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Abstract:
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SDs with respect to their search performance.
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1. INTRODUCTION

At the screening stage of an experiment, a main effect plan (MEP) is em-
ployed to estimate the main effects, assuming that all interactions are negligible.
MEPs were introduced and implemented after World War II, for more details
refer to the pioneering paper of Box and Wilson [6]. MEPs, including saturated
resolution III regular and irregular designs, have been widely used in practical
industrial experiments. For example, Plackett and Burman [11] introduced an
irregular saturated MEP for 2m factorial experiments, where m = 4t − 1, for
t ≥ 3. Nevertheless, there might exist a small number of non-zero lower order in-
teractions, which cause bias in estimating main effects. Enhancing the resolution,
i.e., upgrading to resolution IV or V, for instance through fold-over approach to
overcome the problem, increases the number of runs and, in turn, the cost of the
experiment.

To save the number of runs, Srivastava [14] introduced and suggested using
SDs to search for and estimate k unknown non-zero interactions in addition to
estimating the main effects. Such a design is known as main effect plus k plan
(MEP.k). Several researchers have developed the MEP.k (see Ghosh et al. [8],
for a thorough review). For example, Esmailzadeh et al. [7] and Talebi and Jalali
[18] constructed MEP.1 for 2m factorial designs respectively, for odd and even m.
Consider search linear model for providing a key condition in planning a general
SD and in particular MEP.k. For a vector of observations y(N × 1), the search
linear model is

y = A1ξ1 +A2ξ2 + e, Cov(e) = σ2IN ,(1.1)

where Ai(N × νi) are known design matrices; and ξi(νi× 1) are vectors of effects
for i = 1, 2; e(N × 1) is an error vector; σ2 is the error variance; and IN is
the identity matrix of order N . It is known for a fact that k effects in ξ2 are
non-zero, but we don’t know which ones. Therefore, the plan sets out to search
for and identify the non-negligible effects in ξ2 and estimate them in addition to
estimating the effects in ξ1. Alternatively, let S be the set of all

(
ν2
k

)
models with

only one correct model, each including a set of k possible non-zero effects from
ξ2 and ξ1. The j-th model, j = 1, 2, ...,

(
ν2
k

)
, in S is expressed as follows:

y = A1ξ1 +A21(ζj)ζj + e,(1.2)

where ζj(k×1) is a vector of k effects from ξ2 and A21(ζj) is the N×k submatrix
of A2 whose columns are corresponding to ζj .

To identify the non-zero set of effects in ξ2 for noisy case (σ2 > 0), Sri-
vastava [14] suggested choosing the model in (1.2) with the lowest sum of square
error (SSE). Moreover, Shirakura et al. [12] studied the stochastic properties of
SSE and derived the SP in an explicit form for k=1 under the normal error. SP
is design-dependent and hence Shirakura et al. [12] suggested using it for com-
paring SDs with respect to their search performance. Subsequently, Ghosh and
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Teschmacher [9] and Talebi and Esmailzadeh [16] derived the SP-based criteria.
Furthermore, Talebi and Esmailzadeh [15] conducted another design-comparison
study and derived the KL (Kullback-Leibler) criterion based on Kullback-Leibler
distance, which can be used for k ≥ 1.

All of the above proposed criteria were obtained for models with normal
error. However, such models may not adequately fit the data in many practical
situations. For example, Arnold and Beaver [2] described a real situation in which
the observations followed a non-normal distribution. They termed this situation
‘hidden truncation’, for which the model is SN. Afterwards, Arnold et al. [3]
reported observations related to the hidden truncation. Moreover, Arellano-Valle
et al. [1] assumed the SN error to fit a mixed model to a real set of longitudinal
data on cholesterol levels collected as a part of the famed Framingham heart study.
The above examples revealed the abundance of phenomena with SN models in
real situations. The present study was also motivated by a hidden truncation
problem, i.e. candidates who want to partake in the PhD Admission Examination
of Iranian Universities must have an overall above-average Masters GPA. To deal
with this, distributions such as skew-t distribution or mixture of two normal
distributions may be proposed. However, based on our findings, such proposed
distributions may not lead to an explicit solution. We considered the rival models
in (1.2) with the multivariate SN distribution for error and used a Bayesian
method to propose a new approach for finding the true model. This led to criteria
which will be presented in an explicit form. The Bayesian approach in developing
new explicit criteria allowed us to take into account the hierarchical principle in
factorial experiments, by which the lower order interactions are more important
than the higher orders. It was, therefore, rational to choose an appropriate prior
distributional model for the factorial effects in order to deal with this issue.
Through this prior distribution, we allocated non-zero probability to the main
effects and k possible low order non-zero interactions, while all other interactions
came down to zero probability. In this study, which is the first Bayesian research
in the context of search design, it was shown that the Bayesian approach could
simplify the complexity in deriving the appropriate criteria.

In the next section some useful preliminaries are presented. The new
Bayesian search criteria will be proposed in section 3. These criteria are 1-
expected Shannon information (ESI) and 2- Bayesian expected Kullback-Leibler
(BEKL), which enable us to compare the search performance of any given SD.
The calculations are moved to the Appendix in order to enhance the readability
of the article.

2. PRELIMINARIES

The primary aim of this study was to acquire criteria for model identifi-
cation in the context of search linear model. This problem has long been in-
vestigated by several researchers for models with normal error. In this study,
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we considered models with SN error. Thus, a better understanding of the SN
distribution can be helpful.

Following Azzalini [4], who introduced SN distribution, a random variable
Y has an SN distribution, denoted by Y ∼ SN(µ, σ, λ), with location parameter
µ; scale parameter σ; and shape parameter λ, if its probability density function
(pdf) is

f(y) =
2

σ
ϕ(
y − µ

σ
)Φ(λ

y − µ

σ
), y ∈ R(2.1)

where ϕ(.) and Φ(.) are the pdf and cumulative distribution function (cdf) of
the standard normal distribution, respectively. The multivariate SN distribution
has also been proposed by some researchers. That is, an N-dimensional random
vector, Y, follows a multivariate SN distribution SNN (µ,Σ,λ) with location
vector µ∈ RN ; positive definite dispersion matrix ΣN×N; and skewness vector λ
∈ RN , if its pdf is

f(y) = 2ϕN (y|µ,Σ)Φ1(λ
′Σ− 1

2 (y − µ)), y ∈ RN ,(2.2)

where ϕN (.) is the pdf of the N(µ,Σ), (Arellano-Valle et al. [1]). Evidently, the
random vector Y follows N(µ,Σ) for λ = 0. Following Arellano-Valle et al. [1],
the random vector Y ∼ SNN (µ,Σ,λ) can be expressed as

Y
d
= µ+Σ

1
2 (δ|T0|+ (IN − δδ′)

1
2T1),(2.3)

where δ = λ√
1+λ

′
λ
; T0 ∼ N(0, 1); T1 ∼ N(0, IN ) is independent of T0, and

d
=

stands for equality in distribution. In Z = |T0|, Z has a half-normal distribution.
It is worth noting that model (2.3) covers bias and correlation among errors in
addition to skewness. Now, for hidden truncation problem, the SN distribution
is written as follows. Suppose random vector (X,W1,W2, ...,WN )′ distributed as

NN+1(θ,Ω), where θ = (µx,µ
′)′ and Ω =

(
1 δ′

δ IN

)
. Let W = (W1,W2, ...,WN )′,

then following Azzalini [5]

Y = W|X > µx ∼ SNN (µ, IN ,λ),(2.4)

where λ = (1−δ′δ)−
1
2δ. We calculated some of the existing criteria for detecting

non-zero effects under the SN search model. Based on the findings, the calculation
of SP for SN model has proven to be very intricate. Furthermore, the expected KL
(EKL) criterion, proposed by Talebi and Esmailzadeh [15], forY ∼ SNN (µ,Σ,λ)
led to the integral below:∫

2ϕN (y|µ0,Σ)Φ1λ
′Σ− 1

2 (y − µ0)) log{
ϕN (y|µ0,Σ)Φ1(λ

′Σ− 1
2 (y − µ0))

ϕN (y|µj ,Σ)Φ1(λ
′Σ− 1

2 (y − µi))
}dy,(2.5)

where for non-zero ζ0, µ0 = A1ξ1 + A21(ζ0)ζ0 and µj = A1ξ1 + A21(ζj)ζj .
This can not be made any simpler, and thus it is hard to be satisfied with (2.5)
as a criterion. The desire of finding a very simple and conceivable criterion,
consequently, motivated us to look for a different approach.
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Lindley [10] defined the expected information about θ for observation vector
y in an experiment E, prior function π(θ), and posterior pdf π(θ|y) as below:

Iθ{E, π(θ)} =

∫
f(y)

∫
π(θ|y) log π(θ|y)

π(θ)
dθdy,(2.6)

provided that the integral exists. This is the expected KL distance between
prior and posterior distributions, which measures the average overall observations
information. Using Bayes’ theorem, Iθ{E, π(θ)} in (2.6) can be written as follows:

Iθ{E, π(θ)} = Eθ{EY|θ(log f(y|θ))} − EY{log f(y)}.(2.7)

The distance in (2.7) will be used for proposing the new criteria in section 3.

For the normal distributionN(0, σ2Σ) and SN distribution SNN (0, σ2Σ,λ)
with unknown σ2, let’s take y∗ = y/σ and rewrite model (1.2) as below, which
will be used throughout this article,

y∗ = A(ξj)ξ
∗
j + e∗, j = 1, 2, ...,

(
ν2
k

)
,(2.8)

where ξ∗j = 1
σ (ξ

′
1, ζ

′
j)

′; A(ξj) = [A1 : A21(ζj)]; and e∗ = e/σ. In the Bayesian
framework, ξ∗j is assumed to have the prior distribution N(0,Σ0), where Σ0 is a
known (ν1+k)×(ν1+k) diagonal matrix. Following Wu and Hamada [19, p.434],
by assuming large diagonal elements in Σ0, we are assured of the possibility of
the presence of non-zero effects in ξ∗j . For a given prior, π(ξ∗j ), the event of
observing a small interior integral in (2.6) indicates that the data support the
existence of the non-negligible effects. Therefore, a small interior integral value
in Iθ{E, π(θ)}, presumably confirms the possibility of the presence of non-zero
effects in ξ∗j . By this scenario, we suggested calculating the interior integral in
(2.6) for all

(
ν2
k

)
models in (2.8) and selecting the model with the lowest value

as the true model. The following simulation study was performed as the verity
performance assessment of the proposed criterion.

The search design D1 given in the Appendix was used to generate data.
Let ξ1 be the vector of the general mean and main effects and let ζ0 be the
two-factor interaction AB. Furthermore, in a hidden truncation model, assume
that δ = 0.2112, where 112 is a 12 × 1 vector of 1s, and Σ0 = 100I6. Based on
these parameter values, 1000 data set were simulated from a 12 dimensional SN
distribution using “sn” package in R software. The interior integral in (2.6) was
calculated for all 6 possible models with any one of the two-factor interactions.
The simulation results showed that the interior integral had the lowest value
for the true model with AB interaction. We also calculated SSE for all models
and found that the same model had the minimum SSE. Moreover, we ran this
simulation for the case k = 2, by assuming ζ0 to be (AB AC) and found that the
interior integral and SSE were minimal for the chosen model.

Meanwhile, for a given model, Zhang [20] used Iθ{E, π(θ)} to select the op-
timum design, i.e. the design which maximizes the expression in (2.6). Due to the
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design-independence of the prior in denominator, she concluded that maximizing
Iθ{E, π(θ)} comes down to maximizing the following quantity

U =

∫
f(y){

∫
π(θ|y) log π(θ|y)dθ}dy.(2.9)

It is worth noting that for any given design, say D, U(D) is the expected Shannon
information of the posterior distribution denoted by ESID. Zhang [20] achieved
an expression for (2.9) in the normal regression model and showed that maximiza-
tion of U(D) is equivalent to maximizing the determinant of inverted posterior
variance of unknown parameter.

Under model uncertainty, when one is faced with a multi-model case, it
is logical to calculate (2.9) for all models, opt for the model with the lowest
value and then, select a design that has the maximum of such the value. In
other words, let Ui(D) be ESID in (2.9) for the i-th model, i=1,2,...,

(
ν2
k

)
, then

MESID = minSUi(D). Evidently, in the context of search design for any given
design D, the larger the value of MESID, the higher the performance of D
in searching for non-zero effects. So, for comparing and ranking the SDs with
respect to their search performance,MESID can be used as a criterion for design
comparison. Hence, we present the following definition.

Definition 2.1. Suppose D1 and D2 are two SDs with N treatments,
D1 is said to be better than D2 for identifying the set of non-zero effects if
MESID1 > MESID2 .

3. MAIN RESULTS

3.1. ESI search criterion

In this section, we first introduce ESID as a criterion under normality
assumption and then give a generalized form of the criterion using the SN model.

Consider the model in (2.8) and assume that Y∗ ∼ N(µ,Σ), where µ =
A(ξj)ξ

∗
j . Then for foregoing π(ξ∗j ), j = 1, 2, ...,

(
ν2
k

)
, the posterior distribution of

ξ∗j is proportional to f(ξ∗j ,y
∗) given in (6.1) below. After some calculations, as

given in the Appendix, the interior integral in U becomes

Eξ∗j |y∗{log π(ξ∗j |y∗)} = −1

2
log |Σξ| −

ν1 + k

2
,(3.1)

where Σξ is a conditional posterior variance of ξ∗j given y∗. U is obtained from
(3.1) by integration with respect to the marginal distribution of Y∗. After re-
moving the redundant terms, U is reduced to a simple form ψ(D) for design
D,

ψ(D) = log |Σξ|−1.(3.2)
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Note that |Σy∗ | = |Σξ|−1|Σ0|, hence ψ(D) is proportional to log |Σy∗ |. It should
also be noted that ψ(D) is design-dependent and written in terms of the hyper
parameter Σ0. Therefore, for any given design D, ψ(D) is calculable.

Remark 3.1. In Σξ, the expression A′(ζj)Σ
−1A(ζj) is the inverted

variance of (A′(ζj)Σ
−1A(ζj))

−1A(ζj)
′Σ−1y∗, and Σ−1

0 is the inverted prior vari-
ance of ξ∗j which, in fact, combines prior information with extracted information
from the data.

Now, it is assumed that vector Y∗ in the model (2.8) is distributed as
a multivariate SN, SNN (µ,Σ,λ). Calculation of Eξ∗j |y∗{log π(ξ∗j |y∗)} for SN
distribution is not simple due to complexity of such distribution. To simplify the
problem, we used expression (2.3) for Y∗ and apply the conditional distribution
below:

(3.3) Y∗|Z = z ∼ N(µ+ zΣ
1
2δ,G),

where G = Σ
1
2 (IN − δδ′)Σ

1
2 . Following Sorensen and Gianola [13], we use the

distribution of Y∗ condition on the latent variable Z, in writing the posterior
distribution as given in (6.2). Insert the unobserved random variable Z in the
parameters vector, i.e. θ′

j = (ξ∗
′

j , Z), j = 1, 2, ...,
(
ν2
k

)
, and take the prior distri-

butions N(0,Σ0) for ξ
∗
j . The joint posterior distribution of θj is proportional to

f(θj ,y
∗) in (6.2).

The Shannon information criterion is

Eθj |y∗{log π(θj |y∗)} = EZ|y∗{Eξ∗j |z,y∗(log π(θj |y∗))}.(3.4)

More calculations and details are given in the Appendix, based on which, the
conditional expectation in (3.4) is simplified to the reduced form below:

Eθj |y∗{log π(θj |y∗)} = − 1

2
log |2πΣξ| −

ν1 + k

2

− 1

2
log(2πσ2z)−

1

2
+

z∗ϕ( z
∗

σz
)

2σzΦ(
z∗

σz
)
− log(Φ(

z∗

σz
)),

where Σξ and σ2z are conditional posterior variance of ξ∗j given (z,y∗) and con-
ditional posterior variance of Z given y∗, respectively. z∗ is conditional posterior
mean of Z given y∗. More details on these can be found in the Appendix.

Meanwhile, the expected value of (2.9) is computed with respect to the
marginal distribution of Y∗ given in the Appendix, i.e. SNN (0,Σy∗ ,γy∗). It
gives,

U = − ν1 + k + 1

2
log(2π)− ν1 + k + 1

2
− 1

2
log{|Σξ|(σ2z)}

+
1

2
ET {T

ϕ(T )

Φ(T )
− 2 log[Φ(T )]},(3.5)
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where T = z∗

σz
with T ∼ SN(0, σ2t , σt); σ

2
t =

δ′Σ
1
2M′Σy∗MΣ

1
2 δ

1+δ′Σ
1
2MΣ

1
2 δ

; and M is given in

the Appendix. ESID in (3.5) can be written as the following design-dependent
criterion and then the minimum of such the criterion over all models in S be
maximized over SDs to come up with the superior design.

ψ(D,λ) = log{|Σξ|−1(σ2z)
−1}+ ET {T

ϕ(T )

Φ(T )
− 2 log[Φ(T )]}.(3.6)

It should also be noted that |Σy∗ | = |G||Σξ|−1|Σ0|(σ2z)−1, therefore

ψ(D,λ) ∝ log |Σy∗ |+ ET {T
ϕ(T )

Φ(T )
− 2 log[Φ(T )]}.(3.7)

The subsequent remarks present more details on ψ(D,λ).

Remark 3.2. Generally, λ is an N × 1 unknown vector. Lacking a
specific knowledge on λmay lead one to follow the Bayesian approach for choosing
a prior distribution such as uniform on a sphere.

Remark 3.3. Similar to Remark 3.1, the termA′(ξj)G
−1A(ξj) in |Σξ|−1

is the inverted variance of (A′(ξj)G
−1A(ξj))

−1A(ξj)
′(VG)−

1
2y∗ where V =

Σ
1
2 (IN − 2

πδδ
′)Σ

1
2 .

Remark 3.4. For λ→ 0 (Normality error case) random variable T is
degenerated at zero. Therefore, the second term in (3.7) disappears and ψ(D,λ)
remains with its first term. It is similar to what is given in (3.2) for normal
case. In the hidden truncation model, if for every i=1,2,...,N, δi → 0, then
Y∗ ∼ N(µ, IN ) and ψ(D) is simplified to (3.2) with Σ = I.

Remark 3.5. For the special case of identical skewness, i.e. λ = λ1N ,

λ ∈ R, σt and G−1 = Σ− 1
2 (IN + λ21N1′N )Σ− 1

2 are symmetric in λ. Therefore,
ψ(D,λ) is symmetric in λ. It should also be noted that for a hidden truncation
problem with δ = δ1N , ψ(D, δ) is symmetric in δ.

3.2. BEKL search criterion

In what follows, we obtain the expected KL distance, Iθ{E, π(θ)}, under
normal and SN distributions for error. It should be noted that by keeping the
prior distribution in expected information (2.6) the results in this section will be
different from the findings in section 3.1, which were obtained from U in (2.9).

Consider model (2.8), and for more understanding, first assume that Y∗ ∼
N(µ,Σ). Now, for ξ∗j ∼ N(0,Σ0), j = 1, 2, ...,

(
ν2
k

)
, compute EY∗|ξ∗j (log f(y

∗|ξ∗j ))
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and EY∗{log f(y∗)} to reach Iθj{E, π(θj)} given in (2.7). From marginal distri-
bution of Y∗, which is given in the Appendix, we have

EY∗{log f(y∗)} = −N
2
(log(2π) + 1)− 1

2
log |Σy∗ |.

Clearly, EY∗|ξ∗j (log f(y
∗|ξ∗j )) = −N

2 (log(2π) + 1), hence Iθj{E, π(θj)} is

Iθj{E, π(θj)} =
1

2
log |Σy∗ |.(3.8)

As can be seen in (3.8), in order to minimize Iθj{E, π(θj)}, it is enough to
minimize the simple form |Σy∗ | over all possible

(
ν2
k

)
models.

Now, suppose Y∗ ∼ SNN(µ,Σ,λ). Let’s add the unobserved random
variable Z to the parameters vector to get θ′

j = (ξ∗
′

j , Z), j = 1, 2, ...,
(
ν2
k

)
. By

assuming the prior distribution for the vector ξ∗j , as given herein, and noting that
Y∗ can be written as (2.3), we have

EY∗|θj
(log f(y∗|θj)) = −N

2
(log(2π) + 1)− 1

2
log |G|,

and

EY∗(log f(y∗)) = log 2− N

2
(log(2π) + 1)− 1

2
log |Σy∗ |+ ET {log[Φ(T )]}.

Therefore, Iθj{E, π(θj)} provides the following:

Iθj{E, π(θj)} = − log 2− 1

2
log |G|+ 1

2
log |Σy∗ | − ET {log[Φ(T )]}.(3.9)

Evidently, minimizing Iθj{E, π(θj)} in (3.9) is equivalent to minimizing
Φ(D,λ) = log |Σy∗ | − 2ET {log(Φ(T ))} over the set of all possible models in S,
known as the BEKL criterion. Note that the ESI in (3.7) has an extra term

ET (T
ϕ(T )
Φ(T )) in comparing to the BEKL. That is, although the prior distribution

is design-independent, keeping such the prior in (2.6) leads to a simple and more
flexible criterion.

The proposed BEKL measure, which is primarily proposed for model dis-
crimination, can also be used to compare search performance of SDs. In doing so,
first for each of the SDs the minimum of the BEKL (MBEKLD) is obtained over
the set of all models. Then, the design with a larger MBEKLD is considered to
be the desired one. Therefore, definition 2.1 is valid for designs D1 and D2 with
respect to MBEKLD-criterion if MBEKLD1 > MBEKLD2 .

4. IMPLEMENTATION

In this section, we assess the performance of the two proposed Bayesian
criteria through comparing and ranking rival SDs. To do so, we use MBEKLD
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and MESID under SN distribution for error. We compare search performance
of three 12-run search designs D1, D2 and D3, as given in the Appendix, for a 24

factorial experiment. Design D1 is a balanced array of full strength, Design D2 is
the projection of a 12-run Plackett-Burman design onto its 4 columns, and Design
D3 is a non-repeated run orthogonal main effect plan. These designs have already
been compared by Ghosh and Teschmacher [9] and Talebi and Esmailzadeh [17],
under normality.

Example 4.1. Let in model (1.1), ξ1 be the vector of the general mean
and main effects, and ξ2 be two- and three-factor interactions, while assuming
that four-factor interaction is negligible. Furthermore, it is assumed that ξ2
includes two non-zero effects at the most. D1, D2, and D3 are MEP.1. They
are also MEP.2 plans, when ξ2 includes only two-factor interactions, assuming
higher-order interactions are all zero. We were interested in studying scores of 12
EEIU volunteers with a GPA over than mean, i.e. Y = W|X > µx, where Wis,
i=1,2,...,12, are the scores and X is the GPA. Consider model (2.8) for the vector
of observations Y and assume (X,W′)′ ∼ N13(θ,Ω), where θ = (µx,µ

′)′, µ =

A(ξj)ξ
∗
j , and Ω =

(
1 δ′

δ I12

)
. In this case, Y satisfies the conditional distribution

of (2.4). Data were collected through 3 possible designs D1, D2, and D3. For
δ = δ112, let σD,δ = [σtζ1 , σtζ2 , ..., σtζl ]

′, where l =
(
ν2
k

)
, and σtζj denotes σt for

the j-th model. Matlab software was used to calculate amount of the criterion.
It was learned that σD,δ = cδ1l, for D1, D2 and D3, where cδ is scalar and
depends on δ for all models. It is also true that σD1,δ =σD2,δ =σD3,δ, which
means that the value of σt depends neither on the model nor on the design.
Consequently, in order to compare designs D1, D2, and D3, for a fixed value of δ,
the second expression for both criteria is canceled out and, therefore, both ESID
and BEKLD become the same. This is true for the following design comparison
and hence there is no difference in computing either of the criteria. For k = 1,
once again we considered the prior distribution N(0,Σ0) for ξ∗j in which Σ0 is
a 6 × 6 diagonal matrix, with large diagonal elements of 100. The comparisons
showed that D2 is better than both D1 and D3, and D1 is better than D3. This
result is the same as what was obtained using the compound criteria proposed by
Talebi and Esmailzadeh [17]. For instance, when δ = 0.2, values of criterion are
42.6251, 42.6738, and 42.4026 for D1, D2, and D3, respectively, while the EKL
values for these Designs are the same and equal to 10.667. This shows that the
EKL is unable to discriminate search abilities of D1, D2, and D3.

Example 4.2. In continuation of Example 4.1, let ξ2 be the vector of
two-factor interactions only, and assume that three- and four-factor interactions
are all zero. For k = 1, results showed that D3 has the same search ability as D1,
and they are better than D2, based on the present criteria. For example, when
δ = 0.2, criterion value for D1 and D3, is 42.6895 and for D2 is 42.6738. For
k = 2, assume that ξ∗j is distributed as N(0,Σ0) in which Σ0 is a 7× 7 diagonal
matrix, with diagonal elements of 100. When δ = 0.2, criterion value for D1 and
D3 is 49.376, and for D2 is 49.3115.
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5. DISCUSSION

Findings in section 4 reveal that both criteria, MESID and MBEKLD

increase as δ increases; this means as δ(≥ 0) gets larger, the capability of SD en-
hances in identifying the non-zero effects, which has been ignored by the former
criteria. The proposed criteria are also applicable for k > 1. So, an important
advantage of the present criteria is their flexibility with respect to distributional
model and the number of non-zero effects in ξ2. This study generalizes the
previously-obtained results for the normal model by utilizing the SN distribu-
tion, where normal distribution is its special case. It is notable that unlike SP,
MESID and MBEKLD do not depend on an unknown parameter. This allows
us to come up with numerical values for the criteria. Furthermore, the results
presented in section 4 showed thatMESID andMBEKLD criteria have a higher
discriminating power than the EKL, obtained by Talebi and Esmailzadeh [15].

6. APPENDIX

6.1. Conditional posterior distributions for normal distribution error

For e∗ ∼ N(0,Σ), f(ξ∗j ,y
∗) can be written as

f(ξ∗j ,y
∗) = f(y∗|ξ∗j )π(ξ∗j )

= (2π)−
N+ν1+k

2 |Σ|−
1
2 exp{−1

2
(y∗ −A(ξj)ξ

∗
j )

′Σ−1(y∗ −A(ξj)ξ
∗
j )}

× |Σ0|−
1
2 exp{−1

2
ξ∗j

′Σ0
−1ξ∗j},(6.1)

where |.| stands for determinant. Using the joint distribution in (6.1) together
with some other calculations, it can be shown that the conditional posterior
distributions of parameters are as follows:

ξ∗j |y∗ ∼ N(µξ∗j
, (A′(ξj)Σ

−1A(ξj) +Σ−1
0 )−1),

where µξ∗j
= (A′(ξj)Σ

−1A(ξj)+Σ−1
0 )−1A′(ξj)Σ

−1y∗. The logarithm of the joint
posterior distribution is

log{π(ξ∗j |y∗)} = −1

2
log |2π(A′(ξj)Σ

−1A(ξj) +Σ−1
0 )−1|

− 1

2
(ξ∗j − µξ∗j

)′(A′(ξj)Σ
−1A(ξj) +Σ−1

0 )(ξ∗j − µξ∗j
)

Note that,

(ξ∗j − µξ∗j
)′(A′(ξj)Σ

−1A(ξj) +Σ−1
0 )(ξ∗j − µξ∗j

)|y∗ ∼ χ2
ν1+k
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where χ2
ν1+k is chi-squared distribution with ν1+ k degrees of freedom. Marginal

distribution of Y∗ is obtained from the joint distribution in (6.1). It can be easily
shown that Y∗ is distributed as N(0,Σy∗), where

Σy∗ = {Σ−1 −Σ−1A(ξj)}(A′(ξj)Σ
−1A(ξj) +Σ−1

0 )−1A′(ξj)Σ
−1}−1.

6.2. Conditional posterior distributions for SN distribution error

For Y∗ ∼ SNN (µ,Σ,λ), the joint density of vector (θj ,y
∗) is

f(θj ,y
∗) = f(y∗|θj)f(z|ξ∗j )π(ξ∗j )

= |G|−
1
2 exp{−1

2
(y∗ −A(ξj)ξ

∗
j − zΣ

1
2δ)′G−1(y∗ −A(ξj)ξ

∗
j − zΣ

1
2δ)}

× 2(2π)−
N+ν1+k+1

2 |Σ0|−
1
2 exp{−1

2
[z2 + ξ∗j

′Σ−1
0 ξ∗j ]}.(6.2)

From (6.2), the conditional posterior distributions of unknown parameters are
obtained as:

ξ∗j |z,y∗ ∼ N(µξ∗j
,Σξ), and Z|y∗ ∼ N(z∗, σ2z)I(Z > 0), in which the condi-

tional posterior distribution of Z|y∗ is truncated normal at zero with the following
pdf: π(Z|y∗) = ϕ( z−z∗

σz
)/(σzΦ(

z∗

σz
)) and

µξ∗j
= ΣξA

′(ξj)G
−1(y∗ − zΣ

1
2δ), Σξ = (A′(ξj)G

−1A(ξj) +Σ−1
0 )−1,

z∗ = σ2zy
∗′MΣ

1
2δ, σ2z = (1 + δ′Σ

1
2MΣ

1
2δ)−1,

M = G−1+G−1A(ξj)[(ΣξA
′(ξj)G

−1A(ξj)+Iν1+k)
−1−Iν1+k](A

′(ξj)G
−1A(ξj))

−1A′(ξj)G
−1.

The logarithm of π(θj |y∗) (the joint posterior distribution of θj) can be written
as

log π(θj |y∗) = log{π(ξj |z,y∗)}+ log{π(Z|y∗)}

= −1

2
log |2πΣξ| −

1

2
(ξ∗j − µξ∗j

)′Σξ
−1(ξ∗j − µξ∗j

)

− 1

2
log(2πσ2z)−

1

2
(
Z − z∗

σz
)2 − log(Φ(

z∗

σz
)).

It should be noted that,

(ξ∗j − µξ∗j
)′Σξ

−1(ξ∗j − µξ∗j
) ∼ χ2

ν1+k,

and

EZ|y∗(Z − z∗)2 = σ2z − σzz
∗ ϕ(

z∗

σz
)

Φ( z
∗

σz
)
.

From (6.2) the marginal distribution of Y∗ is distributed as SNN (0,Σy∗ ,γy∗),

in which Σy∗ = {M− σ2zMΣ
1
2δδ′Σ

1
2M′}−1 and γy∗ = Σy∗

1
2

MΣ
1
2 δ√

1+δ′Σ
1
2MΣ

1
2 δ

.
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6.3. Search designs D1, D2 and D3 with 12 runs and 4 factors.

D1 D2 D3

A B C D A B C D A B C D

+ + + + + - + - + + + +
- - - - + + - + + - + +
- - - + - + + - - - + +
- - + - + - + + - + - +
- + - - + + - + + - - +
+ - - - + + + - - - - -
- - + + - + + + - + + -
- + - + - - + + + - + -
+ - - + - - - + - - + -
- + + - + - - - + + - -
+ - + - - + - - + - - -
+ + - - - - - - - - - -
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