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Abstract:

• In this paper we propose an iteratively reweighted adaptive elastic net estimation method
for conditional heteroscedastic time series models. The sign consistency and the asymptotic
normality of the estimator are investigated. Compared with the Lasso method, the elastic
net is more efficient for autoregressive time series models, because it benefits not only from
the selection of the Lasso but also from the grouping effect inherited from the ridge penalty.
The Monte Carlo simulation studies based on an AR-ARCH model are reported to assess the
finite-sample performance of the proposed elastic net method.
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1. INTRODUCTION

The Lasso introduced in [10] is a shrinkage and selection method for linear re-
gression models. As variable selection is of increasing importance in big data analysis,
the lasso is much more appealing owing to its sparse representation. However, the litera-
ture about the penalization techniques mainly deals with homoscedastic linear regression
models, see, e.g., [2], [5], [9], [15], [16], and [18], among others. The investigation of
the Lasso type estimator for heteroscedastic models started relatively late. Recently, [11]
and [12] analysed the weighted lasso type estimators in a linear heteroscedastic regres-
sion model setting. [17] derived an iteratively reweighted adaptive lasso algorithm for
time series models under conditional heteroscedasticity, and proved that the resulting
estimator has sign consistency and asymptotic normality. The proposed method can be
applied to various AR-ARCH type processes.

In this paper, we generalize the results of [17] to the adaptive elastic net method.
That is, we consider the model similar to the one used by [17], but suggest the use
of an iteratively reweighted adaptive elastic net algorithm. The elastic net introduced
by [19] is a convex combination of the Lasso and ridge penalty. The ridge part of the
penalty shrinks the estimated coefficients of all the variables and induces coefficients of
correlated variables to be close to one another. The Lasso part of the penalty shrinks and
selects the coefficients of the variables. As discussed in [4], the elastic net benefits from
the selection of the Lasso, as well as from the finite-sample grouping effect inherited
from the ridge penalty. This makes the elastic net particularly useful for estimating the
autoregressive time series models, since this estimation procedure leaves out irrelevant
variables but does not exclude correlated variables that may be relevant as part of a
group.

In the next section, we introduce the iteratively reweighted adaptive elastic net
algorithm for high-dimensional sparse linear regression models under conditional het-
eroscedasticity. The sign consistency and the asymptotic normality of the weighted
adaptive elastic net estimators of the parameters are also addressed. Section 3 gives
the Monte Carlo simulations based on a specific AR-ARCH model, evaluating and com-
paring the performance of the proposed adaptive elastic net algorithm and the adaptive
Lasso method. The proof of the theorem is given in Appendix.

Throughout the paper, all limits are taken as n → ∞, unless specified other-
wise. The symbol C denotes an absolute positive constant whose value may vary at
each occurrence. D−→ denotes convergence in distribution, P−→ denotes convergence in
probability, Z stands for a standard normal random variable. For any two real sequences
{an} and {bn}, an ∼ bn means that there are constants c > 0 and C < ∞ such that
c ≤ an/bn ≤ C for all sufficiently large n.
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2. THE ITERATIVELY REWEIGHTED ADAPTIVE ELASTIC NET ALGO-
RITHM

We now introduce the model and the basic ideas of the algorithm. The model
discussed here is similar to the one used by [14] and [17]. We consider a stationary ran-
dom process Yt ∈ R and a possibly infinite vector of covariates of stationary processes,
Xt,∞ = (Xt,1, Xt,2, . . .)

′, t ∈ Z, Z := {0,±1,±2, . . .}, obeying the model

Yt = X ′t,∞β
0
∞ + εt, t ∈ Z,(2.1)

where β0∞ = (β01 , β
0
2 , . . .)

′ satisfying
∑∞

i=1 |β0i |2 < +∞, εt is zero mean and indepen-
dent of the covariates Xt,∞, and

εt = σtZt, σt = g(α0
∞;L∞,t), t ∈ Z,

where Zt, t ∈ Z, are i.i.d. standardized r.v.’s, g is a positive function, L∞,t = (L1,t, L2,t,
. . .) is a possibly infinite vector of covariates of stationary processes Li,t, t ∈ Z, and
α0
∞ = (α0

1, α
0
2, . . .)

′ is a parameter vector. Here the covariates Xt,∞ and L∞,t can
contain lagged versions of Yt and (εt, σt), respectively, which allows flexible modelling
of autoregressive processes and a class of conditional variance models such as GARCH
type models.

The observed data consists of (Xn,Yn), where

Yn =

 Y1
...
Yn

, Xn =

 X1,1 · · · X1,pn
...

. . .
...

Xn,1 · · · Xn,pn

, β0
n =

 β01
...
β0pn

, ε0n = Yn −Xnβ
0
n,

where pn is the number of possible parameters which increases with sample size n, β0
n

is the restriction of β0∞ to its first pn coordinates, ε0n = (ε01, ..., ε
0
n)′.

The fact
∑∞

i=1 |β0i |2 < +∞ implies that there is a positive sequence an decreas-
ing to zero such that limn→∞ P (max1≤t≤n |ε0t − εt| < an) → 1 holds. Thus, for a
sufficiently large n we can approximately write

ε0t = σtZt, σt = gn(α0
n;L0

n,t), 1 ≤ t ≤ n,(2.2)

here α0
n and L0

n,t are the restrictions of α0
∞ and L∞,t to their first pn coordinates, re-

spectively, and gn is the restriction of g that corresponds to α0
n and L0

n,t. Without loss
of generality we assume that only qn of the pn parameters are non-zero. That is, β0

n =
(β01 , . . . , β

0
qn , 0, . . . , 0)′ = (β0

n(1)′,0′)′. In a similar manner, Xn = (Xn(1),Xn(2))
and Xt,n = (Xt,n(1)′,Xt,n(2)′)′, where Xt,n is the t-th row of Xn.

We now introduce the adaptive elastic net algorithm based on an iteratively reweight-
ed technique which is similar to the approaches in [7], [8], and [17]. Rewrite Model (2.1)
as

Ỹt = X̃′t,nβ
0
n + Zt, 1 ≤ t ≤ n,(2.3)
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where Ỹt = 1
σt
Yt, X̃t,n = 1

σt
Xt,n. It is obvious that the error Zt is homoscedastic.

Since we have no a priori information about the conditional standard deviation σt,
at first step we assume homoscedasticity. Then we use a weighted adaptive elastic net
algorithm to estimate β0

n in each iteration step. That is,

βn,elastic(λn, γn, wn)

= arg min
β

(Yn −Xnβ)′W 2
n(Yn −Xnβ) + λn‖Σ1β‖1 + γn‖Σ1/2

2 β‖22,(2.4)

where λn ≥ 0, γn ≥ 0, Σ1 = diag(vn), vn = (vn,1, . . . , vn,pn) = |βn,init1|−τ1 ,
Σ2 = diag(un), un = (un,1, . . . , un,pn) = |βn,init2|−τ2 , βn,init1 and βn,init2 are
two initial estimators of β0

n for some τ1 ≥ 0 and τ2 ≥ 0, and Wn = diag(wn),
wn = (wn,1, ..., wn,n) = (σ̂−1n,1, ..., σ̂

−1
n,n), σ̂n,t is a suitable estimator of σt. Moreover,

let α̂n (βn,elastic;Xn,Yn) and L̂n,t(βn,elastic;Xn,Yn) be the suitable known plug-in
estimators for α0

n and L0
n,t, respectively. For relevant literature on estimation methods

for the conditional variance part, see e.g. [7], [8], [17], and the references therein. For
example, if the error process is an ARCH(p) model as in the simulation studies of Sec-
tion 3, the usual maximum likelihood methods can be applied to estimate the unknown
parameters of the conditional variance part based on the residuals from step 2 of the
following algorithm.

The iteratively reweighted adaptive elastic net algorithm:

1. Let k = 1, w[0]
n = 1. Determine the initial values of vn,un, λn and γn.

2. Calculate the estimator β[k]
n = βn,elastic(λn, γn, w

[k−1]
n ) of β0

n for Model (2.3)

using the weighted adaptive elastic net algorithm (2.4), compute the residuals ε[k]n =

Yn −Xnβ
[k]
n .

3. Estimate the conditional variances σ[k]n,t = gn(α
[k]
n ;L

[k]
n,t), 1 ≤ t ≤ n, where

α
[k]
n = α̂n(β

[k]
n ;Xn,Yn), L[k]

n,t = L̂n,t(β
[k]
n ;Xn,Yn) based on Model (2.2) and the

residuals from step 2.

4. Calculate new weights w[k]
n,t = gn(α

[k]
n ;L

[k]
n,t)
−1. Let w[k]

n = (w
[k]
n,1, ..., w

[k]
n,n).

5. Let k = k+ 1 and back to step 2 until a specified stopping criterion is satisfied.
Return estimate β[k]

n .

As stated in [17], a plausible stopping criterion should measure the convergence
of σ[k]n , where σ[k]n = (σ

[k]
n,1, ..., σ

[k]
n,n)′. One can stop the algorithm if ‖σ[k]n −σ[k−1]n ‖2 < ζ

for some small ζ > 0. It is suggested that, under certain conditions, k = 2 is sufficient
to get an optimal estimator if n is large.

For the two initial estimators βn,init1 and βn,init2, as stated in [17], there are
several options available. When pn < n, one can simply choose the OLS estimator.
Alternatively, one can select the lasso estimator asβn,init1, the ridge regression estimator
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as βn,init2, or set both βn,init1 and βn,init2 equal the elastic net estimator.

Next we show the sign consistency and asymptotic normality of the non-vanishing
components of β[k]

n . Let bn = min{|β0
n(1)|}, W [k]

n = diag(w
[k]
n ), X̃[k]

n = W
[k−1]
n Xn,

Ỹ
[k]
n = W

[k−1]
n Yn, Γ̃

[k]
n = 1

n(X̃
[k]
n )′X̃

[k]
n , Γn = Γ̃

[1]
n = 1

nX
′
nXn. Let W 0

n and Γ̃0
n be the

true matrices, and the submatrices to β0
n(1) are denoted as Γ̃

[k]
n (1), Γ̃0

n(1), Γn(1), Σ1(1)
and Σ2(1). Similarly to [12] and [17], we require the following assumptions.

Assumption (A):

(A1) {Yt, Xt,1, . . . , Xt,m, σt}t∈Z is weakly stationary for all m ≥ 1, {Zt}t∈Z is an
i.i.d. standardized random sequence and E(Z4

t ) < ∞, Zt is independent of Xt,∞ for
any t ∈ Z, and E(σ4t ) <∞.

(A2) E(X2
t,i) = 1 for any i ≥ 1 and t ∈ Z.

(A3) There is a positive sequence {υn} such that max1≤t≤n ‖Xt,n(1)‖2 = Op(υn
√
qn).

(A4) There are constants a1 > 0 and a2 > 0 such that

lim
n→∞

P (a1 min{|βn,init1(1)|τ1} < bn) = 0, lim
n→∞

P (a2 min{|βn,init2(1)|τ2} < bn) = 0.

(A5) There exists a positive sequence {rn} with rn →∞ such that

lim
n→∞

P (max{|βn,init1(2)|τ1} ≥ rn−1) = 0.

(A6) There are positive constants λ0,min < λ0,max and λ1,min such that the eigenvalues
satisfy

lim
n→∞

P (λ0,min < λmin(Γn(1)) ≤ λmax(Γn(1)) < λ0,max) = 1,

and

lim
n→∞

P (λ1,min < λmin(Γ̃0
n(1)) ≤ λmax(Γ̃0

n(1))) = 1.

(A7) There are constants 0 < λ2,min and λ3,min > 0 such that the eigenvalues satisfy

lim
n→∞

P (λ2,min < λmin(Dn) ≤ λmax(Dn)) = 1,

and

lim
n→∞

P (λ3,min < λmin(En) ≤ λmax(En)) = 1,

where

Dn =
(

Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Γ̃0
n(1)

(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

,
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En =
(

Γn(1) +
γn
n

Σ2(1)
)−1

Γn(1)
(

Γn(1) +
γn
n

Σ2(1)
)−1

.

(A8) There is a positive constant σmin such that

0 < σmin < gn(α̂n(βn;Xn,Yn), L̂n,t(βn;Xn,Yn)), 1 ≤ t ≤ n

for all large enough n and βn in an open neighbourhood of β0
n.

(A9) For all n and any 1 ≤ t ≤ n, the estimators α̂n and L̂n,t are consistent for α0
n and

L0
n,t, and there is a sequence {hn} with hnn−1/2 → 0 such that

max
1≤t≤n

|g(α0
∞;L∞,t)

−2 − gn(α̂n(β0
n;Xn,Yn), L̂n,t(β

0
n;Xn,Yn))−2| = Op(hn/

√
n).

(A10) There are positive constants C1, C2 and d with 1 ≤ d ≤ 2 such that, for any
t ∈ Z,

P (|εt| > x) ≤ C1 exp(−C2x
d).

(A11)

1© (logn)I{d=1}(log (1+qn))1/d√
nbn

→ 0, 2© hn√
nbn
→ 0,

3© λn
√
qn√

nbn
→ 0, 4©

√
n(logn)I{d=1}(log (1+pn−qn))1/d

λnrn
→ 0,

5© hn
√
n

λnrn
→ 0, 6©

√
qn

bnrn
→ 0,

7© υn
√
qn√
n
→ 0, 8© hn

√
qn√
n
→ 0,

9© γn
(
(logn)I{d=1}+hn

)
√
nbn

→ 0.

Similar assumptions as in (A1)-(A11) are also imposed in [17] to study the asymp-
totic behaviour of the iteratively reweighted adaptive lasso algorithm. Assumption (A1)
is standard for variable selection in a time series setting. Assumption (A2) is the usu-
al scale standardization required in a lasso setting without loss of generality (see e.g.
[6]), because {Xt,i} is stationary and hence its mean and variance are constants. As-
sumption (A3) characterises the structure of regressors. For instance, if {Xt,n(1)} is
stationary and β0

n contains a finite number of non-zero components, then we can choose
υn = OP (1) for Assumption (A3) to hold. Assumptions (A4) and (A5) actually assume
that the weights vn and un are not too large for β0j 6= 0 and not too small for β0j = 0.
They also mean that the initial estimators can distinguish between zero and non-zero
components of the parameter vector well. For the Lasso initial estimators, Assumptions
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(A4) and (A5) can be derived from sharp thresholds and sign consistency of the Lasso
estimate under some additional mild assumptions (see, e.g., [13] and [16]). Assump-
tion (A6) is needed to address heteroscedasticity in high-dimensional regression models
(see, for example, [3]). Since we deal with the weighted adaptive elastic net algorithm,
additional similar assumptions such as (A7) are also needed here. It is worth mentioning
that, under certain conditions, Dn − Γ̃0

n(1) → 0 and En − Γn(1) → 0 as n → ∞.
Assumptions (A8) and (A9) are standard in heteroscedastic regression and Assumption
(A10) excludes heavy-tailed errors.

Assumption (A11) postulate properties required for deriving the asymptotics of
the proposed estimator. As a simple example, to better understand Assumption (A11)
assume bn to be fixed and d = 1, 1© and 2© permit hn ∼ 1 and qn ∼ n1/2+δ for any
0 < δ < 1/4. With these choices we can choose λn ∼ n1/4−δ, rn ∼ n1/2+δ, υn ∼ 1
and γn ∼ n1/4−δ by 3©, 4©, 7© and 9©, and pn can grow with every polynomial order.
Obviously these selections satisfy Assumption (A11), and also Assumptions (A3)-(A5)
and (A9). Moreover, by 4© and 9©, we obtain γn

bnλnrn
→ 0 as n→∞.

The following theorem shows the sign consistency and asymptotic normality of
the estimator. The proof will be given in the Appendix. The sign consistency introduced
by [16] is stronger than the usual selection consistency which only requires the zeros to
be matched, but not the signs. The reason for using sign consistency is to avoid dealing
with situations where a model is estimated with matching zeros but reversed signs.

Theorem 2.1. Under Assumption (A), it holds for all k ≥ 1 that

(1) (sign consistency)

lim
n→∞

P
(
sign(β[k]

n ) = sign(β0
n)
)

= 1,

where sign(·) maps positive entry to 1, negative entry to -1 and zero to zero, that is, β[k]
n

asymptotically matches the zeros and signs of β0
n with probability one.

(2) (asymptotic normality)

√
n(sn(k))−1ξ′n(β[k]

n (1)− β0
n(1))

D−→ Z,

where ξn ∈ Rqn with ‖ξn‖2 = 1, s2n(1) = ξ′nEnξn and s2n(k) = ξ′nDnξn for k ≥ 2.

3. SIMULATION STUDIES

In this section, we provide simulation studies to check the finite sample perfor-
mance of the iteratively reweighted adaptive elastic net algorithm (IRAEN) for an AR-
ARCH model. The comparison with the iteratively reweighted adaptive Lasso algorithm
(IRAL) introduced in [17] is also considered.
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We consider the following AR-ARCH model

Yt =
∑
i∈I

φiYt−i + εt,

and

εt = σtZt, σt =
√
α0 + α1ε2t−1 + α2ε2t−2,

where the true values of the parameters are α0 = 0.02 and α1 = α2 = 0.49, Zt ∼
N(0, 1), φi = 0.95(φ−1 − 1)φ

√
i, φ = 0.85, I = {1, 4, 9, 16, . . .}. It is easy to see that∑

i∈I |φi| = 0.95 < 1 and
∑

i∈I φ
2
i <∞ which imply the stationarity of Yt. Note that,

by the properties of the AR-ARCH model, EY 2
t = Eσ2t = α0/(1−α1−α2) = 1. This

implies that Assumption (A2) is satisfied.

Let pn = [2
√
n] and qn = [

√
pn], where n is the sample size. For example, when

n = 500, pn = 44, qn = 6 and I = {1, 4, 9, 16, 25, 36}. If n = 1000, then pn = 63,
qn = 7 and I = {1, 4, 9, 16, 25, 36, 49}.

After generating data from the above AR-ARCH model with sample size n = 500
and n = 1000, respectively, we use two methods, IRAEN and IRAL, to estimate the
parameters φi and to check the sign consistency of the estimators. In the simulations,
we use the Cp criterion to choose the appropriate λn and γn. The two initial estimators
βn,init1 and βn,init2 are chosen to be the OLS estimator.

3.1. The iteratively reweighted adaptive elastic net algorithm

To apply the proposed iteratively reweighted elastic net algorithm, we consider
two cases: the homoscedastic case (k = 1) and the heteroscedastic case with one addi-
tional replication (k = 2).

For the k = 1 case, Table 1 reports the estimation results for two sample sizes n =
500 and n = 1000 based on 1000 replications. We hope that the covariates with non-
zero coefficients (relevant parameters) can be selected from the estimation procedure,
but the covariates with zero coefficients (irrelevant parameters) shouldn’t be included.
Table 1 shows the proportions of both the relevant and irrelevant included parameters
of all estimated parameters for the homoscedastic case. Proportion 1 (the accuracy rate)
denotes the proportion of the relevant included parameters and Proportion 2 (the error
rate) is the proportion of the irrelevant included parameters. The number of times each
parameter has been selected during 1000 simulations are also reported.

It is seen from Table 1 that the accuracy rate increases with larger sample size
n, while the error rate decreases in n. This is consistent with the theoretical results in
Theorem 1.

In a similar way, we apply the proposed iteratively reweighted elastic net algo-
rithm with k = 2. Proportions of both the relevant and irrelevant included parameters
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φ1 φ2 φ3 φ4 φ5 φ6
n=500 866 691 622 834 568 506
n=1000 932 721 668 902 575 542

φ7 φ8 φ9 ... Proportion 1 Proportion 2
n=500 454 482 864 ... 81.25% 33.61%
n=1000 502 502 927 ... 89.41% 29.66%

Table 1: Proportions of relevant included parameters and irrelevant included
parameters for the case of k = 1 using IRAEN.

of all estimated parameters and the number of times each parameter has been selected
during 1000 simulations for the heteroscedastic case are given in Table 2. Inspection of
Table 2 reveals that, as in the k = 1 case, the accuracy rate increases with larger sample
size n, while the error rate decreases in n. Comparing two tables, we conclude that the
heteroscedastic case with k = 2 has better selection properties than the homoscedastic
case k = 1 for the conditional heteroscedastic models.

Moreover, the plots in Figure 1 show the selection results for both the k = 1
and k = 2 cases from one simulation with n = 500. For each plot, the vertical axis
represents the values of the estimated coefficients, the horizontal axis (bottom) represents
the values of lnλn, and the top shows the numbers of the non-zero coefficients selected
for different values of lnλn. The 44 curves illustrate the change of the values of 44
estimated coefficients with lnλn changing. Note that there are only six non-zero positive
coefficients in the true model. It can be seen that, when k = 2, these six coefficients tend
to zero from positive side, while when k = 1, there exist some coefficients tending to
zero from negative side, which means that no matter what value lnλn takes, the sign
consistency may not be satisfied. This is consistent with the conclusions drawn from the
comparison of Tables 1 and 2. Figure 1 again visually displays that the heteroscedastic
algorithm with k = 2 outperforms its homoscedastic counterpart.

φ1 φ2 φ3 φ4 φ5 φ6
n =500 938 415 395 969 383 363
n =1000 992 407 371 999 377 287

φ7 φ8 φ9 ... Proportion 1 Proportion 2
n=500 322 345 979 ... 94.92% 29.54%
n=1000 316 294 999 ... 98.77% 21.98%

Table 2: Proportions of relevant included parameters and irrelevant included
parameters for the case of k = 2 using IRAEN

3.2. The iteratively reweighted adaptive Lasso algorithm

Next we report the estimation results using the iteratively reweighted adaptive
Lasso algorithm. Proportions of both the relevant and irrelevant included parameters
and the number of times each parameter has been selected during 1000 simulations for
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Figure 1: Estimated coefficients for different λn values with n = 500 and k = 1
(upper) or k = 2 (lower) using IRAEN

the homoscedastic case and the heteroscedastic case with n = 500 and n = 1000 are
given in Tables 3 and 4, respectively. Figure 2 shows the selection results for both the
k = 1 and k = 2 cases from one simulation with n = 500. Similarly to the IRAEN
algorithm, Tables 3-4 and Figure 2 indicate that the heteroscedastic algorithm with k = 2
outperforms its homoscedastic counterpart.

φ1 φ2 φ3 φ4 φ5 φ6
n=500 871 682 619 863 515 501
n=1000 927 710 612 893 555 519

φ7 φ8 φ9 ... Proportion 1 Proportion 2
n=500 481 452 827 ... 80.20% 31.95%
n=1000 506 471 931 ... 88.37% 27.80%

Table 3: Proportions of relevant included parameters and irrelevant included
parameters for the case of k = 1 using IRAL

Comparing Tables 1 and 2 with Tables 3 and 4, it is clear that the IRAEN algorithm
proposed in this paper uniformly improves the accuracy rate as compared to the IRAL
method, while the error rate is increased as a price to pay for using IRAEN algorithm.
This implies that the IRAL method excludes irrelevant variables more thoroughly. It is
also consistent with the conclusions of [19]. That is, if the covariates have grouping
effect (a group of variables among which the pairwise correlations are very high), then
the IRAL algorithm tends to arbitrarily select only one variable from the group, while the
IRAEN algorithm has the capacity of selecting groups of correlated variables. Generally
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φ1 φ2 φ3 φ4 φ5 φ6
n=500 930 399 358 971 338 296
n=1000 995 349 325 997 305 277

φ7 φ8 φ9 ... Proportion 1 Proportion 2
n=500 327 313 974 ... 93.40% 26.35%
n=1000 253 252 1000 ... 98.66% 19.98%

Table 4: Proportions of relevant included parameters and irrelevant included
parameters for the case of k = 2 using IRAL

Figure 2: Estimated coefficients for different λn values with n = 500 and k = 1
(upper) or k = 2 (lower) using IRAL

speaking, the IRAEN algorithm produces a sparse model with good estimation accuracy,
while encouraging a grouping effect. This makes the IRAEN algorithm particularly
useful for estimating the models containing several correlated variables such as the AR-
ARCH type processes.
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APPENDIX

Proof of Theorem 2.1: The basic ideas of the proof are mainly from [12] and [17].
Since we are dealing with the elastic net algorithm, we need some extra steps to achieve
our goal.

Let ‖X‖ψd
= inf

{
C > 0

∣∣E[ψd(|X|/C)] ≤ 1
}

be the Orlicz norm of a random
variable X , where ψd(x) = exp(xd)− 1, 1 ≤ d ≤ 2. Denote en,j the jth unit vector in
Rqn . For any vector a and b, a =s b means that sign(a) = sign(b). Let k ≥ 2, the case
k = 1 can be proved in a similar way.

(I) The sign consistency

The Karush-Kuhn-Tucker (KKT) conditions yield that (Yn − Xnβ)′(W
[k−1]
n )2

(Yn −Xnβ) + λn‖Σ1β‖1 + γn‖Σ1/2
2 β‖22 is minimised by β = (β(1)′,0′)′ if and only

if

(3.1) X0′
j (W [k−1]

n )2(Yn −Xnβ)− γnun,jβj =
λn
2
vn,jsign(βj), if βj 6= 0,

(3.2) |X0′
j (W [k−1]

n )2(Yn −Xnβ)| < λn
2
vn,j , if βj = 0,

where X0
j is the j-th column of Xn. Let

δ[k]n (1) = β0
n(1) +

1

n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Xn(1)′(W [k−1]
n )2ε0n

−λn
2n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

s0n(1),

and

β[k]
n (1) =

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Γ̃[k]
n (1)β0

n(1)

+
1

n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Xn(1)′(W [k−1]
n )2ε0n

−λn
2n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

s0n(1),(3.3)

where s0n(1) = Σ1(1)sign(β0
n(1)). In addition, let δ[k]n = (δ

[k]
n (1)′,0′)′ and β[k]

n =

(β
[k]
n (1)′,0′)′.

First we show

lim
n→∞

P (β0
n 6=s δ

[k]
n ) = 0.(3.4)

Let η1,j = e′n,j
(
Γ̃
[k]
n (1) + γn

n Σ2(1)
)−1

Xn(1)′(W
[k−1]
n )2ε0n, η2,j = e′n,j

(
Γ̃
[k]
n (1) + γn

n

Σ2(1)
)−1

s0n(1), and let A1 = { 1n |η1,j | ≥
1
2 |β

0
j |, for some j ≤ qn} and A2 =
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{λnn |η2,j | ≥ |β
0
j |, for some j ≤ qn}. Thus, to prove (3.4), it is enough to show

that P (Aj)→ 0 as n→∞ for j = 1, 2.

For P (A1), we obtain

P (A1) ≤ P
( 1

n
max

1≤j≤qn
|η1,j | ≥

bn
2

)
≤ P

( 1

n
max

1≤j≤qn
|η0,∞1,j | ≥

bn
4

)
+ P

( 1

n
max

1≤j≤qn
|η1,j − η01,j | ≥

bn
8

)
+P
( 1

n
max

1≤j≤qn
|η01,j − η

0,∞
1,j | ≥

bn
8

)
,(3.5)

where η01,j = e′n,j(Γ̃
0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2ε0n and η0,∞1,j = e′n,j(Γ̃

0
n(1) +

γn
n Σ2(1))−1 Xn(1)′ (W 0

n)2ε0n,∞, and ε0n,∞ is the restriction of the true error ε0∞ =
(ε01, ε

0
2, . . .)

′ in Model (2.1).

Regarding the first term of (3.5), Assumptions (A6), (A8) and (A9) imply that
‖W 0

n‖2 ≤ σ−1min and ‖Γn(1)‖2 ≤ λ0,max. Note thatλ1,min < λ(Γ̃0
n(1)) and 0 ≤

λ(γnn Σ2(1)), then λ1,min < λ(Γ̃0
n(1) + γn

n Σ2(1)). That is, λ((Γ̃0
n(1) + γn

n Σ2(1))−1) ≤
λ−11,min and hence ‖(Γ̃0

n(1) + γn
n Σ2(1))−1‖ ≤ λ−11,min. Thus we arrive at∥∥∥ 1√

n
e′n,j
(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′(W 0
n)2
∥∥∥
2

≤
∥∥∥(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1∥∥∥

2

∥∥∥ 1√
n
Xn(1)

∥∥∥
2
‖(W 0

n)2‖2

≤ λ−11,min

√
λ0,maxσ

−2
min.(3.6)

This implies that, as n→∞,

P
(∥∥∥ 1√

n
e′n,j
(
Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′(W 0
n)2
∥∥∥
2
≤ λ−11,min

√
λ0,maxσ

−2
min

)
→ 1.

This, together with Lemma 1(i) of [6] and Assumption (A10), yields that∥∥∥ 1√
n
η0,∞1,j

∥∥∥
ψd

=
∥∥∥ 1√

n
e′n,j(Γ̃

0
n(1) +

γn
n

Σ2(1))−1Xn(1)′(W 0
n)2ε0n,∞

∥∥∥
ψd

≤ C(log n)I{d=1}.(3.7)

Combining this with Equation (16) of [17], we obtain

P
( 1

n
max

1≤j≤qn
|η0,∞1,j | ≥

bn
4

)
≤ ψ−1d

( bn
√
n

4C(log(1 + qn))1/d(log n)I{d=1}

)
.(3.8)

Now it follows from Assumption (A11) that

P
( 1

n
max

1≤j≤qn
|η0,∞1,j | ≥

bn
4

)
→ 0.

For the second term of (3.5), Assumptions (A8) and (A9) ensure that ‖W [k−1]
n ‖2

= Op(1) and ‖(W 0
n)2− (W

[k−1]
n )2‖2 = Op( hn√n). Furthermore, we notice that ‖ε0n‖2 ≤
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‖ε0n − ε0n,∞‖2 + ‖ε0n,∞‖2, while ‖ε0n − ε0n,∞‖2
P−→ 0, and Assumption (A1) and the

weak law of large numbers yield that ‖ε0n,∞‖2 = Op(
√
n). This bound implies that

‖ε0n‖2 = Op(
√
n).

On the other hand, since∥∥∥(Γ̃0
n(1) +

γn
n

Σ2(1))− (Γ̃[k]
n (1) +

γn
n

Σ2(1))
∥∥∥
2

= ‖Γ̃0
n(1)− Γ̃[k]

n (1)‖2

= ‖Γn(1)‖2‖(W
0
n)2 − (W [k−1]

n )2‖2 = Op
( hn√

n

)
,

we obtain

‖A−1 − (A+B)−1‖2 ≤ ‖A
−1 − (A+B)−1 +A−1BA−1‖2 + ‖A−1BA−1‖2

≤ Op(‖B‖2) + ‖A−1‖22‖B‖2 = Op
( hn√

n

)
,

whereA = Γ̃0
n(1)+ γn

n Σ2(1) andB = (Γ̃
[k]
n (1)+ γn

n Σ2(1))− (Γ̃0
n(1)+ γn

n Σ2(1)). That
is, ∥∥∥(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1
−
(

Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1∥∥∥ = Op

( hn√
n

)
.(3.9)

We conclude that, for all 1 ≤ j ≤ qn,

|η1,j − η01,j |

=
∣∣∣e′n,j(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1

Xn(1)′((W 0
n)2 − (W [k−1]

n )2)ε0n

+e′n,j

(
(Γ̃0
n(1) +

γn
n

Σ2(1))− (Γ̃[k]
n (1) +

γn
n

Σ2(1))
)
Xn(1)′(W [k−1]

n )2ε0n

∣∣∣
≤ ‖nΓn(1)‖1/22 ‖ε

0
n‖2
{
‖(W 0

n)2 − (W [k−1]
n )2‖2

∥∥∥(Γ̃0
n(1) +

γn
n

Σ2(1))−1
∥∥∥
2

+‖(W [k−1]
n )2‖2

∥∥∥(Γ̃0
n(1) +

γn
n

Σ2(1))−1 − (Γ̃[k]
n (1) +

γn
n

Σ2(1))−1
∥∥∥
2

}
= Op(

√
n)Op(

√
n)Op

( hn√
n

)
Op(1)

= Op(hn
√
n).

Thus it follows from Assumption (A11) that P ( 1
n max1≤j≤qn |η1,j − η01,j | ≥ bn

8 ) ≤
P ( hn√

nbn
≥ C)→ 0 as n→∞.

We proceed to deal with the third term of (3.5). By (3.6),

1√
n
|η01,j − η

0,∞
1,j | =

1√
n

∣∣∣e′n,j(Γ̃0
n(1) +

γn
n

Σ2(1)
)−1

Xn(1)′(W 0
n)2(ε0n − ε0n,∞)

∣∣∣
≤ λ−11,min

√
λ0,maxσ

−2
min‖ε

0
n − ε0n,∞‖2

P−→ 0.

Hence, by Assumption (A11), we have

P
( 1

n
max

1≤j≤qn
|η01,j − η

0,∞
1,j | ≥

bn
8

)
≤ P

( 1√
nbn

max
1≤j≤qn

1√
n
|η01,j − η

0,∞
1,j | ≥

1

8

)
→ 0.
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Then (3.5) implies that P (A1) → 0 as n → ∞. In order to prove P (A2) → 0 as
n → ∞, we examine the bound of ‖(Γ̃[k]

n (1) + γn
n Σ2(1))−1‖2. By (3.9) and Weyl’s

perturbation theorem for eigenvalues of the matrices, for all 1 ≤ j ≤ qn,∣∣∣λj((Γ̃0
n(1) +

γn
n

Σ2(1)
)−1)− λj((Γ̃[k]

n (1) +
γn
n

Σ2(1)
)−1)∣∣∣

≤
∥∥∥(Γ̃0

n(1) +
γn
n

Σ2(1)
)−1 − (Γ̃[k]

n (1) +
γn
n

Σ2(1)
)−1∥∥∥

2
= Op

( hn√
n

)
.

Therefore ‖(Γ̃[k]
n (1) + γn

n Σ2(1))−1‖2 ≤ λ
−1
1,min +C with probability arbitrarily close to

1 for sufficiently large n. It follows from Assumptions (A4), (A6) and (A11) that

P (A2) ≤ P
(λn
n

max
1≤j≤qn

|η2,j | ≥ bn
)

≤ P
(λn
n

∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1∥∥∥

2
‖s0n(1)‖2 ≥ bn

)
≤ P

(λn√qn
nb2n

≥ C
)
→ 0

due to the fact that ‖s0n(1)‖ ≤ ‖Σ1(1)‖2‖sign(β0
n(1))‖2 ≤

b1
√
qn

bn
= Op(

√
qn
bn

).

This completes the proof of (3.4). We now turn to show that

lim
n→∞

P (δ[k]n 6=s β
[k]
n ) = 0.(3.10)

Observe that(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

=
(
Γ̃[k]
n (1)

)−1 − (Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1γn

n
Σ2(1)

(
Γ̃[k]
n (1)

)−1
.(3.11)

Then, by Assumptions (A4) and (A11),

‖β[k]
n − δ[k]n ‖2 =

∥∥∥[(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Γ̃[k]
n (1)− Iqn

]
β0
n(1)

∥∥∥
2

=
∥∥∥− (Γ̃[k]

n (1) +
γn
n

Σ2(1)
)−1γn

n
Σ2(1)β0

n(1)
∥∥∥
2

≤ γn
n

∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1∥∥∥

2
‖Σ2(1)‖2‖β

0
n(1)‖2

= Op
( γn
nbn

)
P−→ 0.

This implies (3.10). Combining (3.4) and (3.10) leads to

lim
n→∞

P (β0
n 6=s β

[k]
n ) = 0.(3.12)

Hence, to prove the sign consistency of the iteratively reweighted adaptive elastic net
estimator, it suffices to show that, as n→∞, β[k]

n satisfies the KKT conditions (3.1) and
(3.2), so that β[k]

n is indeed the solution of (2.4).
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The above arguments for proving (3.4) and (3.10) imply that

‖β[k]
n − β0

n(1)‖2 = Op
( γn
nbn

+
(log n)I{d=1} + hn√

n
+
λn
√
qn

nbn

)
.(3.13)

From (3.3), (3.11)-(3.13) and Assumption (A11), for 1 ≤ j ≤ qn,

X0′
j (W [k−1]

n )2(Yn −Xnβ
[k]
n (1))− γnun,jβ[k]n,j

= X0′
j (W [k−1]

n )2ε0n + X0′
j (W [k−1]

n )2Xn(1)
(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1γn

n
Σ2(1)β0

n(1)

−X0′
j (W [k−1]

n )2Xn(1)
1

n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Xn(1)′(W [k−1]
n )2ε0n

+X0′
j (W [k−1]

n )2Xn(1)
λn
2n

(
Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

s0n(1)− γnun,jβ[k]n,j

= γnun,jβj +
λn
2
vn,jsign(βj)− γnun,jβ[k]n,j +Op

( γn√
nbn

)
=
λn
2
vn,jsign(β

[k]
n,j) +Op

( γn√
nbn

+
γn
(
(log n)I{d=1} + hn

)
√
nbn

+
γnλn

√
qn

nbn
2

)
.

This means that β[k]
n satisfies the first KKT condition (3.1) as n→∞.

Let η3,j = X0′
j (W

[k−1]
n )2

[
In− 1

nXn(1)(Γ̃
[k]
n (1)+γn

n Σ2(1))−1Xn(1)′(W
[k−1]
n )2

]
ε0n

and η4,j = λn
2nX

0′
j (W

[k−1]
n )2Xn(1)(Γ̃

[k]
n (1) + γn

n Σ2(1))−1s0n(1) +X0′
j (W

[k−1]
n )2Xn(1)[

(Γ̃
[k]
n (1) +γn

n Σ2(1))−1 Γ̃
[k]
n (1)− Iqn

]
β0
n(1). Denote A3 =

{
|η3,j | ≥ λn

4 vn,j , for some

j > qn

}
and A4 =

{
|η4,j | ≥ λn

4 vn,j , for some j > qn

}
.

Then, to show that β[k]
n satisfies the second KKT condition (3.2), we only need to

prove that P
(
|η3,j − η4,j | < λn

2 vn,j
)
→ 0 as n → ∞ for any qn < j ≤ pn. So it is

enough to show that P (Aj)→ 0 as n→∞ for j = 3, 4.

Let η03,j = X0′
j (W 0

n)2
[
In − 1

nXn(1)(Γ̃0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2
]
ε0n and

η0,∞3,j = X0′
j (W 0

n)2
[
In − 1

nXn(1)(Γ̃0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2
]
ε0n,∞. Then

P (A3) ≤ P
(

max
qn<j≤pn

|η0,∞3,j | ≥
λnrn

8

)
+ P

(
max

qn<j≤pn
|η3,j − η03,j | ≥

λnrn
16

)
+P
(

max
qn<j≤pn

|η03,j − η
0,∞
3,j | ≥

λnrn
16

)
+P
(

max
qn<j≤pn

|βj,init1|τ1 ≥
1

rn

)
,(3.14)

where βj,init1 is the jth element of βn,init1.

For estimating the first term of (3.14), letH0
n,j = X0′

j (W 0
n)2
[
In− 1

nXn(1)(Γ̃0
n(1)+

γn
n Σ2(1))−1 Xn(1)′(W 0

n)2
]
. Thus we have η0,∞3,j = H0

n,jε
0
n,∞. Note that

‖H0
n,j‖2 ≤ ‖X

0
j‖2‖(W

0
n)2‖2

[
1 +

∥∥ 1

n
Xn(1)(Γ̃0

n(1) +
γn
n

Σ2(1))−1Xn(1)′
∥∥∥
2
‖(W 0

n)2‖2
]

= Op(
√
n).
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In a same way as in (3.7) and (3.8), by Assumption (11), we obtain

P
(

max
qn<j≤pn

|η0,∞3,j | ≥
λnrn

8

)
≤ (ψ−1d

( λnrn

c7
√
n(log (1 + pn − qn))1/d(log n)I{d=1} )

)
−→ 0.(3.15)

Since

|η3,j − η03,j |

=
∣∣∣X0′

j

{
(W 0

n)2[In −
1

n
Xn(1)(Γ̃0

n(1) +
γn
n

Σ2(1))−1Xn(1)′(W 0
n)2]

−(W [k−1]
n )2[In −

1

n
Xn(1)(Γ̃[k]

n (1) +
γn
n

Σ2(1))−1Xn(1)′(W [k−1]
n )2]

}
ε0n

∣∣∣
≤ ‖X0

j‖2‖(W
0
n)2 − (W [k−1]

n )2‖2‖ε
0
n‖2 + ‖X0

j‖2‖Gn|‖2‖ε
0
n‖2,

where Gn = 1
n(W 0

n)2Xn(1)(Γ̃0
n(1) + γn

n Σ2(1))−1Xn(1)′(W 0
n)2 − 1

n(W
[k−1]
n )2Xn(1)

(Γ̃
[k]
n (1) +γn

n Σ2(1))−1Xn(1)′(W
[k−1]
n )2, and

‖Gn‖2
≤ ‖(W 0

n)2 − (W [k−1]
n )2‖2‖Γn(1)‖22‖(Γ̃

0
n(1) +

γn
n

Σ2(1))−1‖2‖(W
0
n)2‖2

+‖(W 0
n)2‖2‖Γn(1)‖22‖(Γ̃

0
n(1) +

γn
n

Σ2(1))−1 − (Γ̃[k]
n (1) +

γn
n

Σ2(1))−1‖2‖(W
[k−1]
n )2‖2

+‖(W 0
n)2 − (W [k−1]

n )2‖2‖Γn(1)‖22‖(Γ̃
[k]
n (1) +

γn
n

Σ2(1))−1‖2‖(W
[k−1]
n )2‖2

= Op
( hn√

n

)
Op(1)Op(1)Op(1) = Op

( hn√
n

)
,

then we have

|η3,j − η03,j | = Op(
√
n)Op

( hn√
n

)
Op(
√
n) +Op(

√
n)Op

( hn√
n

)
Op(
√
n) = Op(hn

√
n).

This, together with Assumption (A11), yields that

P
(

max
qn<j≤pn

|η03,j − η3,j | ≥
λnrn
16

)
≤ P

(hn√n
λnrn

≥ C
)
→ 0.(3.16)

Moreover, since 1√
n
|η03,j − η

0,∞
3,j | ≤

1√
n
‖H0

n,j‖2‖ε0n− ε0n,∞‖2 = Op(1), it follows from
Assumption (A11) that

P
(

max
qn<j≤pn

|η03,j − η
0,∞
3,j | ≥

λnrn
16

)
≤ P (

√
n

λnrn
≥ C

)
→ 0.(3.17)

By (3.14)-(3.17) and Assumption (A5), we arrive at P (A3)→ 0 as n→∞.
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For A4, notice that

|η4,j |

≤ λn
2n
‖X0

j‖2‖(W
[k−1]
n )2‖2‖Xn(1)‖2

∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1∥∥∥

2
‖s0n(1)‖2

+‖X0
j‖2‖(W

[k−1]
n )2‖2‖Xn(1)‖2

∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1)
)−1

Γ̃[k]
n (1)− Iqn

∥∥∥
2
‖β0

n(1)‖2

=
λn
n
Op(
√
n)Op(1)Op(

√
n)Op

(√qn
bn

)
+Op(

√
n)Op(1)Op(

√
n)Op

( γn
nbn

)
Op(1)

= Op
(λn√qn

bn

)
+Op

(γn
bn

)
.

Then Assumption (A11) implies that

P
(

max
qn<j≤pn

|η4,j | ≥
λnrn

4

)
≤ P

(√qn
bnrn

≥ C
)

+ P
( γn
bnλnrn

≥ C
)
→ 0.

Assumption (A5) yields that

P (A4) ≤ P
(

max
qn<j≤pn

|η4,j | ≥
λnrn

4

)
+ P

(
max

qn<j≤pn
|βj,init1|τ1 ≥

1

rn

)
→ 0

as n→∞.

This concludes the proof of the sign consistency of the estimator β[k]
n . Next we

proceed to show the asymptotic normality of β[k]
n .

(II) The asymptotic normality

From (3.3), we have
√
n

sn(k)
ξ′n(β[k]

n (1)− β0
n(1))

=
1√

nsn(k)
ξ′n(Γ̃[k]

n (1) +
γn
n

Σ2(1))−1Xn(1)′(W [k−1]
n )2ε0n

− λn
2
√
nsn(k)

ξ′n(Γ̃[k]
n (1) +

γn
n

Σ2(1))−1s0n(1)

+

√
n

sn(k)
ξ′n[(Γ̃[k]

n (1) +
γn
n

Σ2(1))−1Γ̃[k]
n (1)− Iqn ]β0

n(1).(3.18)

For the first term of (3.18), similarly to the proof of part (I), we have the decomposition

(Γ̃[k]
n (1) +

γn
n

Σ2(1))−1Xn(1)′(W [k−1]
n )2 = B1 +B2 +B3,

where

B1 = (Γ̃0
n(1) +

γn
n

Σ2(1))−1Xn(1)′(W 0
n)2,

B2 = [(Γ̃[k]
n (1) +

γn
n

Σ2(1))−1 − (Γ̃0
n(1) +

γn
n

Σ2(1))−1]Xn(1)′(W 0
n)2,

B3 = (Γ̃[k]
n (1) +

γn
n

Σ2(1))−1Xn(1)′((W [k−1]
n )2 − (W 0

n)2).



Elastic net for heteroscedastic time series models 21

Note that

1√
nsn(k)

ξ′nB1ε
0
n =

1√
nsn(k)

ξ′nB1ε
0
n,∞ +

1√
nsn(k)

ξ′nB1(ε
0
n − ε0n,∞),

while
1√

nsn(k)
ξ′nB1ε

0
n,∞ =

n∑
t=1

atZt

with at = 1√
nsn(k)σt

ξ′n(Γ̃0
n(1) + γn

n Σ2(1))−1Xt,n(1). It is easy to see that {atZt,Fn,t,
1 ≤ t ≤ n} is a martingale difference array, where Fn,t = σ{Zt1 , Xt2,∞, 1 ≤ t2 ≤
n, 1 ≤ t1 ≤ t} is the σ-field. Moreover, E(

∑n
t=1 atZt) = 0 and E(

∑n
t=1 atZt)

2 =
E(Z2

t )E(
∑n

t=1 a
2
t ) = 1.

In addition, Assumption (A7) implies that 1/sn(k) ≤ 1/
√
λ2,min. Then it fol-

lows from Assumptions (A3), (A8), (A9) and (A11) that

max
1≤t≤n

|at| ≤
1√

nsn(k)
‖ξn‖2‖(Γ̃

0
n(1) +

γn
n

Σ2(1))−1‖2 max
1≤t≤n

∥∥∥ 1

σt
Xt,n(1)

∥∥∥
2

≤ C√
n
‖Xt,n(1)‖2 = Op(

√
qnvn√
n

)
P−→ 0.

So the conditional Lindeberg condition is satisfied and the martingale central limit theo-
rem (see, e.g. Theorem 2 of [1]) yields that

(3.19)
1√

nsn(k)
ξ′nB1ε

0
n,∞

D−→Z.

On the other hand,∣∣∣ 1√
nsn(k)

ξ′nB1(ε
0
n − ε0n,∞)

∣∣∣
≤ 1√

nsn(k)
‖ξn‖2‖(Γ̃

0
n(1) +

γn
n

Σ2(1))−1‖2‖Xn(1)‖2‖(W
0
n)2‖2‖ε

0
n − ε0n,∞‖2

≤ C‖ε0n − ε0n,∞‖2
P−→ 0.

By Slutsky’s Theorem,

1√
nsn(k)

ξ′nB1ε
0
n,∞

D−→ Z.(3.20)

For B2, we know that∣∣∣ 1√
nsn(k)

ξ′nB2ε
0
n

∣∣∣
≤ 1√

nsn(k)

∥∥∥(Γ̃[k]
n (1) +

γn
n

Σ2(1))−1 − (Γ̃0
n(1) +

γn
n

Σ2(1))−1
∥∥∥
2
‖ξn‖2

‖Xn(1)′(W 0
n)2ε0n‖2,
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and

‖Xn(1)′(W 0
n)2ε0n‖2 ≤ ‖Xn(1)′(W 0

n)2(ε0n − ε0n,∞)‖2 + ‖Xn(1)′(W 0
n)2ε0n,∞‖2

≤ ‖Xn(1)‖2‖(W
0
n)2‖2‖ε

0
n − ε0n,∞‖2 + ‖Xn(1)′(W 0

n)2ε0n,∞‖2
≤ Op(

√
n)Op(1)Op(1) + ‖Xn(1)′(W 0

n)2ε0n,∞‖2
= Op(

√
n) + ‖Xn(1)′(W 0

n)2ε0n,∞‖2.

Markov’s inequality and Assumptions (A1), (A2) and (A8) give

P
( 1

qnn
‖Xn(1)′(W 0

n)2ε0n,∞‖
2
2 > C

)
≤ 1

Cqnn

qn∑
i=1

E
( n∑
t=1

Xt,i
Zt
σt

)2
≤ 1

Cqnn

qn∑
i=1

E
( n∑
t=1

Xt,i
Zt
σmin

)2
≤ 1

Cσ2min
.

This means that ‖Xn(1)′(W 0
n)2ε0n,∞‖2 = Op(

√
qnn). These bounds together with As-

sumption (A11) imply that∣∣∣ 1√
nsn(k)

ξ′nB2ε
0
n

∣∣∣ = Op
( 1√

n

)
Op
( hn√

n

)
Op(
√
qnn)

P−→ 0.(3.21)

Along similar lines for B2, we obtain∣∣∣ 1√
nsn(k)

ξ′nB3ε
0
n

∣∣∣
≤ 1√

nsn(k)
‖(Γ̃[k]

n (1) +
γn
n

Σ2(1))−1‖2‖ξn‖2‖Xn(1)′((W 0
n)2 − (W [k−1]

n )2)ε0n‖2,

and

‖Xn(1)′((W 0
n)2 − (W [k−1]

n )2)ε0n‖2 ≤ ‖Xn(1)′((W 0
n)2 − (W [k−1]

n )2)(ε0n − ε0n,∞)‖2
+‖Xn(1)′((W 0

n)2 − (W [k−1]
n )2)ε0n,∞‖2.

Moreover,

‖Xn(1)′((W 0
n)2 − (W [k−1]

n )2)(ε0n − ε0n,∞)‖2

≤ ‖Xn(1)‖2‖(W
0
n)2 − (W [k−1]

n )2‖2‖ε
0
n − ε0n,∞‖2 ≤ Op(

√
n)Op

( hn√
n

)
Op(1)

= Op(hn).

From Markov’s inequality and Assumptions (A1), (A2) and (A9)

P
( 1

qnh2n
‖Xn(1)′((W 0

n)2 − (W [k−1]
n )2)ε0n,∞‖

2
2 > C

)
≤ 1

Cqnh2n

qn∑
i=1

E
( n∑
t=1

Xt,i

( 1

σ2t
− 1

σ̂
[k−1]
t

)
εt

)2
≤ 1

Cqnh2n

h2n
n

qn∑
i=1

E
( n∑
t=1

Xt,iεt

)2
.

That is ‖Xn(1)′((W 0
n)2 − (W

[k−1]
n )2)ε0n,∞‖2 = Op(

√
qnhn). Therefore we have∣∣∣ 1√

nsn(k)
ξ′nB3ε

0
n

∣∣∣ = Op
( 1√

n

)
Op(1)Op(

√
qnhn)

P−→ 0.(3.22)
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By (3.20)-(3.22) and Slutsky’s Theorem,

1√
nsn(k)

ξ′n(B1 +B2 +B3)ε
0
n
D−→ Z.(3.23)

Now it suffices to show that the last two terms of (3.18) converge to zero in probability.
By Assumption (A11),∣∣∣ λn

2
√
nsn(k)

ξ′n(Γ̃[k]
n (1) +

γn
n

Σ2(1))−1s0n(1)
∣∣∣

≤ λn
2
√
nsn(k)

‖ξn‖2‖(Γ̃
[k]
n (1) +

γn
n

Σ2(1))−1‖2‖s
0
n(1)‖2

= Op
(λn√qn√

nbn

)
P−→ 0.

For the last term of (3.18), by (3.11), we obtain∣∣∣ √n
sn(k)

ξ′n

[
(Γ̃[k]
n (1) +

γn
n

Σ2(1))−1Γ̃[k]
n (1)− Iqn

]
β0
n(1)

∣∣∣ = Op
( γn√

nbn

)
P−→ 0.

This completes the proof of Theorem 1. 2


