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Abstract:

e In this paper, we study the estimation problems for the generalized inverted exponen-
tial distribution based on progressively type-II censored order statistics and record
values. We establish some theorems to construct the exact confidence intervals and
regions for the parameters. Monte Carlo simulation studies are used to assess the
performance of our proposed methods. Simulation results show that the coverage
probabilities of the exact confidence interval and the exact confidence region are all
close to the desired level. Finally, two numerical examples are presented to illustrate
the methods developed here.
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1. INTRODUCTION

The exponential distribution was the first widely discussed lifetime distribu-
tion in the literature. This is because of its simplicity and mathematical feasibil-
ity. If the random variable T" has an exponential distribution, then the random
variable Y = 1/X has an inverted exponential distribution. The exponential
distribution was generalized, by introducing a shape parameter, and discussed
by several researchers such as Gupta and Kundu [11, 12] and Ragab and Madi
[19]. By introducing a shape parameter in the inverted exponential distribution,
Abouammoh and Alshingiti [1] proposed a generalized inverted exponential (GIE)
distribution. The probability density function and cumulative distribution func-
tion of the generalized inverted exponential distribution are given, respectively,
by

f@B ) = %S)exp (=Mz) (1 —exp(-=\/2)P, 2>0,
and
F(z;8,\) =1-(1—-exp(=A/z))’, x>0,

where 8 > 0 is the shape parameter and A > 0 is the scale parameter.

The properties and inferences for the GIE distribution were investigated
by several authors. Abouammoh and Alshingiti [1] derived some distributional
properties and reliability characteristics as well as maximum likelihood estimators
(MLEs) based on complete sample. Krishna and Kumar [14] obtained the MLEs
and least squares estimators of the parameters of the GIE distribution under pro-
gressively type-II censored sample. Dey and Dey [8] discussed the necessary and
sufficient conditions for existence, uniqueness and finiteness of the MLEs of the
parameters based on progressively type-1I censored sample data. Recently, Dey
and Pradhan [9] made Bayesian inference for the GIE parameters under hybrid
random censoring. Ghitany et al. [10] established the existence and uniqueness
of the MLEs of the parameters for a general class of inverse exponentiated dis-
tributions based on complete as well as progressively type-I and type-II censored
data.

In this study, statistical inference for both progressive type-II right cen-
sored sample and record values from the GIE distribution are investigated. Dey
and Dey [8] obtained approximate confidence intervals for the GIE parameters
based on progressive censored sample. However, if the sample size is small, the
approximate confidence interval may not be adequate. Thus, exact confidence in-
tervals and regions become important when the sample size is small. The method
of pivotal quantity are used to construct the confidence intervals and regions for
the model parameters. The rest of this paper is organized as follows. In Section
2, an exact confidence interval and an exact confidence region for the parameters
are constructed based on progressive type-II right censored sample. In Section
3, two theorems are proposed to obtain the exact confidence interval and region
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for the parameters based on upper record values. Two numerical examples are
presented in Section 4. Some conclusions are made in Section 5.

2. INTERVAL ESTIMATION UNDER PROGRESSIVE TYPE-II
CENSORING

Progressive type-II right censoring is of importance in the field of reliability
and life testing. Suppose n identical units are placed on a lifetime test. At the
time of the i-th failure, r; surviving units are randomly withdrawn from the
experiment, 1 <+4¢ < m. Thus, if m failures are observed then 1 + - - - + 7,,, units
are progressively censored; hence, n =m+ry +---+r,. Let X7, . <X5 . <
<o < XP .. be the progressively censored failure times, where r = (r1,...,7y)
denotes the censoring scheme. As a special case, if r = (0,...,0) where no
withdrawals are made, we obtain the ordinary order statistics (Bairamov and
Eryilmaz [5]). If r = (0,...,0,n — m), the progressive type-II censoring becomes

type-II censoring. For more details see Balakrishnan and Aggarwala [6].

In this section, we will construct the exact confidence interval and region
for model parameters by using pivotal quantity method. We will also conduct a
simulation study to assess the performance of proposed interval and region.

2.1. Exact confidence interval and region

Suppose that X7.,,., < X3.,.., <--- <X} ..., denote progressively type-II

right censored order statistics from a GIE distribution. Let
ermn = _BIOg (1—6Xp (_)‘/ermn))7 1= 1,2,...,’/TL.

It can be seen that Y7 ., < Yy, < --- < Y., are progressively type-II

right censored order statistics from a standard exponential distribution. It is well
known that, from Thomas and Wilson [21],

™ = nYII:m:n

T2 = (n -Tr = 1)(Y2rmn - erz‘m:n)

Tm = (n =T == Tme1 — M+ 1) (anémn - rlr-l,—lzm:n)

are independent and identically distributed as a standard exponential distribu-
tion. Hence,

K1 =2m = 2nylrmn
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has a chi-squared distribution with 2 degrees of freedom and

51—227T1_2{Z T1+1)Y;mn nerz‘m:n}

i=1

has a chi-squared distribution with 2m — 2 degrees of freedom. It is also clear
that €1 and k; are independent random variables. Let

(2.1) & = €1 — Z (Tz +1) Yimm = Y mm
(m_l)ﬁl ( _1)Y1rmn
and
(22) m=¢€e1+Kr = 22(” +1> Yfmn
=1

It is easy to show that & has an F' distribution with 2m — 2 and 2 degrees
of freedom and 7; has a chi-squared distribution with 2m degrees of freedom.
Furthermore, & and 7, are independent (see Johnson et al. [13]).

The following lemma helps us to construct the exact confidence interval for
A and exact joint confidence region for (), 3).

Lemma 2.1. Suppose that 0 < a1 < ag < -+ < ay,,. Let

600 = Z log (I—exp(=Aa)) 1

— log (1—exp(=Aa1)) m-—1

.

where r; > 0, ¢ = 1,2,...,m, and > ", r; = n—m. Then, & (\) is strictly
increasing in A for any A > 0.

Proof:  To prove &; () is strictly increasing, it suffices to show that the
function

_ log (1 —exp(—A/a;))
9(N) = log (1 — exp (—\/a1))

is strictly increasing in A. The derivative of g(\) is given by
yy- (1) iy (1Y
ha(ai)  ha(a1)) \hi(a1)/) ’

ha () = log (1 — exp (—)/x))

where

and

ho(z) = x (exp (A/z) —1).

If both hq () and hy () are decreasing, it can be said that (h1((¢2)) — Z;é;i;) >0

for a; > a1 and hence ¢’ (\) > 0.
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It is clear that hj (z) is strictly decreasing in z. From the second order
Taylor polynomial of exp(a) at a = 0, one has the following inequality, for a < 0,

(2.3) exp (a) > a+ 1.
Let a = —\/z. Equation (2.3) can be written as
(2.4) 1—Xz—exp(—A/z) <0, for z>0.
Note that the first derivative of ha(x) is
Ky(z) = exp(M/2) [1 — A — exp(—A/x)].

From Equation (2.4), it is easy to see that hi(x) < 0 for > 0. That is, ha(x) is
strictly decreasing in x. Hence, ¢'(\) is positive. This completes the proof.  []

Let Fys,,5,) be the upper a percentile of F' distribution with d; and dy
degrees of freedom. The following theorem gives an exact confidence interval for
the parameter \.

Theorem 2.1.  Suppose that X7, < X3,.., < -+ < X} .. isa
progressively type-II censored sample from the GIE distribution. Then, for any
O<a<l,

r r r
<901 (Xl:m:n7 X2:m:n’ s 7Xm:m:n7 Fl—a/2;2m—2,2) )

r r r
Y1 (Xlzm:rw X2:m:n’ c Xm min> a/2;2m2,2)>

is a 100(1—a)% confidence interval for \, where 1 (XT.,.0s X5mems - - - s Xomemens )
is the solution of X\ for the equation

m

1 r log(l—eXP( )‘/ zmn)) 1 —
(25) n(m—1) ;( i+l log (1 —exp (—A/XT, ) m—1 b

Proof:  From Equation (2.1), we know that the pivot
27, 1 (TZ + 1) vam n nyirmn

T RS
L NN les(mexp (CN/XE,L))
= nm=1) izl(l—i_l)log(l—exp( NXT ) mo1

has an F' distribution with 2m —2 and 2 degrees of freedom. By Lemma 2.1, &1 ()
is strictly increasing function of A, and hence, £;(\) = ¢ has a unique solution for
any A > 0. Thus, for 0 < a < 1, the event

i 1) log (1 —exp(—\/ zmn)) 1
log (1 —exp(— /\/len)) m—1

< Foj2.0m-22

Fl—a/2;2m—2,2 <
z:l
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is equivalent to the event

¥1 (X{:m:m X;:m:n’ s vX:;fL:m:m Fl—a/2;2m—2,2) <A
<1 (Xf:m:m X;:m:m B ern:m:m Fa/2;2mf2,2) .

Then, the proof follows. O

Let us now discuss the joint confidence region for (A, 3). Let Xi; s denote
the upper a percentile of a chi-squared distribution with § degrees of freedom.
An exact joint confidence region for (A, 3) is given in the following theorem.

Theorem 2.2.  Suppose that X}, .., 1 = 1,2,...,m, are progressive
type-11 right censored order statistics from the GIE distribution with censor-
ing scheme r. Then for any 0 < o < 1, a 100(1 — «)% joint confidence region for

(A, B) is determined by the following inequalities:

¢
¥1 (X{:m:nv Xg:m:n? s 7X:n:m:n7 F(1+\/1—a)/2;2m—2,2) <A
<1 (X{:m:n’ X;:m:n’ tee 7X717‘1:m:n’ F(l—\/l—a)/2;2m—2,2)

X2
(1+vI—a)/2:2m <3

237 (ri+ 1)log (1 —exp (M X n))

. X(l—x/l—oa)/2;2m
2 Zz’il (Ti + ]‘) lOg (]‘ — €Xp (_)‘/‘szr'mn))7
where 1 (X7 Xomms - - » Xy

m:m:mn?

<

t) is defined in Equation (2.5).

Proof:  From Equation (2.1), we know that the pivot

Z?il (T’i + 1) Ytern - nyirmn
n(m—1)Yf

1:m:n

§&1(\) =

1 in: (ri+ 1) log (1 —exp (—=A/XF,...)) 1
) (2

n(m-—1 B

i=1 1Og (1 — €Xp (7>‘/X{mn)) m—1

has an F' distribution with 2m — 2 and 2 degrees of freedom. From Equation
(2.2), we also know that

m

m=2 Z (Ti + 1) Yiinm = —28 Z (ri +1)log (1 — exp (_)‘/ermn))
=1 =1

has a chi-squared distribution with 2m degrees of freedom, and it is independent
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of £&1(A). Thus, for 0 < a < 1, we have

P{Qpl (X{:m:nv X;:m:nv s aX'rl;mzm:na F(1+\/1—a)/2;2m—2,2> <A

< ¥1 <X{:m:nv Xmns - -+ Ximememo F(lfx/lfa)/2;2m72,2) )

2
B X(14vI=a)/2:2m <5
2 Zgl (7’1‘ + 1) IOg (1 — €Xp (_)‘/ermn))
2
- X(1—yT=a)/2:2m
23000 (ri+ 1) log (1 —exp (=A/XF,,.,))

=P (F(ler)/g;Qm,Q,Q <& < F(17M)/2;2m72,2>

2 2
P (X(1+\/1—a)/2;2m <m < X(l—\/l—a)/2;2m>
=vili-aVvl -«

=1-—oq.

The proof is completed. O

2.2. Simulation study

The simulation study is performed with 5000 trials to investigate the per-
formance of exact and approximate confidence intervals and confidence regions
under progressive censoring. We consider the values of parameters (A, ) =
(2,0.5),(0.5,2) and different combinations of n, m, and censoring schemes r.
The approximate intervals are considered as in Dey and Dey [8]. The nominal
confidence level is chosen as 95%. The results are given in Table 1 and Table
2. From these tables, one can conclude that both the coverage probabilities of
approximate and exact confidence intervals are close to the desired level. The
coverage probabilities of exact confidence regions are also close to the nominal
level. However, the coverage probabilities of the approximate confidence regions
are lower than the nominal level. When the sample size increases, the cover-
age probability of approximate confidence region reaches to nominal level 95%.
During simulation, the authors observed that the MLEs of parameters are not
obtained uniquely for different initials values. However, this problem disappeared
for the large sample size. In this regards, coverage probability of approximate
confidence region works for only large sample. As a conclusion, exact confidence
region should be used for the small sample size.
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Table 1: Coverage probabilities for the proposed methods and the ap-

proximations under progressive censoring when (A, 8) = (2,0.5)
A (A, B)

n m r approx. exact approx. exact
20 10 (1,1,1,1,1,1,1,1,1,1) 0.9482  0.9494 0.8122  0.9484
(5,0,0,0,0,0,0,0,0,5) 0.9532  0.9500 0.8966  0.9468
(5,5,0,0,0,0,0,0,0,0) 0.9476  0.9500 0.8966  0.9468
(0,0,0,0,0,0,0,0,5,5) 0.9540  0.9480 0.8640  0.9420
(0,0,0,0,5,5,0,0,0,0) 0.9422  0.9492 0.9130 0.9474
(2,2,1,0,0,0,0,1,2,2) 0.9498  0.9456 0.9504  0.9456

40 20 (1,1,1,1,1,...,1,1) 0.9462  0.9526 0.9294  0.9536
(10,0,0,0,...,0,10) 0.9556  0.9518 0.9344  0.9460
(10,10,0,...,0,0) 0.9480 0.9510 0.9380 0.9530

(0,0,0,0,. 10,10) 0.9586  0.9512 0.9156  0.9534

(0,...,0, 10 10,0,...,0,0) 0.9508  0.9550 0.9432  0.9526
(2,2,2,2,2,0 ,0,22222)  0.9520 0.9568 0.9584  0.9562

100 50 (1,1,1,1,1,...,1,1) 0,9506  0.9552 0.8416 0.9574
(25,0,0,0,...,0,25) 0,9544  0.9456 0.9528  0.9496

(25,25,0 0 .,0,0) 0,9530 0.9516 0.9524  0.9488

(0,0,0,0,,. . ,25,25) 0,9508 0.9528 0.9404  0.9540
(0,...,0,25,25,0,...,0,0) 0,9464  0.9496 0.9484  0.9500
(2,...,2,1,0,...,0,1,2,...,2) 0.9484 0.9512 0.9594  0.9534

10 5 (1,1,1,1,1) 0.9452  0.9468 0.8356  0.9446
(2,1,0,0,2) 0.9486  0.9484 0.9202  0.9468
(2,2,1,0,0) 0.9436  0.9510 0.9352  0.9484
(0,0,1,2,2) 0.9530  0.9486 0.9016  0.9458
(0,2,1,2,0) 0.9384  0.9462 0.9168  0.9468

3. INTERVAL ESTIMATION UNDER RECORD VALUES

Record values were first introduced by Chandler [7]. A record value is either
the largest or the smallest value obtained from a sequence of random variables.
Ahsanullah and Nevzorov [3] pointed out that records are very popular because
they arise naturally in many fields of studies such as climatology, sports, medicine,
traffic, industry and so on. In reliability studies, Lee et al. [16] indicated that
there are some situations in lifetime testing experiments in which a failure time
of a product is recorded if it exceeds all preceding failure times. These recorded
failure times are the upper record value sequence. An account on record values
can be found in the books by Ahsanullah [2] and Arnold et al. [4].
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Table 2: Coverage probabilities for the proposed methods and the ap-
proximations under progressive censoring when (), 3) = (0.5,2)

A (A, B)

n m r approx. exact approx. exact
20 10 (1,1,1,1,1,1,1,1,1,1) 0.9538  0.9556 0.8904 0.9522
(5,0,0,0,0,0,0,0,0,5) 0.9534  0.9502 0.9570 0.9514
(5,5,0,0,0,0,0,0,0,0) 0.9540  0.9588 0.9570 0.9514
(0,0,0,0,0,0,0,0,5,5) 0.9526  0.9530 0.9396 0.9510
(0,0,0,0,5,5,0,0,0,0) 0.9474 0.9474 0.9530 0.9534
(2,2,1,0,0,0,0,1,2,2) 0.9452 0.9482 0.9440 0.9482

40 20 (1,1,1,1,1,...,1,1) 0.9460 0.9546 0.8946  0.9482
(10,0,0,0,...,0,10) 0.9534 0.9502 0.9570 0.9514
(10,10,0,...,0,0) 0.9540 0.9488 0.9576  0.9538

(0,0,0,0,. 10,10) 0.9526  0.9472 0.9522  0.9486

(0,...,0, 10 10,0,...,0,0) 0.9504 0.9534 0.9534  0.9508
(2,2,2,2,2,0 ,0,22222)  0.9468  0.9422 0.9330 0.9478

100 50 (1,1,1,1,1,...,1,1) 0.9486  0.9488 0.8988  0.9488
(25,0,0,0,...,0,25) 0.9490 0.9538 0.9530 0.9508

(25,25,0 O .,0,0) 0.9510 0.9500 0.9514 0.9470

(0,0,0,0,,. . ,25,25) 0.9486  0.9504 0.9560 0.9494
(0,...,0,25,25,0,...,0,0) 0.9510 0.9492 0.9534  0.9490
(2,...,2,1,0,...,0,1,2,...,2) 0.9496 0.9514 0.9418 0.9516

10 5 1,1,1,1,1 0.9466  0.9524 0.8194 0.9528

( )

(2,1,0,0,2) 0.9510  0.9474 0.8292  0.9482
(2,2,1,0,0) 0.9420  0.9538 0.8694  0.9552
(0,0,1,2,2) 0.9656  0.9544 0.7712  0.9516
(0,2,1,2,0) 0.9390  0.9504 0.8226  0.9464

In this section, we will establish the exact confidence interval and region
for model parameters based on pivotal quantity method. A simulation study is
also conducted to investigate the performance of proposed interval and region.

3.1. Exact confidence interval and region

Let Xy1) < Xy(2) < -+ < Xy(m) be the first m upper record values from
the GIE distribution. Set

Wi =—Blog (1 —exp (-A/Xu@)), i=12...,m.

Then, it is easily seen that W; < Wy < --- < W, are the first m upper record
values from a standard exponential distribution. Moreover, Arnold et al. [4]
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showed that

p1 = Wy
p2 = Wy =W,

Pn = Wm - Wm—l

are independent and identically distributed random variables from a standard
exponential distribution. Hence,

R = 2p1 = 2W1
has a chi-squared distribution with 2 degrees of freedom and
m
£2=2Y pi=2(Wp—W1)
i=2

has a chi-squared distribution with 2m — 2 degrees of freedom. We can also find
that 9 and k9 independent. Let

g2 1 Wm - Wl
3.1 = =
(3.1) & (m—1)k2 m—-1 W
and
(3.2) Ny = €2 + ko = 2Wp,.

It is easy to show that & has an F distribution with 2m — 2 and 2 degrees
of freedom and 75 has a chi-squared distribution with 2m degrees of freedom.
Furthermore, £ and 72 are independent.

Lemma 3.1. Suppose that 0 < a1 < as < -+ < ay,. Let

1 W, —W
m—1 W
1 log (1 —exp (—A/an))
m—1 (log(l —oxp (—Aa1)) 1) .

Then, &2(X) is strictly increasing in A for any A > 0.

§(N) =

Proof:  The proof is analogous to that of Lemma 2.1. O

To construct the exact confidence interval for A based on record values, we
have the following theorem.
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Theorem 3.1.  Suppose that Xy (1) < Xyo) < -+ < Xy(m) are first m
upper record values from the GIE distribution. Then, for any 0 < o < 1,

<<P2 (XU(1)7 XU(2): ) XU(m)7 Fl—a/2;2m—2,2) )

P2 (XU(1)7 XU(2)7 s XU(m)7 Fa/2;2m—2,2))

is a 100(1 — a)% confidence interval for A, where pa (XU(l), Xu()s--- ,XU(m),t)
is the solution of X\ for the equation

1 log (1 — exp (—/\/XU(m))) _ _
(3:3) m—1 ( log (1 — exp (—)‘/XU(l))) 1) -

Proof:  From Equation (3.1), we know that the pivot
1 W, —-W
A) =
&2V m—1 Wi
_ 1 log (1—exp (—/\/XU(m))) _1
m—1 \ log (1 —exp (=\/Xyq)))
has an F' distribution with 2m —2 and 2 degrees of freedom. By Lemma 3.1, £2())

is strictly increasing function of A, and hence, £2(\) = ¢ has a unique solution for
any A > 0. Thus, for 0 < a < 1, the event

1 log (1 — exp (—)\/XU(m)))
m —1 \ log (1 —exp (=\/Xy)))

Fi_apom-22 < - 1) < Fo20m—22

is equivalent to the event

P2 (XU(I)vXU(2)7 s Xy(m), Fl—a/2;2m—2,2) <A
< 2 (XU(1)7XU(2)7 s XU(m)s Fa/2;2m72,2) .
Then, the proof follows. O

For the joint confidence region for (A, 3) based on record values, we have
the following result.

Theorem 3.2.  Suppose that Xy, i = 1,2,...,m are first i-th upper
record values from the GIE distribution. Then, for any 0 < a < 1, a 100(1 — )%
joint confidence region for (X, 3) is determined by the following inequalities:

2 (XU(l)aXU(Z)v ooy XU(m)s F(1+\/1—a)/2;2m—2,2> <A
<2 (XUu)vXU(Q)’ s Xugmy £ (1—@)/2;%—2,2)

_ Xy T 20m <5
2log (1 — exp (—)\/XU(m)))
- X(1-y=a)/20m
\ 2log (1 — exp (—)\/XU(m)))7
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where @2 (X7, Xomms - - » Xy t) is defined in Equation (3.3).

m:m:m?

Proof:  From Equation (3.1), we know that the pivot

] <log (1 —exp (=M Xum)) 1)

m—1 \ log (1—exp (—\/Xp))

§a(N) =

has an F' distribution with 2m — 2 and 2 degrees of freedom. From Equation
(3.2), we know that

mo = —2B1og (1 — exp (= A/ Xrrim))) -

has a chi-square distribution with 2m degrees of freedom, and it is independent
of £&3(N). For 0 < av < 1, we have

P{<P2 (XU(l)’XU(Q)a co oy XU (m)s F(1+«/717a)/2;2m72,2) <A

< 2 (XU(1)7XU(2), s XU(m), F(l_\/m)/zgm—z,z) )

B X?H\/ﬁ)/mm <B<-— X?l—ﬂ)/QQm
2log (1 — exp (—)\/XU(m))) 2log (1 — exp (—)\/XU(m)))

=P (F(1+m)/2;2m,272 <& < F(17\/Q)/2;2m72,2>

2 2
P (X(1+\/ﬁ)/2;2m < N2 < X(l—x/l—a)/2;2m>
=v1l—-avl—«

=1-aq.

3.2. Simulation study

It is important to examine how well our proposed method works for con-
structing confidence interval and region. We consider the values of parameters
(A, B) = (2,0.5),(0.5,2) and different values of m. For each case, we simulated
5000 upper record samples from the GIE distribution. The nominal confidence
level is chosen as 95%. The results are given in Table 3. From this table, one can
see that the exact confidence intervals and regions have desired coverage proba-
bility for small and large sample sizes. As a conclusion, the proposed methods
work well.
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Table 3: Coverage probability of exact confidence interval and confi-
dence region based on upper record values when (A,8) =
(2,0.5),(0.5,2)

(A, B) =(2,0.5) (A, B) =1(0.5,2)

m__ A (AB) A (AP
2 09502 0.9520 0.9566  0.9540
3 09502 0.9488 0.9466 0.9446
4 09474 0.9546 0.9548  0.9504
5 09510 0.9500 0.9454 0.9498
6 09476 0.9526 0.9546 0.9528
7 0.9548 0.9606 0.9502 0.9512
8 0.9522 0.9606 0.9540 0.9548
9 09518 0.9604 0.9514 0.9498
10 0.9498 0.9578 0.9512  0.9516
11 0.9476 0.9570 0.9522  0.9526
12 0.9532  0.9600 0.9478 0.9488
13 0.9478 0.9560 0.9472  0.9468
14 0.9494 0.9524 0.9488 0.9452
15 0.9498 0.9490 0.9488 0.9520

4. ILLUSTRATIVE EXAMPLES

To illustrate the use of our proposed estimation method, the following two
examples are discussed.

Example 4.1.  (Progressively Type-1I Censored Data) We apply the
proposed interval estimation methods to the polished window strengths data set
presented in Abouammoh and Alshingiti [1]. Dey and Dey [8] indicated that the
GIE distribution is acceptable for these data. For the purposes of illustrating the
estimation methods discussed in this paper, we adopt the progressively type-11
censored sample with n = 31 and m = 11 which was generated from this data set
by Dey and Dey [8]. The progressively censored data are reported in Table 4.

To obtain a 95% confidence interval for A\, we need the percentiles
Fooosoze = 394479 and  Forsao0 = 0.2242.
Then, we can solve Equation (2.5) and get the following values
©1 (T amems Themems - - - s Lomemens £0.975:22,2) = 81.8086,
and

01 (T Toomens - - - Tinemens £0.025;22,2) = 401.0639.
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Table 4: Progressively type-II censored data based on window strength

data
/) 1 2 3 4 5 6
T 0 0 0 0 0 0
Tyomem 18.83 20.8 21.657 23.03 23.23 24.05
) 7 8 9 10 11
T 0 0 0 0 20
Tyomem 24.321 255 25.52 25.8  26.69

By Theorem 2.1, the 95% confidence interval for A is obtained as (81.8086,
401.0639).

Furthermore, to obtain a 95% joint confidence region for (A, 3), we need
the percentiles

Fp.9873;22,2 = 0.1825, Fo.0127;22,2 = 78.4361,

X.29873;24 = 9.8824, and X,20127;24 — 39.4099.

By Theorem 2.2, the 95% confidence region for (), 3) is determined by the fol-
lowing two inequalities:

71.9165 < A < 458.4111

and

B 9.8824
2 Zzlil (Ti + 1) log (1 — €Xp (_)‘/xfmn))

<pB
- 39.4099

Figure 1 shows the 95% joint confidence region for (A, 3) based on progressively
type-II censored data given in Table 1. It can be seen that the region is large
when A is large.

Example 4.2.  (Record Value Data) To illustrate the use of the inter-
val estimation based on records, we analyze one real data set. Lawless [15, p.3]
presented 11 times to breakdown of electrical insulating fluid subjected to 30 kilo-
volts. The data, under a logarithm transformation, is 2.836, 3.120, 3.045, 5.169,
4.934, 4.970, 3.018, 3.770, 5.272, 3.856, 2.046. Luckett [18] extracted the m =4
upper record values from this data set and indicated that the GIE distribution is

acceptable for this data set. The upper record value data are presented in Table
5.

To obtain a 95% confidence interval for A\, we need the percentiles

F0.025;672 = 39.3315 and F0.975;672 =0.1377.
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Figure 1: A 95% joint confidence region for (A, ) based on progressively
type-II censored data given in Table 4.

Table 5: Upper record values based on breakdown of electrical insulating
fluid data
1 1 2 3 4

Tu@) 2836 3120 5.169 5272

By Theorem 3.1, we have the following results.

2 (:L‘u(l)al'u(Q)? ooy Ty (10)) F0.975;6,2) = 0.8644,
and

©2 (Tu(1)s Tu(2), - - - > Tu(10), Fo.025:6,2) = 29.3207.
That is, the 95% confidence interval for A is (0.8644,29.3207).

To obtain a 95% joint confidence region for (A, 3), we need the percentiles

Fo.9873:6,2 = 0.1013, Fo.0127:6,2 = 78.3196,

x?9873;8 = 1.7670, and X.20127;8 — 19.4433.

By Theorem 3.2, a 95% confidence region for (A, ) is determined by the following
two inequalities:

0.4484 < A < 33.5289

and

_ 1.7670 <B<- 19.4433
2log (1 — exp (—A/5.272)) 2log (1 —exp (—A/5.272))
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Figure 2: A 95% joint confidence region for (), 3) based on record values
given in Table 5.

Figure 2 shows the 95% joint confidence region for (A, 3) based on record data
given in Table 5. It is easy to see that the region is large when A is large.

5. CONCLUSIONS

Progressive censoring and record values have received attention in the past
few decades. The GIE distribution is a new lifetime distribution and can be
widely used in reliability applications. The main purpose of this study is to
investigate the interval estimation of parameters of the GIE distribution based on
progressive type-1I censored sample and record values, respectively. We provide
four theorems based on the method of pivotal quantity to construct the exact
confidence intervals and regions for the parameters. The simulation results show
that the proposed methods perform well. Two numerical examples are used to
illustrate the proposed methods.

ACKNOWLEDGMENTS

This work is funded by BAP office of Selcuk University. We also acknowl-
edge the valuable suggestions from the referees.



18 Ismail Kimaci, Shuo-Jye Wu and Coskun Kus

REFERENCES

[1] ABouamMOH, A. M. and ALSHINGITI, A. M. (2009). Reliability estimation of
generalized inverted exponential distribution, Journal of Statistical Computation
and Simulation, 79, 1301-1315.

[2]  AHSANULLAH, M. (1995). Introduction to Record Statistics, NOVA Science Pub-
lishers Inc., Huntington, New York.

[3]  AHSANULLAH, M. and NEvVZOROV, V. B. (2011). Record statistics, In: Interna-
tional Encyclopedia of Statistical Science, eds M. Lovric, Springer, Berlin.

[4]  ArnoLD, B. C.; BALAKRISHNAN, N. and NAGARAJA, H. N. (1998). Records,
Wiley, New York.

[5] BamraMmov, I. and ERyiLMAZ, S. (2006). Spacings, exceedances and concomi-
tants in progressive type II censoring scheme, Journal of Statistical Planning and
Inference, 136, 527-536.

[6] BALAKRISHNAN, N. and AGGARWALA, R. (2000). Progressive Censoring: Theory,
Methods and Applications. Birkhauser, Boston.

[7] CHANDLER, K. N. (1952). The distribution and frequency of record values, Journal
of the Royal Statistical Society: Series B, 14, 220-228.

[8] DeEy, S. and DEy, T. (2014). On progressively censored generalized inverted
exponential distribution, Journal of Applied Statistics, 41, 2557-2576.

[9] DEyY, S. and PRADHAN, B. (2014). Generalized inverted exponential distribution
under hybrid censoring, Statistical Methodology, 18, 101-114.

[10]  GHITANY, M. E.; TuaN, V. K. and BALAKRISHNAN, N. (2014). Likelihood esti-
mation for a general class of inverse exponentiated distributions based on complete
and progressively censored data, Journal of Statistical Computation and Simula-
tion, 84, 96-106.

[11] GurTa, R. D. and KunDpu, D. (1999). Generalized exponential distribution,
Australian and New Zealand Journal of Statistics, 41, 173-183.

[12]  Gupta, R. D. and KunDpU, D. (2001). Generalized exponential distribution: Dif-
ferent methods of estimations, Journal of Statistical Computation and Simulation,
69, 315-338.

[13] JonnsoN, N. L.; Kotz, S. and BALAKRISHNAN, N. (1994). Continuous Uni-
variate Distributions. Volume 1, 2nd edition, Wiley, New York.

[14]  KrisaNA, H. and KuMmAR, H. (2013). Reliability estimation in generalized in-
verted exponential distribution with progressively type II censored sample, Journal
of Statistical Computation and Simulation, 83, 1007-1019.

[15]  LAwLEss, J. F. (1982). Statistical Models and Methods for Lifetime Data, Wiley,
New York.

[16] LEeg, H. M.; LEg, W. C.; LE1, C. L. and Wu, J. W. (2011). Computational

procedure of assessing lifetime performance index of Weibull lifetime products
with the upper record values, Mathematics and Computers in Simulation, 81,
1177-1189.



Confidence Intervals and Regions for the GIE Distribution 19

[17]

[18]

[21]

LEIBLEIN, J. and ZELEN, M. (1956). Statistical investigation of the fatigue life
of deep-groove ball bearings, Journla of Research of the National Bureau of Stan-
dards, 57, 273-316.

LucketrT, D. J. (2013). Statistical Inference Based on Upper Record Values,
Honors & Senior Thesis, The College of William and Mary, Department of Math-
ematics.

RAQAB, M. Z. and Map1, M. T. (2005). Bayesian inference for the generalized
exponential distribution, Journal of Statistical Computation and Simulation, 75,
841-852.

SiNneH, S.K.; SINGH, U. and KUMAR, M. (2013). Estimation of parameters
of generalized inverted exponential distribution for progressive type-II censored
sample with binomial removals, Journal of Probability and Statistics, 2013, Article
ID 183652, DOI: 10.1155/2013/183652.

TrOMAS, D. R. and WiLsoN, W. M. (1972). Linear order statistics estima-
tion for the two parameter Weibull and extreme value distributions from type-II
progressively censored samples, Technometrics, 14, 679-691.



