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Andréhette Verster
– Department of Mathematical Statistics and Actuarial Science, Free State University

verstera@ufs.ac.za

Received: Month 0000 Revised: Month 0000 Accepted: Month 00001

Abstract:2

• Bias reduction in tail estimation has mainly been performed in case of Pareto-type models; see for3

instance Drees (1996), Peng (1998), Feuerverger and Hall (1999), Beirlant et al. (1999, 2002), Gomes4

and Martins (2002) and Caeiro et al. (2005, 2009). In that context, Beirlant et al. (2009) and5

Papastathopoulos and Tawn (2013) constructed distributional models that are based on second order6

rates of convergence for distributions of peaks over thresholds (POT). Such approach also allows to7

connect the tail and the bulk of the distribution.8

Bias reduction for all max-domains of attractions, i.e. without restricting to the Pareto-type case,9

received much less attention up to now. Here we extend the second-order refined POT approach10

started in Beirlant et al. (2009) providing a bias reduction technique for the classical generalized11

Pareto (GP) approximation for POTs. We consider parametric and nonparametric modelling of the12

second order component.13

Key-Words:14

• Peaks over Threshold; Generalized Pareto distribution; Tail estimation; Mixture models.15

AMS Subject Classification:16

• 62G32, 62F10, 62F15, 62J07.17

∗Corresponding author: Jan Beirlant, KU Leuven, Dept of Mathematics, Celestijnenlaan 200B, 3001 Hever-
lee,Belgium; Email: jan.beirlant@kuleuven.be

https://orcid.org/0000-0003-0922-6842
https://orcid.org/0000-0002-2795-0909
https://orcid.org/0000-0002-7231-6210
https://orcid.org/0000-0002-9450-0676


2 J.Beirlant, G.Maribe, Ph. Naveau and A. Verster

1. INTRODUCTION

Extreme value (EV) methodology starts from the assumption that the distribution of the avail-1

able sample X1, X2, . . . , Xn belongs to the domain of attraction of a generalized extreme value2

distribution, i.e. there exists sequences (bn)n and (an > 0)n such that as n→∞3

(1.1)
max(X1, X2, . . . , Xn)− bn

an
→d Yξ,

where P(Yξ ≤ y) = exp(−(1 + ξy)−1/ξ), for some ξ ∈ R with 1 + ξy > 0. The parameter ξ is4

termed the extreme value index (EVI). It is well-known (see e.g. Beirlant et al., 2004, and de5

Haan and Ferreira, 2006) that (1.1) is equivalent to the existence of a positive function t 7→ σt,6

such that7

(1.2) P
(
X − t
σt

> y|X > t

)
=
F̄ (t+ yσt)

F̄ (t)
→t→x+ H̄

GP
ξ (y) = (1 + ξy)−1/ξ,

where F̄ (x) = P(X > x) and x+ denotes the endpoint of the distribution of X. The conditional8

distribution of X − t given X > t is called the peaks over threshold (POT) distribution, while9

H̄GP
ξ is the survival function of the generalized Pareto distribution (GPD).10

11

Estimation of ξ and tail quantities such as return periods is then based on fitting a GPD12

to the observed excesses X − t given X > t. The main difficulty in such an EV application13

is the choice of the threshold t. Most often, the threshold t is chosen as one of the top data14

points Xn−k,n for some k ∈ {1, 2, . . . , n} where X1,n ≤ X2,n ≤ . . . ≤ Xn,n denotes the ordered15

sample. The parameters (ξ, σ) are then estimated by fitting the GPD HGP
ξ

( y
σ

)
to the spacings16

Xn,n −Xn−k,n, . . . , Xn−k+1,n −Xn−k,n.17

18

The limit result in (1.2) requires t to be chosen as large as possible (or, equivalently, k as19

small as possible) for the bias in the estimation of ξ and other tail parameters to be limited.20

However, in order to limit the estimation variance, t should be as small as possible, i.e. the21

number of data points k used in the estimation should be as large as possible. Several adaptive22

procedures for choosing t or k have been proposed, but mainly in the Pareto-type case with23

ξ > 0, i.e. when24

(1.3) F̄ (x) = x−1/ξ`(x),

for some slowly varying function `, i.e. satisfying `(yt)
`(t) → 1 as t→∞, for every y > 1. One then25

typically assumes a second-order specification of (1.3) of the type26

(1.4)
`(yt)

`(t)
− 1 = δt

(
y−β − 1

)
,

where δt = δ(t) = t−β ˜̀(t), with β > 0 and ˜̀ slowly varying at infinity.27

28

As an alternative, bias reduction techniques have been proposed in the Pareto-type case29

ξ > 0, among others in Feuerverger and Hall (1999), Beirlant et al. (1999, 2002) and Gomes and30
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Martins (2002). However while the bias is reduced, the variance is increased. In Caeiro et al.1

(2005, 2009) methods are proposed to limit the variance of bias-reduced estimators assuming a2

third-order slow variation model. These methods focus on the distribution of the log-spacings3

of high order statistics. Other construction methods for asymptotically unbiased estimators of4

ξ > 0 were introduced in Peng (1998) and Drees (1996).5

Another approach consists of proposing penultimate limit distributions. In case ξ > 0, Beirlant6

et al. (2009) proposed an extension of the Pareto distribution (EPD) to approximate the tail7

probability of the POT distribution P
(
X
t > y|X > t

)
as t→∞:8

(1.5) H̄EP
ξ,δ,ρ(y) = 1−HEP

ξ,δ,ρ(y) = y−1/ξ
(

1 + δt

(
(y−1/ξ)−ρ − 1

))
, y > 1,

with δt satisfying δt ↓ 0 as t→∞ and ρ = −βξ. In the literature, the second order parameter ρ9

typically is estimated externally with a different sequence of extreme order statistics than with10

ξ and δ, or it is given an appropriate ’canonical’ value such as -1. We suppress the notation ρ11

from the extended distribution notation.12

Fitting the extended Pareto distribution HEP
ξ,σ to the relative excesses {Xn−j+1,n

Xn−k,n
, j =

1, . . . , k} leads to estimates of ξ that are more stable as a function of k compared to the original
ML estimator derived by Hill (1975)

ξ̂Hk,n =
1

k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
,

which is obtained by fitting the Pareto distribution HEP
ξ,0 . Denoting the maximum likelihood13

estimators of ξ by ξ̂EPk , it can indeed be shown under the assumption that the EP model for the14

excesses X/t is correct and that ρ is estimated consistently, that the asymptotic bias of ξ̂EPk is15

0 as long as k(k/n)−2ρ → λ ≥ 0 as k, n → ∞, while the asymptotic bias of ξ̂Hk,n is only 0 when16

k(k/n)−2ρ → 0. On the other hand, the asymptotic variance of ξ̂EPk equals
(

1−ρ
ρ

)2
ξ2

k , where ξ2

k17

is the asymptotic variance of ξ̂Hk,n.18

19

In case of a real-valued EVI, for the selection of an appropriate threshold or the construc-20

tion of bias-reduced methods, only a few methods are available. Dupuis (1999) suggested a21

robust model validation mechanism to guide the threshold selection, assigning weights between22

0 and 1 to each data point where a high weight means that the point should be retained since a23

GPD model is fitting it well. However, thresholding is required at the level of the weights and24

hence the method cannot be used in an unsupervised manner. Buitendag et al. (2019) present a25

ridge regression method to reduce the bias of the generalized Hill estimator proposed in Beirlant26

et al. (2005).27

28

In this paper we concentrate on bias reduction when fitting the GPD to the distribution29

of POTs X − t|X > t using maximum likelihood estimation. We hence extend the second-order30

refined POT approach based on H̄EP
ξ,δ from (1.5) to all max-domains of attraction. Here the31

corresponding basic second order regular variation theory can be found in Theorem 2.3.8 in de32

Haan and Ferreira (2006) stating that33

(1.6) lim
t→x+

P(X − t > yσt|X > t)− (1 + ξy)−1/ξ

δ(t)
= (1 + ξy)−1−1/ξΨξ,ρ̃((1 + ξy)1/ξ),
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with δ(t)→ 0 as t→ x+ and Ψξ,ρ̃(x) = 1
ρ̃

(
xξ+ρ̃−1
ξ+ρ̃ −

xξ−1
ξ

)
which for the cases ξ = 0 and ρ̃ = 01

is understood to be equal to the limit as ξ → 0 and ρ̃ → 0. We further allow more flexible2

second-order models than the ones arising from second-order regular variation theory such as in3

(1.6) using non-parametric modelling of the second-order component and the flexible semipara-4

metric GP modelling introduced in Tencaliec et al. (2019). This newly proposed method can5

also be applied to the specific case of Pareto-type distributions.6

7

In the next section we propose our extended GPD models, and detail the estimation8

methods. Some basic asymptotic results are provided in section 3. In the final section we9

discuss simulation results and some practical case studies.10

2. TRANSFORMED AND EXTENDED GPD MODELS

In this paper we propose to approximate the POT distribution with an extended GPD model11

with survival function12

(E) : F̄EGPt (y) = H̄GP
ξ (

y

σ
)
{

1 + δtBη

(
H̄GP
ξ (

y

σ
)
)}

,

where13

• δt = δ(t)→ 0 as t→ x+,14

• Bη(1) = 0 and limu→0 u
1−εBη(u) = 0 for every 0 < ε < 1,15

• Bη is twice continously differentiable.16

Here the parameter η represents a second order nuisance parameter. For negative δ-values one17

needs δt > {minu(1− d
du (uBη(u))}−1 to obtain a valid distribution.18

Note that this model is a transformation model Gt

(
H̄GP
ξ ( yσ )

)
where the transformation func-19

tion Gt : (0, 1)→ (0, 1), u 7→ u(1 + δtBη(u)) satisfies Gt(u)
u → 1 as t→∞ for every u ∈ (0, 1) as20

follows from (1.2).21

Also, model (E) generalizes the EPD model (1.5) replacing the Pareto survival function y−1/ξ
22

(ξ > 0) by the GPD survival function H̄GP
ξ (ξ ∈ R), and considering a general function Bη(u).23

24

We here detail a parametric and non-parametric estimation procedure for (ξ, σ) under (E) based25

on excesses Yj,k = Xn−j+1,n−Xn−k,n (j = 1, . . . , k), while considering external estimation of the26

parameters in the Bη component of the model. In this we use the reparametrization (ξ, τ) with27

τ = ξ/σ. Modelling the distribution of the exceedances Y with model (E) leads to maximum28
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likelihood estimators based on the excesses Yj,k = Xn−j+1,n −Xn−k,n (j = 1, . . . , k):1

(ξ̂Ek , τ̂
E
k , δ̂

E
k ) = argmax


k∑
j=1

log
(

1 + δkbη((1 + τYj,k)
−1/ξ)

)

+
k∑
j=1

log{τ
ξ

(1 + τYj,k)
−1−1/ξ}

(2.1)

with bη(u) = d
du(uBη(u)) for a given choice of Bη.2

Estimates of small tail probabilities P(X > c) are then obtained through3

P̂Ek (X > c) =
k

n
H̄GP
ξ̂Ek

(
τ̂Ek
ξ̂Ek

(c−Xn−k,n)

)(
1 + δ̂Ek B̂η

(
H̄GP
ξ̂Ek

(
τ̂Ek
ξ̂Ek

(c−Xn−k,n)

))
.

A general approach to choose the parameters contained in the Bη component can be to minimize4

the variance of the obtained estimates of ξ over k = 2, . . . , n. See also the simulation section 4.5

A parametric approach (Ep). The second-order result (1.6) leads to the parametric choice6

Bξ,ρ̃(u) = uξ

ρ̃

(
u−ξ−ρ̃−1
ξ+ρ̃ − u−ξ−1

ξ

)
in case ξ + ρ̃ 6= 0 and ξ 6= 0.7

Model (E) allows for bias reduction in the estimation of (ξ, τ) under the assumption that the8

corresponding second-order model (1.6) is correct for the POTs X − t|X > t. Note that here9

the Bη component contains two parameters ξ and ρ̃. So in this component ξ and ρ̃ will be10

substituted with an external value.11

Here12

bη(u) = u−ρ̃
(

1− ρ̃
ρ̃(ξ + ρ̃)

)
+ uξ

(
1 + ξ

ξ(ξ + ρ̃)

)
− 1

ξρ̃
,

in which the classical estimator of ξ (with δk = 0), or an appropriate value ξ0, is used to substi-13

tute ξ. A consistent estimator of ρ̃ is provided in Fraga Alves et al. (2003). Another option is to14

choose (ξ0, ρ̃) minimizing the variance in the plot of the resulting estimates of ξ as a function of k.15

16

A non-parametric approach (Ep̄). In practice a particular distribution probably follows laws17

of nature, environment or business and does not have to follow the second-order regular variation18

assumptions as in (1.6). A non-parametric approximation of u 7→ uBη(u) can be obtained from19

an estimator Ĝt∗ of Gt∗ , or equivalently Ĝk∗ of Gk∗ , of the transformation Gt(u) = u(1+δtBη(u))20

(u ∈ (0, 1)) at some particular t∗ or k∗. Indeed, using Ĝ
(m)
k∗

(u) − u as an approximation of21

u 7→ δk∗uBη(u), and reparametrizing δk by δk/δk∗ , we obtain b̂η,k∗(u) = −1 + d
duĜ

(m)
k∗

(u) as an22

estimator of bη.23

24

For any t, an estimator Ĝt of Gt can be obtained using the Bernstein polynomial algorithm from25

Tencaliec et al. (2019). The Bernstein approximation of order m of a continuous distribution26

function G on [0, 1] is given by27

G(m)(u) =

m∑
j=0

G

(
j

m

)(
m
j

)
uj(1− u)m−j , u ∈ [0, 1].
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As in Babu et al. (2002) one then replaces the unknown distribution function G itself with the1

empirical distribution function Ĝn of the available data in order to obtain a smooth estimator2

of G:3

Ĝ(m)
n (u) =

m∑
j=0

Ĝn

(
j

m

)(
m
j

)
uj(1− u)m−j .

Note that Gt is the distribution function of H̄GP
ξ (Y/σ). Hence, in the present application, data4

from Gt are only available after imputing a value for (ξ, τ). This then leads to the iterative5

algorithm from Tencaliec et al. (2019), which is applied to every threshold t, or every number6

of top k data.7

(i) Set starting values (ξ̂
(0)
k , τ̂

(0)
k ). Here one can use (ξ̂ML

k , τ̂ML
k ) from using Gt(u) = u.8

(ii) Iterate for r = 0, 1, . . . until the difference in loglikelihood taken in (ξ̂
(r)
k , τ̂

(r)
k ) and (ξ̂

(r+1)
k , τ̂

(r+1)
k )9

is smaller than a prescribed small value:10

(a) Given (ξ̂
(r)
k , τ̂

(r)
k ) construct rv’s Ẑj,k =

(
1 + τ̂

(r)
k Yj,k

)−1/ξ̂
(r)
k

11

(b) Construct Bernstein approximation based on Ẑj,k (1 ≤ j ≤ k)12

Ĝ
(m)
k (u) =

m∑
j=0

Ĝk

(
j

m

)(
m
j

)
uj(1− u)m−j

with Ĝk the empirical distribution function of Ẑj,k13

(c) Obtain new estimates (ξ̂
(r+1)
k , τ̂

(r+1)
k ) with ML:14

(ξ̂
(r+1)
k , τ̂

(r+1)
k ) = argmax


k∑
j=1

log{ĝ(m)
k ((1 + τẐj,k)−1/ξ)}

+

k∑
j=1

log{τ
ξ

(1 + τẐj,k)−1−1/ξ}


with ĝ

(m)
k denoting the derivative of Ĝ

(m)
k .15

As noted in Tencaliec et al. (2019) a theoretical study of these estimates is difficult and has not16

been established.17

18

Remark 1. The estimation methods described above of course can be rewritten for the specific19

case of Pareto-type distributions where the distribution of POTs Y = X
t |X > t are approximated20

by transformed Pareto distributions. The model (E) is then rephrased as21

(E+) : F̄Et (y) = H̄P
ξ (y)

{
1 + δtBη

(
H̄P
ξ (y)

)}
.

The likelihood estimation method, now based on the exceedances Yj,k = Xn−j+1,n/Xn−k,n (j =22

1, . . . , k), is then adapted to23

(2.2) (ξ̂E+
k , δ̂E+

k ) = argmax


k∑
j=1

log
(

1 + δkbη(Y
−1/ξ
j,k )

)
+

k∑
j=1

log{1

ξ
(Yj,k)

−1−1/ξ}

 .



Bias Reduced Peaks over Threshold Tail Estimation 7

Note that the (Ep+) approach using the parametric version Bη(u) = u−ρ − 1 for a particular1

fixed ρ < 0 equals the EPD method from Beirlant et al. (2009), while (Ep̄+) is new.2

Estimators of tail probabilities are then given by3

P̂E+
k (X > c) =

k

n
H̄P
ξ̂E+
k

(c/Xn−k,n)
(

1 + δ̂E+
k B̂η

(
H̄P
ξ̂E+
k

(c/Xn−k,n)
))

.

3. BASIC ASYMPTOTICS UNDER MODEL (E)

In this section we discuss the asymptotic properties of the maximum likelihood estimators4

solving (2.1) and (2.2). To this end, as in Beirlant et al. (2009), we develop the likelihood5

equations up to linear terms in δk since δk → 0 with decreasing value of k. Below we set6

H̄θ(y) = (1 + τy)−1/ξ when using extended GPD modelling, while H̄θ(y) = y−1/ξ when using7

extended Pareto modelling under ξ > 0.8

Extended Pareto POT modelling. The likelihood problem (2.2) was already considered in Beir-9

lant et al. (2009) in case of parametric modelling for Bη. We here propose a more general10

treatment. The limit statements in the derivation can be obtained using the methods from Beir-11

lant et al. (2009). Denoting the log-likelihood function in (2.2) by `, the likelihood equations12

are given by13

(3.1)

{
∂
∂ξ ` = −k

ξ + 1
ξ2
∑k

j=1 log Yj,k + δk
ξ2
∑k

j=1
b′η(H̄θ(Yj,k))H̄θ(Yj,k) log Yj,k

1+δkbη(H̄θ(Yj,k))
∂
∂δk

` =
∑k

j=1 bη(H̄θ(Yj,k))− δk
∑k

j=1 b
2
η(H̄θ(Yj,k)).

Extended Generalized Pareto POT modelling. The likelihood equations following from (2.1) up14

to linear terms in δk are now given by15 

∂
∂ξ ` = −k

ξ + 1
ξ2
∑k

j=1 log(1 + τYj,k) + δk
ξ2
∑k

j=1 b
′
η(H̄θ(Yj,k))H̄θ(Yj,k) log(1 + τYj,k)

∂
∂τ ` = k

ξτ

{
−1 + (1 + ξ) 1

k

∑k
j=1

1
1+τYj,k

− δk
k

∑k
j=1 b

′
η(H̄θ(Yj,k))(τYj,k)(1 + τYj,k)

−1−1/ξ
}

∂
∂δk

` =
∑k

j=1 bη(H̄θ(Yj,k))− δk
∑k

j=1 b
2
η(H̄θ(Yj,k)),

from which16

(3.2)



δ̂k =

∑k
j=1 bη(H̄θ̂k

(Yj,k))∑k
j=1 b

2
η(H̄θ̂k

(Yj,k))
,

1
k

∑k
j=1 log(1 + τ̂kYj,k) = ξ̂k − δ̂k

k

∑k
j=1 b

′
η(H̄θ̂k

(Yj,k))H̄θ̂k
(Yj,k) log(1 + τ̂kYj,k),

1
k

∑k
j=1

1
1+τ̂kYj,k

= 1
1+ξ̂k

+ δ̂k
1+ξ̂k

{
1
k

∑k
j=1 b

′
η(H̄θ̂k

(Yj,k))H̄θ̂k
(Yj,k)

− 1
k

∑k
j=1 b

′
η(H̄θ̂k

(Yj,k))H̄θ̂k
(Yj,k)

1
1+τ̂kYj,k

}
.

Under the extended model we now state the asymptotic distribution of the estimators (ξ̂Ek , τ̂
E
k )17

and ξ̂E+
k . To this end let Q denote the quantile function of F , and let U(x) = Q(1−x−1) denote18
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the corresponding tail quantile function. Model (E) assumption can be rephrased in terms of U :1

(Ẽ) :

U(vx)−U(v)
σU(v)

− hξ(x)

δ(U(v))
→v→∞ xξBη(1/x),

where hξ(x) = (xξ − 1)/ξ and δ(U) regularly varying with index ρ̃ < 0. Moreover in the mathe-2

matical derivations one needs the extra condition that for every ε, ν > 0, and v, vx sufficiently3

large4

(Ẽ2) :

∣∣∣∣∣∣
U(vx)−U(v)

σU(v)
− hξ(x)

δ(U(v))
− xξBη(1/x)

∣∣∣∣∣∣ ≤ εxξ|Bη(1/x)|max{xν , x−ν}.

Similarly, (E+) is rewritten as5

(Ẽ+) :

U(vx)
U(v) − x

ξ

ξδ(U(v)))
→v→∞ xξBη(1/x).

The analogue of (Ẽ2) in this specific case is given by6

(Ẽ+
2 ) :

∣∣∣∣∣∣
U(vx)
U(v) − x

ξ

ξδ(U(v))
− xξBη(1/x)

∣∣∣∣∣∣ ≤ εxξ|Bη(1/x)|max{xν , x−ν},

with δ(U) regularly varying with index ρ < 0.7

Finally, in the expression of the asymptotic variances we use8

Eb2η =

∫ 1

0
b2η(u)du, EBη =

∫ 1

0
Bη(u)du, ECη =

∫ 1

0
uξBη(u)du.

The proof of the next theorem is outlined in the Appendix. It allows to construct confidence9

intervals for the estimators of ξ obtained under the extended models.10

Theorem 1 Let k = kn be a sequence such that k, n→∞ and k/n→ 0 such that
√
kδ(U(n/k))→11

λ ∈ R. Moreover assume that in (2.1) and (2.2), Bη is substituted by a consistent estimator as12

n→∞. Then13

i. when ξ > −1/2 with (Ẽ2)(√
k(ξ̂Ek − ξ),

√
k(
τ̂Ek
τ
− 1)

)
→d N2(0,Σ)

14

Σ =
ξ2

D

 1
(1+ξ)2(1+2ξ)

− (ECη)2

Eb2η

1
ξ(1+ξ)3

− EBηECη
ξ(1+ξ)Eb2η

1
ξ(1+ξ)3

− EBηECη
ξ(1+ξ)Eb2η

1
ξ2(1+ξ)2

(
1− (EBη)2

Eb2η

) 
where15

D =

(
1

(1 + ξ)2(1 + 2ξ)
− (ECη)

2

Eb2η

)(
1− (EBη)

2

Eb2η

)
−
(

1

(1 + ξ)2
− EBηECη

Eb2η

)2

,

ii. when ξ > 0 with (Ẽ+
2 )(√

k(ξ̂E+
k − ξ),

√
k(δ̂E+

k − δk)
)
→d N2(0,Σ+),

16

Σ+ =
1

Eb2η − (EBη)2

(
ξ2Eb2η −ξEBη
−ξEBη 1

)
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Remark 2. The asymptotic variance of ξ̂E+
k is larger than the asymptotic variance ξ2 of the1

Hill estimator ξ̂Hk,n. Indeed,2

(EBη)
2 =

(∫ 1

0
log(1/u)bη(u)du

)2

=

(∫ 1

0
(log(1/u)− 1)bη(u)du

)2

≤
(∫ 1

0
(log(1/u)− 1)2du

)(∫ 1

0
b2η(u)du

)
= (Eb2η),

where the above inequality follows using the Cauchy-Schwarz inequality.3

Similarly, one can show that4

(ECη)
2 = ξ−2

(∫ 1

0
(uξ − 1

1 + ξ
)bηdu

)2

≤ 1

(1 + 2ξ)(1 + ξ)2
(Eb2η).

The asymptotic variance of ξ̂Ek equals5

(1 + ξ)2

k

1− (1 + ξ)2(1 + 2ξ)(ECη)
2/(Eb2η)

1− (1+ξ)4(1+2ξ)
ξ2

(Eb2η)
−1[(ECη)2 − 2

(ECη)(EBη)
(1+ξ)2

+
(EBη)2

(1+ξ)2(1+2ξ)
]

which can be shown to be larger than the asymptotic variance (1 + ξ)2/k of the classical GPD6

maximum likelihood estimator. In the parametric case with Bη(u) = uξ

ρ̃

(
u−ξ−ρ̃−1
ξ+ρ̃ − u−ξ−1

ξ

)
,7

one obtains EBη = (1 + ξ)−1(1 − ρ̃)−1, ECη = (1 + ξ)−1(1 + 2ξ)−1(ξ − ρ̃ + 1)−1 and Eb2η =8

2(1 + 2ξ)−1(1 − 2ρ̃)−1(ξ − ρ̃ + 1)−1. It then follows that the asymptotic variance of ξ̂Ek equals9

(1+ξ)2

k

(
1−ρ̃
ρ̃

)2
.10

In case ξ > 0 with Bη(u) = u−ρ − 1, the asymptotic variance of ξ̂E+
k is given by ξ2

k

(
1−ρ
ρ

)2
as11

already found in Beirlant et al. (2009).12

Finally, an asymptotic representation of
√
k(δ̂Ek − δk) can be found at the end of the proof of13

Theorem 1 in the Appendix. 214

15

In the case studies in the next section asymptotic confidence intervals based on Theorem 1 can16

be added to the analysis.17

18

Remark 3. Since in model (E) the Bη factor is multiplied by δt, the asymptotic distribution of19

tail estimators based on (E) will not depend on the asymptotic distribution of the estimator of20

Bη. As in Beirlant et al. (2009) when using the EPD model in the Pareto-type setting, one can21

rely in the parametric approach on consistent estimators of the nuisance parameter η using a22

larger proportion k∗ of the data. Alternatively, one can also consider different values of η in the23

parametric approach, and of (k∗,m) in the non-parametric setting, and search for values of this24

nuisance parameter which stabilizes the plots of the EVI estimates as a function of k using the25

minimum variance principle for the estimates as a function of k. Clearly one loses the asymp-26

totic unbiasedness in Theorem 1 if Bη is not consistently estimated. For the moment no proof27
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is available to show that the estimators of the parameters in the second order component Bη1

through the minimum variance principle are consistent. Note that the estimator of ρ̃ presented2

in Fraga Alves et al. (2003) has been shown to be consistent.3

As becomes clear from the simulation results, in many instances the extreme value index estima-4

tors are not very sensitive to such a misspecification, especially in the non-parametric approach5

leading to Ep̄ and Ep̄+, and the proposed estimators can still outperform the classical maximum6

likelihood estimators based on the first order approximations of the POT distributions. 27

4. SIMULATIONS AND CASE STUDIES

Simulation results and practical cases are proposed in a Shinyapp written in R:8

https://phdshinygao.shinyapps.io/ExtendedModels/9

Under Simulations one finds simulation results with sample sizes n = 200 for different distribu-10

tions from each max-domain of attraction. The bias and MSE for the different estimators are11

plotted as a function of the number of exceedances k. Using the notation from the preceding12

sections one has a choice to apply the technique with H̄θ equal to the GPD, respectively the13

simple Pareto distribution (only when ξ > 0).14

15

Sliders are provided for the following parameters:16

• in case of GPD modelling: ρ̃ in Ep, and (k∗,m) in Ep̄ estimation,17

• in case of Pareto modelling: ρ in Ep+, and (k∗,m) in Ep̄+ estimation.18

Again one can indicate to choose these parameters so as to minimize the variance of ξ̂k over19

k = 2, . . . , n. The value of ξ in the parametric function Bξ,ρ̃ in Ep is imputed with the classical20

GPD-ML estimator at the given value of k.21

Also bias and RMSE plots of the corresponding tail probability estimates of p = P(X > c) are22

given, where c is chosen so that these probabilities equal p = 0.005 or p = 0.003. Here the bias,23

respectively RMSE, are expressed as the average, respectively the average of squared values, of24

log(p/p̂).25

One can also change the vertical scale of the plots, smooth the figures by taking moving averages26

of a certain number of estimates. Finally one can download the figures in pdf.27

28

While on the above link, several other distributions are used and sliders are provided for the29

different parameters ρ, ρ̃, and (k∗,m), we collect here the resulting figures for estimation of30

ξ and estimating 0.003 tail probabilities, when using the minimum variance principle for all31

parameters, in case of the following subset of models:32

• The Burr(τ, λ) distribution with F̄ (x) = (1 + xτ )−λ for x > 0 with τ = 1 and λ = 2, so33

that ξ = 1
τλ = 1

2 and ρ = ρ̃ = − 1
λ = −1

2 .34

https://phdshinygao.shinyapps.io/ExtendedModels/


Bias Reduced Peaks over Threshold Tail Estimation 11

• The Fréchet (2) distribution with F̄ (x) = 1 − exp
(
−x−2

)
for x > 0, so that ξ = 1

2 and1

ρ = ρ̃ = −1.2

• The standard normal distribution with ξ = 0 and ρ̃ = 0.3

• The Exponential distribution with F̄ (x) = e−λx for x > 0, so that ξ = 0 and ρ̃ = 0.4

• The Reversed Burr distribution with F̄ (x) = (1 + (1− x)−τ )
−λ

for x < 1 with τ = 5 and5

λ = 1, so that ξ = −1/(τλ) = −1
5 with ρ̃ = −1/λ = −1.6

• The extreme value Weibull distribution with F̄ (x) = 1− e−(1−x)α for x < 1 with α = 4, so7

that ξ = −1
4 with ρ̃ = −1.8

We also compare the bias and RMSE results for ξ̂Ek with those of the ridge regression estimator
presented in Buitendag et al. (2019). This regression method is constructed on the basis of a
regression model of the type

Yj = ξ + bn,k

(
j

k + 1

)−ρ̃
, j = 1, . . . , k,

where

Yj = (j + 1)

(
log

Xn−j,nξ̂
H
j,n

Xn−j−1,nξ̂Hj+1,n

− log(1 +
1

j
) +

1

j

)
, j = 1, . . . , n− 1.

In case ξ > 0, the results for ξ̂E+
k are also compared with the corrected Hill method presented9

in Caeiro et al. (2005) and (2009), also based on regression representations of top order statis-10

tics Xn−j+1,n, and which have been shown to have asymptotic bias 0 while keeping the same11

asymptotic variance ξ2/k as the Hill estimator ξ̂Hk,n under a third-order slow variation model.12

13

In general the minimum variance principle works well, though in some cases some improved14

results can be obtained by choosing specific values of the parameters ρ, ρ̃, and (k∗,m). This is15

mainly the case for the Pareto-type models when using Ep̄, such as for the Fréchet distribution.16

Also, in case of tail probability estimation using Ep for cases with ξ < 0 particular choices of17

the corresponding parameters lead to improvements over the minimum variance principle.18

Overall the Ep approach yields the best results, both in estimation of ξ and tail probabilities.19

The improvement over the classical GPD maximum likelihood approach is smaller for Ep̄, and20

in case of situations where the second order parameter ρ̃ equals 0 then Ep̄ basically equals the21

ML estimators. Note that when ρ̃ = 0 the conditions of the main theorem are not met, in which22

case the GPD and the bias reductions are known to exhibit a large bias. This is typically the23

case when ξ = 0. This is also known to be the case using simple Pareto modelling when ρ = 0.24

The proposed methods compare well with the ridge regression method. One exception is the25

Fréchet distribution (see Figure 3) in which the ridge regression method offers exceptionally26

good results.27

28

In case of simple Pareto modelling for ξ > 0 cases (see Figures 2 and 4) the Ep+ and Ep̄+ ap-29

proaches yield serious improvements over the Hill estimator, with small bias for Ep+ and Ep̄+,30

while the parametric approach Ep+ naturally exhibits the best RMSE. The results obtained31
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with proposed methods are comparable with the CH estimator (see Figures 2 and 4).1

2

Under Applications the app also offers the analysis of some case studies, some of which are3

discussed here in more detail. We use Belgian car insurance claim ultimates of a Belgian car4

insurance portfolio discussed in Albrecher et al. (2017), and lifetime data discussed in Einmahl5

et al. (2019). We then present estimates of ξ, σ and tail probabilities P(X > xn,n) with xn,n6

denoting the largest observation, so that the estimated probability is supposed to be close to7

1/n. An option is provided in the Shinyapp to construct asymptotic confidence intervals for ξ8

for the Ep and Ep+ based estimates of ξ, on the basis of Theorem 1.9

10

In actuarial statistics, Pareto-type modelling is customary in case of car insurance claim mod-11

elling. So here we provide both the plots of ξ̂Hk,n, Ep+, Ep̄+ and the CH estimator (see top left12

in Figure 9), as well as the GPD-ML, Ep, Ep̄ and ridge regression estimator (bottom left in13

Figure 9), and the corresponding tail probability estimates at the right hand side. Under the14

Pareto approach, confining oneselves to ξ > 0, the level 0.4 clearly appears for the EVI both15

using Ep+ and Ep̄+ when using the minimum variance principle. The CH estimator also shows16

a stable area around the value 0.5. The tail probability estimates of P(X > xn,n) are close to17

1/n for almost all k values while the plot of the classical estimates is difficult to interpret.18

With GPD based modelling two EVI levels are visible, around 0.2 and 0.4, of which the lower19

level is more clearly indicated when using Ep̄ with k∗ = 427 and m = 25 as shown in Figure 9,20

bottom left. The ridge estimator is stable at the value 0.4. The corresponding tail probability21

estimates based on Ep̄ are also stable at the value 1/n for a long k range.22

23

In Einmahl et al. (2019) the life spans are studied for Dutch males and females reaching age24

92 years and higher, considering their age at death. For every year, from 1986 till 2015, the life25

spans of this subgroup were analyzed. The authors decided to use k = 1500 for every year when26

using the classical GPD-ML estimators, and found an EVI estimate ξ̂ between -0.1 and -0.15 for27

females, while for males a value around -0.15 is common over the whole period. Here we restrict28

ourselves to the female data from 1986. The results of Ep with asymptotic confidence intervals29

as discussed in Remark 2 with ρ̃ = −0.5 are shown in Figure 10 (left). While the classical GPD-30

ML estimates decrease with increasing k from 1 to 1500, the Ep estimates show a more stable31

plot at a negative ξ value which is rather between -0.05 and -0.1. The ridge regression method32

shows a similar value for k ≤ 500. The corresponding tail probability estimates for a larger k33

indicate a value closer to the tail probability estimate 1/n based on the empirical distribution34

function, in contrast to the classical GPD approach.35

5. CONCLUSIONS

In this contribution we have constructed bias reduced estimators of tail parameters ex-36

tending the classical POT method. The bias can be modelled parametrically (for instance based37

on second order regular variation theory), or non-parametrically using Bernstein polynomial38

approximations. A basic asymptotic limit theorem is provided for the estimators of the extreme39

value parameters which allows to compute asymptotic confidence intervals. A shinyapp has been40
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constructed with which the characteristics and the effectiveness of the proposed methods are1

illustrated through simulations and practical case studies. From this it follows that within the2

proposed methods it is always possible to improve upon the classical POT method both in bias3

and RMSE. This approach can also be used as a data analytic tool to enhance an extreme value4

analysis.5
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7. Appendix

In this section we provide details concerning the proof of Theorem 1.24

25

Asymptotic distribution of ξ̂E+
k .26

From (3.1) we obtain up to linear terms in δk that (denoting ξ̂k for ξ̂E+
k )27  δ̂k =

∑k
j=1 bη(Y

−1/ξ̂k
j,k )∑k

j=1 b
2
η(Y

−1/ξ̂k
j,k )

ξ̂k = ξ̂Hk,n + δ̂kB
(1)
k ,

with B
(1)
k = 1

k

∑k
j=1 b

′
η(Y

−1/ξ̂k
j,k )Y

−1/ξ̂k
j,k log Yj,k. As k, n → ∞ and k/n → 0 we have B

(1)
k →p28

−ξ
∫ 1

0 b
′
η(u)u log udu = −ξEBη.29

Using a Taylor expansion on the numerator of the right hand side of the first equation leads to30

1

k

k∑
j=1

bη(Y
−1/ξ̂k
j,k ) =

1

k

k∑
j=1

bη(Y
−1/ξ
j,k )− (ξ̂k − ξ)ξ−1(EBη) (1 + op(1)),
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so that, with 1
k

∑k
j=1 b

2
η(Y

−1/ξ̂k
j,k )→p Eb

2
η, up to lower order terms1

δ̂k =
1

Eb2η

1

k

k∑
j=1

bη(Y
−1/ξ
j,k )− (ξ̂k − ξ)ξ−1EBη

Eb2η
(1 + op(1)).

Hence, inserting this expansion into ξ̂k = ξ̂Hk,n + δ̂kB
(1)
k , finally leads to2

√
k(ξ̂k − ξ)(1 + op(1)) =

Eb2η
Eb2η − (EBη)2

√
k
(
ξ̂Hk,n − ξ

)
− ξEBη
Eb2η − (EBη)2

√
k

1

k

k∑
j=1

bη(Y
−1/ξ
j,k )


=

Eb2η
Eb2η − (EBη)2

√
k
(
ξ̂Hk,n − ξ − ξδkEBη

)
− ξEBη
Eb2η − (EBη)2

√
k

1

k

k∑
j=1

bη(Y
−1/ξ
j,k )− δkEb2η

 ,

with δk = δ(U(n/k)). We now show that this final expression is a linear combination of two zero3

centered statistics (up to the required accuracy) which is asymptotically normal with the stated4

asymptotic variance. To this end let Zn−k,n ≤ Zn−k+1,n ≤ . . . ≤ Zn,n denote the top k+ 1 order5

statistics of a sample of size n from the standard Pareto distribution with distribution function6

z 7→ z−1, z > 1. Then from (Ẽ+
2 )7

ξ̂Hk,n =
1

k

k∑
j=1

(logU(Zn−j+1,n)− logU(Zn−k,n))

=
1

k

k∑
j=1

log

{(
Zn−j+1,n

Zn−k,n

)ξ [
1 + ξδ(U(Zn−k,n))Bη

(
Zn−k,n
Zn−j+1,n

)

+op(1)|δ(U(Zn−k,n))||Bη
(

Zn−k,n
Zn−j+1,n

)
|
(
Zn−j+1,n

Zn−k,n

)ε]}
= ξ

1

k

k∑
j=1

log
Zn−j+1,n

Zn−k,n
+ ξδ(U(Zn−k,n))

1

k

k∑
j=1

Bη

(
Zn−k,n
Zn−j+1,n

)

+op(1)|δ(U(Zn−k,n))|1
k

k∑
j=1

|Bη
(

Zn−k,n
Zn−j+1,n

)
|
(
Zn−j+1,n

Zn−k,n

)ε
.

Now logZn−j+1,n − logZn−k,n =d Ek−j+1,k, the (k − j + 1)th smallest value from a stan-8

dard exponential sample E1, . . . , Ek of size k, so that 1
k

∑k
j=1 log

Zn−j+1,n

Zn−k,n
=d

1
k

∑k
j=1Ej and9

1
k

∑k
j=1Bη

(
Zn−k,n
Zn−j+1,n

)
=d

1
k

∑k
j=1Bη(e

−Ej ) =d
1
k

∑k
j=1Bη(Uj) where U1, . . . , Uk is a uniform10

(0,1) sample. Hence, since δ(U(Zn−k,n))/δ(U(n/k))→p 1 and 1
k

∑k
j=1Bη(Uj)→p EBη, we have11

that ξ̂Hk,n − ξ − ξδkEBη is asymptotically equivalent to 1
k

∑k
j=1 ξ(Ej − 1) as

√
kδk → λ.12



16 J.Beirlant, G.Maribe, Ph. Naveau and A. Verster

Similarly1

1

k

k∑
j=1

bη(Y
−1/ξ
j,k ) =

1

k

k∑
j=1

bη


U

(
Zn−j+1,n

Zn−k,n
Zn−k,n

)
U(Zn−k,n)

−1/ξ


=
1

k

k∑
j=1

bη

((
Zn−j+1,n

Zn−k,n

)−1 [
1 + ξδ(U(Zn−k,n))Bη

(
Zn−k,n
Zn−j+1,n

)

+op(1)|δ(U(Zn−k,n))||Bη
(

Zn−k,n
Zn−j+1,n

)
|
(
Zn−j+1,n

Zn−k,n

)ε]−1/ξ
)

=
1

k

k∑
j=1

bη

((
Zn−j+1,n

Zn−k,n

)−1 [
1− δ(U(Zn−k,n))Bη

(
Zn−k,n
Zn−j+1,n

)

+op(1)|δ(U(Zn−k,n))||Bη
(

Zn−k,n
Zn−j+1,n

)
|
(
Zn−j+1,n

Zn−k,n

)ε])
=

1

k

k∑
j=1

bη(e
−Ej )

−δ(U(Zn−k,n))
1

k

k∑
j=1

b′η

(
Zn−k,n
Zn−j+1,n

)
Bη

(
Zn−k,n
Zn−j+1,n

)(
Zn−k,n
Zn−j+1,n

)
(1 + op(1)).

Since δ(U(Zn−k,n))/δk →p 1 and 1
k

∑k
j=1 b

′
η

(
Zn−k,n
Zn−j+1,n

)
Bη

(
Zn−k,n
Zn−j+1,n

)(
Zn−k,n
Zn−j+1,n

)
→p −Eb2η it2

follows that 1
k

∑k
j=1 bη(Y

−1/ξ
j,k ) − δkEb

2
η is asymptotically equivalent to 1

k

∑k
j=1 bη(e

−Ej ) =d3

1
k

∑k
j=1 bη(Uj) as

√
kδk → λ, which is centered at 0 since E(bη(U)) = 0. The results incor-4

porating δ̂E+
k follow similarly.5

Asymptotic distribution of ξ̂Ek .6

This derivation follows similar lines starting from (3.2):7 
1
k

∑k
j=1 b

′
η(H̄θ̂k

(Yj,k))H̄θ̂k
(Yj,k) log(1 + τ̂kYj,k)→p −ξEBη,

1
k

∑k
j=1 b

2
η(H̄θ̂k

(Yj,k))→p Eb
2
η,

1
k

∑k
j=1 b

′
η(H̄θ̂k

(Yj,k))H̄θ̂k
(Yj,k)→p bη(1),

1
k

∑k
j=1 b

′
η(H̄θ̂k

(Yj,k))H̄θ̂k
(Yj,k)

1
1+τ̂kYj,k

→p ξ(1 + ξ)ECη + bη(1),

as k, n→∞ and k/n→∞, so that the system of equations is asymptotically equivalent to8 
δ̂k =

1
k

∑k
j=1 bη(H̄θ̂k

(Yj,k))

Eb2η
,

1
k

∑k
j=1 log(1 + τ̂kYj,k) = ξ̂k + ξ̂kδ̂kEBη

1
k

∑k
j=1

1
1+τ̂kYj,k

= 1
1+ξ̂k

− ξ̂kδ̂kECη.

Using a Taylor expansion on the numerator of the right hand side of the first equation leads to9

δ̂kEb
2
η =

1

k

k∑
j=1

bη(H̄θ(Yj,k))−
EBη
ξ

(ξ̂k − ξ) + (1 + ξ)ECη

(
τ̂k
τ
− 1

)
.
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Imputing this in the second and third equation in ξ and τ , and expanding these equations1

linearly around the correct values (ξ, τ), while using, as k, n→∞ and k/n→ 02

1

k

k∑
j=1

τYj,k
1 + τYj,k

→p
ξ

1 + ξ
and

1

k

k∑
j=1

τYj,k
(1 + τYj,k)2

→p
ξ

(1 + ξ)(1 + 2ξ)
,

leads to the linearized equations3

(7.1)



(
ξ̂k − ξ

)(
−1 +

(EBη)2

Eb2η

)
+
(
τ̂k
τ − 1

)(
ξ

1+ξ − ξ(1 + ξ)
EBη ECη
Eb2η

)
= −

(
1
k

∑k
j=1 log(1 + τYj,k)− ξ

)
+

ξEBη
Eb2η

1
k

∑k
j=1 bη(H̄θ(Yj,k)),(

ξ̂k − ξ
)(

1
(1+ξ)2

− EBηECη
Eb2η

)
+
(
τ̂k
τ − 1

)(
− ξ

(1+ξ)(1+2ξ) + ξ(1 + ξ)
(ECη)2

Eb2η

)
= −

(
1
k

∑k
j=1

1
1+τYj,k

− 1
1+ξ

)
− ξECη

Eb2η

1
k

∑k
j=1 bη(H̄θ(Yj,k)).

Using similar derivations as in the case ξ̂E+
k , it follows that the right hand sides in (7.1) can

be rewritten as a linear combination of two zero centered statistics from which the asymptotic

normality of
(√

k(ξ̂Ek − ξ),
√
k(

τ̂Ek
τ − 1)

)
can be obtained, as stated in Theorem 1:

(
ξ̂k − ξ

)(
−1 +

(EBη)2

Eb2η

)
+
(
τ̂k
τ − 1

)(
ξ

1+ξ − ξ(1 + ξ)
EBη ECη
Eb2η

)
= −

(
1
k

∑k
j=1 log(1 + τYj,k)− ξ − ξδkEBη

)
+

ξEBη
Eb2η

(
1
k

∑k
j=1 bη(H̄θ(Yj,k))− δkEb2η

)
,

(
ξ̂k − ξ

)(
1

(1+ξ)2
− EBηECη

Eb2η

)
+
(
τ̂k
τ − 1

)(
− ξ

(1+ξ)(1+2ξ) + ξ(1 + ξ)
(ECη)2

Eb2η

)
= −

(
1
k

∑k
j=1

1
1+τYj,k

− 1
1+ξ + ξδkECη

)
− ξECη

Eb2η

(
1
k

∑k
j=1 bη(H̄θ(Yj,k))− δkEb2η

)
.

We hence obtain the following asymptotic representation(
ξ̂Ek − ξ,

τ̂Ek
τ
− 1

)t
= W−1

−1 0 ξ
EBη
Eb2η

0 −1 −ξECη
Eb2η

(U (1)
k , U

(2)
k , U

(3)
k

)t
where

W =

 −1 +
(EBη)2

Eb2η

ξ
1+ξ − ξ(1 + ξ)

EBη ECη
Eb2η

1
(1+ξ)2

− EBηECη
Eb2η

− ξ
(1+ξ)(1+2ξ) + ξ(1 + ξ)

(ECη)2

Eb2η

 ,

and

√
k
(
U

(1)
k , U

(2)
k , U

(3)
k

)t
:=


1
k

∑k
j=1 log(1 + τYj,k)− ξ − ξδkEBη

1
k

∑k
j=1

1
1+τYj,k

− 1
1+ξ + ξδkECη

1
k

∑k
j=1 bη(H̄θ(Yj,k))− δkEb2η


is asymptotically normal with variance-covariance matrix

ΣU =

 ξ2 −ξ2(1 + ξ)−2 ξEBη
-ξ2(1 + ξ)−2 ξ2(1 + ξ)−2(1 + 2ξ)−1 −ξECη

ξEBη −ξECη Eb2η

 .

Concerning δ̂Ek we find the following representation:

(Eb2η)
√
k
(
δ̂Ek − δk

)
=

(0 0 1) + (−EBη/ξ (1 + ξ)ECη)W
−1

−1 0 ξ
EBη
Eb2η

0 −1 −ξECη
Eb2η


 U

(1)
k

U
(2)
k

U
(3)
k

 .
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Figure 1: Burr distribution with ξ = 0.5 and ρ = −0.5. Estimation of ξ (top) and tail probability
(bottom) using minimum variance principle, bias (left), RMSE (right): GPD-ML (full line), Ep
(dash-dotted), Ep̄ (dashed) and ridge regression estimator (dotted).
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Figure 2: Burr distribution with ξ = 0.5 and ρ = −0.5. Estimation of ξ (top) and tail probability
(bottom) using minimum variance principle, bias (left), RMSE (right): Pareto-ML (full line),
Ep+ (dash-dotted), Ep̄+ (dashed) and corrected Hill estimator (dotted).
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Figure 3: Fréchet distribution with ξ = 0.5. Estimation of ξ (top) and tail probability (bottom),
bias (left), RMSE (right): GPD-ML (full line), Ep with ρ = −2 (dash-dotted), Ep̄ with (k∗,m) =
(190, 150) (dashed), and ridge regression estimator (dotted).
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Figure 4: Fréchet distribution with ξ = 0.5. Estimation of ξ (top) and tail probability (bottom)
using minimum variance principle, bias (left), RMSE (right): Pareto-ML (full line), Ep+ (dash-
dotted), Ep̄+ (dashed) and corrected Hill estimator (dotted).
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Figure 5: Standard normal distribution (ξ = 0 and ρ̃ = 0). Estimation of ξ (top) and tail
probability (bottom) using minimum variance principle, bias (left), RMSE (right): GPD-ML
(full line), Ep (dash-dotted), Ep̄ (dashed) and ridge regression estimator (dotted).
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Figure 6: The exponential distribution (ξ = 0 and ρ̃ = 0). Estimation of ξ (top) and tail
probability (bottom) using minimum variance principle, bias (left), RMSE (right): GPD-ML
(full line), Ep (dash-dotted), Ep̄ (dashed) and ridge regression estimator (dotted).
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Figure 7: Reversed Burr distribution (ξ = −0.2 and ρ̃ = −1). Estimation of ξ (top) and tail
probability (bottom) using minimum variance principle, bias (left), RMSE (right): GPD-ML
(full line), Ep (dash-dotted), Ep̄ (dashed) and ridge regression estimator (dotted).
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Figure 8: Extreme value Weibull distribution (ξ = −0.25 and ρ̃ = −1). Estimation of ξ (top) and
tail probability (bottom) using minimum variance principle, bias (left), RMSE (right): GPD-ML
(full line), Ep (dash-dotted), Ep̄ (dashed) and ridge regression estimator (dotted).
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Figure 9: Ultimates of Belgian car insurance claims: estimation of ξ with asymptotic confi-
dence intervals (left), tail probability estimation at maximum observation (right), Pareto-based
analysis (top) and GPD-based analysis (bottom): classical ML estimation (full line with dotted
confidence intervals), Ep (dashed with shaded confidence intervals) and Ep̄ (dash-dotted). CH
(top left) and ridge regression (bottom left) estimators are indicated by dotted lines.
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Figure 10: Lifetime data from the Netherlands, female persons who died in 1986. Left: es-
timation of ξ with asymptotic confidence intervals for classical ML estimation (full line with
dotted confidence intervals), Ep (dashed with shaded confidence intervals, ρ̃ = −0.5) and ridge
regression (dotted). Right: tail probability estimation at maximum observation for classical ML
estimation (full line) and Ep (dashed).
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