach, the probability is written as

P (X > xcr) = P (X > u)P (X > xcr|X > u)

= P (X > u)P (X − u > xcr − u|X > u) =: Pnr · Pr,(2.12)

where u stands for an intermediate threshold, and the subscripts nr and r refer
to the non-rare and rare problems, respectively. The non-rare probability is
estimated directly from the data as the proportion of data above the threshold u,
P̂nr =

∑N
j=1 1{xj>u}/N , with the respective confidence interval based on standard

binomial calculations. The rare probability is estimated supposing that the peaks
over threshold Y = X − u follow a GPD, and setting

P̂r = p̂xcr−u,

where p̂c is the exceedance probability (1.2) in the GPD framework, estimated
from the data yi = xi′ − u of the peaks exceeding the threshold. The confidence
intervals for Pr = pxcr−u are constructed by one of the methods of Section 2.1.
The confidence interval for the original exceedance probability P (X > xcr) is
obtained by multiplying the respective endpoints of the confidence intervals of
Pnr and Pr.

Threshold selection has been discussed and studied by many authors (for
example, a review is given in Scarrott and MacDonald [32]) and is not the focus
here. A special feature of the application to ship motions discussed in Section 3
is that the threshold selection should be automated, but with the possibility of
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Figure 4: Shape parameter, modified scale parameter and mean excess plots.
The vertical dashed line indicates the thresholds chosen with the corresponding
(horizontal or arbitrary) lines passing through the confidence intervals for the
larger thresholds. The vertical solid line indicates the threshold choice using the
Reiss and Thomas method.

closer examination if needed. The automatic selection is naturally sought in the
ship motion application because multiple records need to be analyzed for the
accuracy that is meaningful for practical applications.

In the automatic selection that we use, the threshold u is selected as the
maximum of the thresholds ush, ums, ume and urt chosen by the following four
automatic procedures. The thresholds ush, ums and ume are selected automat-
ically from the commonly used shape parameter, modified scale parameter and
mean excess plots, respectively. For example, the plot of the estimated shape pa-
rameters with confidence intervals (against thresholds) should be about constant
over the range where GPD fit is appropriate. The threshold ush is chosen as the
smallest threshold for which the horizontal line drawn from the corresponding
estimate passes through the confidence intervals of the shape parameter for all
the larger thresholds. The thresholds ums and ume are chosen similarly except
that the line in the mean excess plot does not need to be horizontal. The choice of
the three thresholds is illustrated in Figure 4, for one of the data sets considered
in Section 3 below.

The threshold urt, on the other hand, is selected following the Reiss and
Thomas [31], p. 137, automatic procedure (see also Neves and Fraga Alves [29]).
Let ξk,n be the estimates of the shape parameter ξ based on the k largest values
of yi (by using the moment estimation for computational efficiency). Choose k∗

as the value that minimizes

1

k

∑

i≤k
iβ|ξk,n −med(ξ1,n, . . . , ξk,n)|,

where β = 1/2 (though other values of β < 1/2 can be considered as well) and
med denotes the median. In practice, after the suggestion of Reiss and Thomas,
the function above is slightly smoothed. The threshold urt is then chosen as
the k∗ largest value of yi. It is depicted as a vertical solid line in Figure 4 and
probably better corresponds to a visually desired choice of threshold. In our
experience, the Reiss and Thomas choice most often provides the largest (most
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conservative) value among the methods considered.

non-GPD direct quantile

model parameters N n c pc logn bound logn bound profl

Weibull (λ, τ) = (1, 1/2) 2000 126 132.5 10−5 90.0 99.2 97.0 99.6 95.0
123 190.9 10−6 92.2 99.4 94.8 98.8 93.4

(λ, τ) = (1, 2) 2000 194 3.4 10−5 94.6 96.4 90.0 96.4 94.4
195 3.7 10−6 94.4 97.2 86.8 94.2 93.2

Burr (β, τ, λ) = (1, 2, 2) 2000 221 17.8 10−5 95.6 99.2 90.4 97.2 92.8
210 31.6 10−6 96.4 99.6 87.4 94.8 92.4

Reverse (β, x+) = (0.1, 10) 2000 156.5 9.8 10−5 96.8 93 83.4 92.4 90.8
Burr (τ, λ) = (2, 2) 150 9.9 10−6 98.2 92.2 80.4 90.2 89.0

Table 3: Empirical coverage frequencies in the non-GPD context using the POT
approach.

Table 3 presents the empirical coverage frequencies of the confidence inter-
vals constructed through the above POT approach for several non-GPDs. The
distributions considered are: the Weibull distribution with the CDF

F (x) = 1− e−λxτ , x > 0,

with parameters λ > 0, τ > 0; the Burr distribution with the CDF

F (x) = 1−
( β

β + xτ

)λ
, x > 0,

with parameters λ > 0, τ > 0, β > 0; and the reverse Burr distribution with the
CDF

F (x) = 1−
( β

β + (x+ − x)−τ

)λ
, x < x+,

with parameters λ > 0, τ > 0, β > 0. Two choices of the parameter τ are
considered for the Weibull distribution, with τ = 1/2 (τ = 2, resp.) providing
heavier (lighter, resp.) tails than exponential (but both associated with the
shape parameter ξ = 0 in the POT framework). The Burr distribution has a
power-law tail, corresponding to the shape parameter ξ = 1/(τλ) in the POT
framework. Similarly, the reverse Burr distribution has a finite upper bound
x+, and corresponds to the negative shape parameter ξ = −1/(τλ) in the POT
framework.

Under the direct approach in Table 3, the coverage probabilities are re-
ported only for the lognormal and boundary methods. The quantile methods use
the proportion of data above the threshold to estimate Pnr but do not take the
estimation uncertainty of Pnr into account. Two of the columns also give the
sample size N and the average number of peaks over threshold n. As before, pc
is the exceedance probability and c is the corresponding critical target.

Our goal with Table 3 is not to provide an exhaustive study of the POT
approach in the non-GPD framework, but rather to make a few general comments.
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First, note from the table that the approach works quite well. Second, note that
the performance of the considered methods is not as uniformly good as in the
GPD context. Thus, the performance of the methods for non-GPDs depends not
only on the way to produce confidence intervals above a threshold but also on
the non-GPD itself, as well as the (automatic) choice of the threshold.

3. APPLICATION TO EXTREME SHIP MOTIONS

We shall use the POT approach outlined in Section 2.3 to estimate the
probability of roll and pitch angle exceeding a critical value. Several issues need
to be addressed before we can apply the methods for constructing confidence
intervals discussed in Section 2.3. An important and pressing issue is the presence
of temporal dependence as clearly seen from Figure 2. A related issue is also what
is meant by an exceedance probability and how it relates to time.
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Figure 5: The roll angle series with envelope for 5 minutes. Left: original roll
series. Right: roll series in absolute value.

The issue of temporal dependence is addressed through the following enve-
lope approach. Motivated by the periodic nature of a ship motion, the maxima
and minima are first found between consecutive zero crossings of the series. These
are the positive and negative peaks in the series of interest. The absolute val-
ues of the peaks are then connected by a piecewise linear function producing
an envelope of the series. This is depicted in Figure 5. The left plot includes
the original roll series for 5 minutes, with the positive and negative envelope.
The right plot depicts the absolute values of the roll and the positive envelope
connecting linearly the absolute values of the peaks.

After the envelope is found for the whole roll time series (not just the 5
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Figure 6: Envelope peaks above/below envelope average. Left: 5 minutes. Right:
30 minutes.

minutes shown), its average value is computed. Next, the maxima and minima
are found in the envelope between consecutive crossings of the average envelope
value. These are the envelope peaks above/below the envelope average. This is
illustrated in Figure 6, where the envelope average is plotted as a horizontal line
and the envelope peaks above/below the envelope average are indicated by small
black marks.

Note from Figure 6 that focusing on the envelope peaks (above the average)
deals, at least qualitatively, with temporal dependence. That is, the larger values
close in time are “clustered” and only the largest values in “clusters” are recorded
as envelope peaks. (A closer look at the decorrelation properties of the envelope
peak series can be found in a report by Belenky and Campbell [5].) In what
follows, we shall work only with the envelope peaks. It is also important to note
that the envelope approach is automated. This is particularly convenient when
dealing with multiple conditions and many records.

Focusing on the envelope peaks also simplifies the notion of exceedance
and the associated exceedance probabilities. Note that the series of interest will
exceed a large target when an envelope peak will exceed the target. It is then
natural to think of an exceedance probability as that for the envelope peaks. This
is the perspective adopted throughout the paper.

We should also clarify what we mean by probabilities, which are now related
to the envelope peaks. Suppose a series contains 1, 000 envelope peaks of which
45 exceed a given threshold. Then, the estimated probability is 45/1000 = .045 of
exceeding the threshold. This probability is not informative without a reference
to time. Suppose the series is actually recorded over 15 minutes or 15 · 60 =
900 seconds. It is then more informative to consider the (probability) rate of
45/900 = .05 envelope peaks (over the threshold) per second. Though we will
continue referring to probabilities below, the results will be reported in terms of
(probability) rates, rather than probabilities themselves.

If x1, . . . , xN are the envelope peaks of the series at hand, the exceedance
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probability is then estimated with a confidence interval as explained in Sec-
tion 2.3. The performance of the confidence intervals can be assessed through a
validation procedure as follows. The computer code (discussed in Section 1) can
be used to generate significantly more series of ship motions, which contain rare
events of interest and from which exceedance probabilities can be estimated by
direct counting. More specifically, for the same condition used in Figures 2–6,
the code was used to generate 115, 000 hours of the ship motion. With the target
roll angle of xcr = 60 degrees, the probability rate of exceedance obtained by
direct counting based on rare events from the available records is 7.25× 10−8 en-
velope peaks per second (that is, 30 envelope peaks above 60 degrees in 115, 000
hours). This “true” rate estimate can be supplemented by the confidence interval
obtained by a standard binomial argument.
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Figure 7: Confidence intervals for 100 records of the length of 100 hours. Roll
series for 45◦ heading and with critical roll angle of 60◦. Top left: lognormal
method. Top right: boundary method. Bottom left: quantile-lognormal method.
Bottom right: quantile-profile method.

A typical given series (record) to make inference from covers only 100 hours
and would not contain rare events of interest. For each record, confidence inter-
vals for exceedance probabilities can be computed as in Section 2.3. The confi-
dence intervals can then be assessed by their coverage frequencies of the “true”
exceedance probability. This could be examined graphically as in Figure 7 where
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the lognormal, boundary, quantile-lognormal and quantile-profile confidence in-
tervals are presented for 100 records of the total length of 100 hours. The critical
value of interest is the roll of 60 degrees as above. Note that the vertical axis for
the probability rate is in the log scale, and that we truncated the confidence in-
tervals and the probability (rate) estimates at a practically negligible probability
rate of 10−15. The horizontal dashed lines indicate the confidence bounds for the
“true” probability. The small circles are the probability rate estimates.

series direct methods quantile methods

varble head ξ̂ n logn bound boot profl logn bound profl

roll 45 0.19 96.06 96 97 92 100 96 97 96
(0.13) (31.76) (1.19) (1.46) (1.15) (1.52) (1.18) (1.41) (1.40)

30 0.04 105.03 84 91 76 99 84 91 89
(0.13) (46.96) (0.82) (1.13) (0.87) (1.37) (0.82) (1.12) (1.07)

pitch 45 −0.06 107.06 99 100 95 98 99 100 100
(0.11) (50.92) (0.62) (0.73) (0.57) (0.73) (0.62) (0.73) (0.74)

30 −0.08 107.63 97 98 94 96 97 98 98
(0.11) (46.61) (0.43) (0.49) (0.41) (0.51) (0.43) (0.48) (0.51)

Table 4: Headings of 30 and 45 degress. Roll: target is 60 at 45◦ and 35 at 30◦.
Pitch: target is 10.

For the roll and pitch motion at 45 and 30 degree headings, we also report
the coverage frequencies for the methods of Section 2 in Table 4, based on the
results in 100 records. The columns under ξ̂ and n provide the average estimates
of the shape parameter and the number of peaks over threshold. The standard
errors are given in parentheses. In the parentheses under the coverage proba-
bilities, we provide the average of the sizes of the suggested confidence intervals
above the true value (supposing it is contained), which will be discussed further
in Section 4 below.

Note from Table 4 that the performance of the confidence intervals is sim-
ilar to those in Sections 2.2 and 2.3. Target values are chosen based on available
rare events in the large set of records. The performance seems also satisfactory,
validating the approach from a practical perspective. The point of using such
validation is to show that the approach works on the ship motion data generated
by a qualitatively correct computer code, before applying the methods to real
or experimental data (where a large number of records are naturally not avail-
able). Or, put differently, had the methods not passed the validation, no applied
researcher would be confident in using them.

The approach to estimate the exceedance probabilities certainly works in
part because of the mathematical justification as outlined in Section 2.3. But
this is not the whole story! Another important component to success is related
to the length of the record and the physics of the ship motion. The 100–hour
records are typical for Naval Architecture purposes. Our results show that these
records have sufficiently enough physics to allow one to extrapolate into the tail
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using the POT framework.

4. UNCERTAINTY REDUCTION

An interesting but also practically important question is whether the un-
certainty of the estimators or, equivalently, the size of of the confidence intervals
can be reduced. For example, in Figure 7, the right (top) endpoints of the confi-
dence intervals are about one order of magnitude above the true value. One order
seems acceptable from a practical perspective. But we also encounter conditions
where the uncertainty could be as high as two or three orders of magnitude.

Can the uncertainty (or the size of confidence intervals) be reduced? It
surely depends on the approach and model used (that is, the POT approach with
the two parameter GPD above threshold), the sample size (that is, the number of
exceedances above threshold), and the efficiency of the estimation method used.
Efficiency cannot be improved considerably since the ML estimators of the GPD
parameters are used. But several directions could be explored when it comes to
the first two points.

More specifically, in Section 4.1, we study the situation where it may be
meaningful to fix a right upper bound when a negative shape parameter is ex-
pected. A substantial uncertainty reduction is achieved with this approach but
it may not be promising to search for extensions to positive shape parameters, or
ways of fixing a bound. Section 4.2 contains a short and, in our view, informative
account of several other possibilities that we tried but which did not lead to much
of the uncertainty reduction.

4.1. Fixing upper bound

When the shape parameter of a GP distribution is negative, the distri-
bution has a finite upper bound. One direction for uncertainty reduction is to
fix this upper bound before estimation based on some physical considerations,
e.g. limiting angle for roll after which ship capsizes. Fixing the bound reduces
the number of parameters from 2 to 1, so that the reduction of uncertainty is
expected.

In applications to ship stability, the pitch motion typically yields a negative
shape parameter, as can already be seen from Table 4 (3rd column). There are
physical reasons for this phenomenon which, in technical terms, have to do with
the form of the stiffness of the pitch motion. Moreover, again for physical reasons,
an upper bound for the pitch motion may be expected at about 15◦–20◦, as roll
stiffness of ONR Tumblehome becomes flat and does not support any resonance
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excitation. Details of the physics of the pitch motion go beyond the scope of this
paper.

From a statistical standpoint, deriving the GPD framework with a fixed up-
per bound is straightforward. Suppose for notational simplicity that the thresh-
old µ is 0, and denote a fixed upper bound by ymax. When the shape parameter
ξ of the GPD (1.1) is negative, the upper bound is given by (−σ/ξ). Setting
ymax = −σ/ξ, solving for ξ = −σ/ymax and substituting this into (1.1) when
ξ < 0, we obtain the complementary GPD function with the upper bound ymax,

(4.1) F σ(y) =
(

1− y

ymax

)ymax/σ
, 0 < y < ymax.

Note that the function (4.1) depends only on the scale parameter σ (with the
shape parameter of the GPD being ξ = −σ/ymax).

The parameter σ in (4.1) can be estimated using ML. Given observations
y1, . . . , yn (all smaller than ymax), optimizing the log-likelihood

`(σ) =

n∑

i=1

log
( 1

σ

(
1− yi

ymax

)ymax/σ−1)

leads to the ML estimator

(4.2) σ̂ = −ymax

n

n∑

i=1

log
(

1− yi
ymax

)
.

The inverse of the observed information matrix can easily be checked to be

(4.3)
(
− ∂2`

∂σ2

)−1∣∣∣
σ=σ̂

=
σ̂2

n
.

A confidence interval for an exceedance probability pc = F σ0(c) can then be
given by the boundary method as (F σ1(c), F σ2(c)), where σ1 = σ̂−Cασ̂/

√
n and

σ2 = σ̂ +Cασ̂/
√
n are two critical values for the distribution of σ̂ based on (4.3)

(with as before, Cα denoting the 100(α/2)% quantile of the standard normal
distribution).

Figure 8 compares the confidence intervals for the exceedance probability of
the pitch motion at the 30◦ heading (under the same condition as earlier) obtained
through the lognormal method as in Section 3, and the boundary method with the
upper bound fixed at 15◦ as explained above. The left plot in Figure 8 corresponds
to the entry of Table 4 under “pitch”, “30” degree heading and “logn” method,
with the uncertainty measure of 0.43 in the parentheses. The same measure for
the right-plot of Figure 8 is 0.34. The reduction of uncertainty is also evident
from Figure 8 itself, with smaller variability of the estimators (red circles) and
the sizes of confidence intervals in the right plot.

It should also be noted that the results with the fixed upper bound are not
sensitive to the choice of the bound (suggested by physical considerations). For
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example, fixing the bound at 17◦ and 20◦ leads to the same coverage frequency
of 99%, with the exception that the uncertainty measure above becomes slightly
larger, 0.36 and 0.38, respectively. The conclusions are the same for the pitch
motion at the 30◦ heading (not reported here).
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Figure 8: Confidence intervals for 100 records of the length of 100 hours. Pitch
30◦. Left: lognormal method. Right: boundary method with fixed upper bound
at 15◦.

Remark 4.1. Whether a similar approach can be developed for a pos-
itive shape parameter remains an open question. One idea we entertained was
to experiment with truncated GPD models in the spirit of, for example, Aban
et al. [1], Beirlant et al. [3]. (Truncation seems natural because, for example,
the roll and pitch angles are bounded by 180 degrees.) But the truncated GPD
models did not appear to fit the data well. In Belenky et al. [6], we study extreme
value methods on mathematically tractable physical models mimicking ship mo-
tion dynamics, and expect to gain further insight into the above issues from this
approach.

4.2. Other possibilities

We explored or thought about several other possibilities for uncertainty
reduction. One natural possibility would be to view the variables describing dif-
ferent conditions as covariates and then pool the data across different conditions
by modeling covariates to reduce uncertainty. This idea is particularly relevant in
the application of interest here since naval engineers have to take measurements
regularly across a range of conditions. The idea also has a sound statistical
footing, as developed in Davison and Smith [10] and described, for example, in
Chapter 6 of Coles [9].

Following this approach, we have modeled records across a number of head-
ings (e.g. 15◦, 22.5◦, 30◦, 37.5◦, 45◦ degrees). But we generally found the reduc-
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tion in uncertainty small if any. Some of this is due to a small reduction of
uncertainty even under ideal situations (when the model incorporating the co-
variates is known). The uncertainty in the underlying model for the covariates
(entering the POT framework) also plays a role.

Finally, another possibility might be to use some of the more advanced
approaches in modeling dependent peaks over threshold, as in e.g. Smith et al.
[35]. The idea here is that this would seemingly allow for a larger sample size to
be considered. Even if the dependence structure is captured correctly by these
approaches, we also expect them to lead to little uncertainty reduction. As with
the covariates above, we view these approaches as serving different purposes and
used to answer different questions.

5. CONCLUSIONS

In this work, we studied the various methods to construct confidence in-
tervals for exceedance probabilities in the peaks-over-threshold approach. The
performance of the confidence intervals was assessed through several simulation
studies, pointing to the superior performance of some of the considered meth-
ods. The developed methods were applied to build confidence intervals for the
probabilities of extreme ship motions, leading to satisfactory results overall. Fi-
nally, several uncertainty reduction approaches were considered, with a promising
solution when a negative shape parameter is expected. Whether uncertainty re-
duction can be achieved in the case of a positive shape parameter remains an
open question.
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