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1. INTRODUCTION

The count data sets arise in different fields such as yearly number de-
structive earthquakes, monthly traffic accidents and hourly bacterial growth and
among others. These kind of data sets are modeled with discrete probability
distributions. Poisson and negative-binomial distributions are the most popular
distributions and are widely used to model these kind data sets. In recent years,
researchers have shown great interest to introduce new discrete distributions by
discretizing a continuous failure time model. Let the continuous random vari-
able X has the survival function (sf) S (x) = Pr (X > x). The probability mass
function (pmf) dealing with the continuous random variable X is given by

Pr (X = x) = S (x)− S (x+ 1) , x = 0, 1, 2, ...

Many researchers have introduced sophisticated discrete distributions by applying
the discretization method to the continuous failure time models. For instance,
discrete Lindley distribution by Gómez-Déniz and Caldeŕın-Ojeda (2011), dis-
crete Rayleigh distribution by Roy (2004), discrete inverse Rayleigh distribu-
tion by Hussain and Ahmad (2014), discrete Pareto distribution by Buddana
and Kozubowski (2014), discrete Weibull distribution by Nakagawa and Osaki
(1975), discrete Lomax distribution by Para and Jan (2016), discrete generalized
Weibull distribution by Para and Jan (2017) and exponentiated discrete Lindley
by El-Morshedy et al. (2019), discrete flexible one parameter distribution by
Eliwa and El-Morshedy (2020) and discrete gompertz-G by Eliwa et al. (2020a)
and among others. The discrete analogue of the Burr-Hatke distribution was
introduced by El-Morshedy et al. (2020) with its regression model and residual
analysis. More recently, Eliwa et al. (2020b) introduced the discrete analogue
of the three-parameter Lindley distribution and demonstrated its performance in
modeling the time series of counts.

In this paper, we introduce a new one-parameter discrete distribution by
applying the discretization method to the Bilal distribution, proposed by Abd-
Elrahman (2013). The arising distribution is called as the discrete Bilal (DBL)
distribution. The DBL distribution has simple probability mass and cumula-
tive distribution functions and statistical properties such as mean, mode, skew-
ness, kurtosis measures, mean deviation and also stress-strength reliability are
obtained in explicit forms. The DBL distribution provides an opportunity to
model different types of the count data sets such over and under-dispersed. We
illustrate the importance of DBL distribution in first-order integer-valued autore-
gressive (INAR(1)) process by applying the DBL distribution as an innovation
process of INAR(1) process, introduced by McKenzie (1985) and Al-Osh and
Alzaid (1987). INAR(1) process is widely used to model time series of counts.
Several researchers have done important studies on the INAR(1) processes with
more flexible innovation distributions. For instance, Jazi et al. (2012) intro-
duced the INAR(1) process with geometric innovations (INAR(1)G) to model
the over-dispersed time series of counts. Similarly, Ĺıvio et al. (2018) introduced
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the INAR(1) process with Poisson-Lindley innovations (INAR(1)PL) for over-
dispersed time series of counts. More recently, Altun (2020a) introduced a new
generalization of the geometric and demonstrated its performance in INAR(1)
process. More recently, Altun (2020b) introduced a mixed Poisson distribution
and defined a new INAR(1) process for over-dispersed time series of counts.

The remaining parts of the presented study is organized as follows. The
statistical properties of the DBL distribution are obtained in Section 2. The
parameter estimation of the DBL distribution is discussed in Section 3. The
INAR(1) process with DBL innovations is introduced in Section 4 with its pa-
rameter estimation. In Section 5, we discuss the finite-sample performance of the
parameter estimation methods via two simulation studies. In Section 6, three
data sets are analyzed with DBL and other competitive models to prove the im-
portance of the DBL distribution practically. Section 7 deals with the concluding
remarks of the study.

2. The DISCRETE-BILAL DISTRIBUTION

Recently, Abd-Elrahman (2013) proposed a new flexible model, called Bilal
(BL) distribution. The cumulative distribution function (cdf) of the BL distri-
bution is

(2.1) Π(x;β) = 1−
(

3− 2e
− x
β

)
e
− 2x
β , x ≥ 0, β > 0.

The sf and probability density function (pdf) of (2.1) are given, respectively, by

(2.2) S(x;β) =
(

3− 2e
− x
β

)
e
− 2x
β , x ≥ 0, β > 0,

(2.3) π(x;β) =
6

β

(
1− e−

x
β

)
e
− 2x
β , x ≥ 0, β > 0.

Now, we introduce a DBL distribution by discretizing the sf of the BL distribu-

tion. Let the parameter p = e
− 1
β , the cdf of DBL distribution is given by

(2.4) F (x; p) := F (X ≤ x) = 1−
(
3− 2px+1

)
p2(x+1), x = 0, 1, 2, 3, ...

The corresponding sf and pmf to (2.4) are given, respectively, by

(2.5) S(x; p) =
(
3− 2px+1

)
p2(x+1),
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and

(2.6) f(x; p) := P (X = x) = 2(p3 − 1)p3x − 3(p2 − 1)p2x, x = 0, 1, 2, 3, ...

The pmf in (2.6) is log-concave for all values of p, where

(2.7)
f(x+ 1; p)

f(x; p)
=

2px+6 − 2px+3 − 3p4 + 3p2

2px+3 − 3p2 − 2px + 3
,

is a decreasing function in x for all value of p. The possible pmf shapes of the
DBL distribution are displayed in Figure 1. These figures show that the DBL
distribution has right-skewed shapes and it has long right-tails.
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Figure 1: The pmf plots of the DBL distribution.

The hazard rate function (hrf) is

(2.8) h(x; p) =
2(p3 − 1)px − 3(p2 − 1)

3− 2px
; x ∈ N0,

where h(x; p) = fx(x;p)
R(x−1;p) . The reversed hazard rate function (rhrf) is

(2.9) r(x; p) =
2(p3 − 1)p3x − 3(p2 − 1)p2x

1− (3− 2px+1) p2(x+1)
; x ∈ N0,

where r(x; p) = fx(x;p)
F (x;p) . Figure 2 shows the hrf and rhrf plots for different values

of the parameter p.

It is clear that the hrf of the DBL distribution increases up to time t where
0 < t < x < ∞, whereas the hrf is constant after time t. Regarding to the rhrf,
it is seen that it always decreases for all x.
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Figure 2: The hrf and rhrf of the DBL distribution.

Suppose X1 and X2 are two independent random variables following the
DBL distribution with the parameters p1 and p2, respectively. LetW =min(X1, X2)
be a random variable which has a hrf

hW (x; p1, p2) =
P (min(X1, X2) ≥ x)− P (min(X1, X2) ≥ x+ 1)

P (min(X1, X2) ≥ x)

=
2(p31 − 1)px1 − 3(p21 − 1)

3− 2px1
+

2(p32 − 1)px2 − 3(p22 − 1)

3− 2px2

−
{

2(p31 − 1)px1 − 3(p21 − 1)
}{

2(p32 − 1)px2 − 3(p22 − 1)
}

(3− 2px1) (3− 2px2)
.(2.10)

The extra term h1(x; p1)h2(x; p2) arises because in the discrete case P (X1 =
x,X2 = x) 6= 0, where h1(x; p1) and h2(x; p2) are the hrfs of X1 and X2, re-
spectively. The rest of this section contains the statistical properties of the DBL
distribution.
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2.1. Mode

The mode of the DBL distribution is obtained by solving (2.11).

(2.11) 6(p3 − 1)p3x ln(p)− 6(p2 − 1)p2x ln(p) = 0.

By solving (2.11), we have

(2.12) Mode(X) =
ln(p+ 1)− ln(p2 + p+ 1)

ln(p)
.

As seen from (2.12), mode of the DBL distribution is an increasing function of
the parameter p.

2.2. Moments, skewness and kurtosis

The probability generating function (pgf) of the DBL distribution is ob-
tained as follows.

GX(s) =
∞∑
x=0

sxfx(x; p)

= 2

∞∑
x=0

(p3 − 1)
(
p3s
)x − 3

∞∑
x=0

(p2 − 1)
(
p2s
)x

=
2(p3 − 1)

1− p3s
− 3(p2 − 1)

1− p2s
,(2.13)

where
∑∞

x=0 aq
x = a

1−q . Replacing s with es, the moment generating function
(mgf) of the DBL distribution is

(2.14) MX(s) =
2(p3 − 1)

1− p3es
− 3(p2 − 1)

1− p2es
.

Using the mgf, given in (2.14), we obtain the mean, variance, skewness and
kurtosis of the DBL distribution, given, respectively, by

(2.15) E(X) =
p2(p2 + p+ 3)

(p2 + p+ 1)(1− p2)
,

(2.16) Var(X) =
p2(3p4 + 4p3 − p2 + 4p+ 3)

(p2 + p+ 1)2(p2 − 1)2
,

(2.17) Sk(X) = −3p8 + 7p7 − 3p6 + 6p5 + 44p4 + 6p3 − 3p2 + 7p+ 3

p(3p4 + 4p3 − p2 + 4p+ 3)3/2
,
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and

(2.18) Ku(X) =

3p12 + 10p11 + 19p10 + 72p9 + 224p8 + 206p7

+21p6 + 206p5 + 224p4 + 72p3 + 19p2 + 10p+ 3

[p(3p4 + 4p3 − p2 + 4p+ 3)]2
.

The behavior of the mean, variance, skewness and kurtosis are displayed in
Figures 3.
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Figure 3: The mean, variance, skewness and kurtosis values of the DBL distribu-
tion.

According to results in Figure 3, the following observations are obtained.

1. The mean and variance increase as p→ 1,

2. The skewness and kurtosis decrease as p→ 1,

3. The proposed distribution is suitable model for the positively skewed count
data sets,

4. The proposed distribution is leptokurtic since its kurtosis is always greater
than 3.

2.3. Dispersion index and coefficient of variation

The dispersion index (DI) is calculated as variance to mean ratio. When
DI is greater than 1, the distribution is over-dispersed, opposite case shows the
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under-dispersion. When DI is equal to 1, the distribution is equi-dispersed. The
coefficient of variation (CV) is also very similar measure to DI. It is calculated as
a ratio of the standard deviation to the mean. The DI and CV measures of the
DBL distribution are given, respectively, by

(2.19) DI(X) =
(3p4 + 4p3 − p2 + 4p+ 3)

(p2 + p+ 1)(p2 + p+ 3)(1− p2)
,

(2.20) CV(X)=

√
3p4 + 4p3 − p2 + 4p+ 3

p(p2 + p+ 3)
.

Figure 4 shows the DI and CV plots of the DBL distribution for various values of
the model parameter. It is observed that DI can be either smaller or larger than
one.

0.0 0.1 0.2 0.3 0.4 0.5

0.9
8

1.0
0

1.0
2

1.0
4

1.0
6

1.0
8

1.1
0

p

DI

0.0 0.1 0.2 0.3 0.4 0.5

0
10

20
30

40
50

60

p

CV

Figure 4: The DI and CV plots of the DBL distribution.

2.4. Mean deviation

The mean deviation (MD) about the mean measures the amount of scatter
in a population. For a random variable X having a DBL distribution, the MD is
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defined as

MD(X) =

∞∑
x=0

|x− E(X)| f(x; p)

=

E(X)∑
x=0

(E(X)− x)f(x; p) +

∞∑
x=E(X)+1

(x− E(X))f(x; p)

= 2E(X)F (E(X); p)− 2

E(X)∑
x=0

xf(x; p)

= −2
p8+2p7+p6−2p5−4p4−2p3+p2+2p+1



−6p
p4+p3−6p2−3p−3

(p2+p+1)(p2−1) + 4p
p4+p3−9p2−4p−4

(p2+p+1)(p2−1)

+2p
2p4+2p3−9p2−5p−5

(p2+p+1)(p2−1) + 6p
2(2p4+2p3−3p2−3p−3)

(p2+p+1)(p2−1)

−4p
4p4+4p3−9p2−7p−7

(p2+p+1)(p2−1) + 6p
5p4+5p3−6p2−7p−7

(p2+p+1)(p2−1)

−2p
5p4+5p3−9p2−8p−8

(p2+p+1)(p2−1) + 3p
2(3p4+3p3−3p2−4p−4)

(p2+p+1)(p2−1)

−6p
2(p4+p3−3p2−2p−2)

(p2+p+1)(p2−1) − 2p
3(p4+p3−3p2−2p−2)

(p2+p+1)(p2−1)

−3p
−2(3p2+p+1)

(p2+p+1)(p2−1) + 2p
−3(3p2+p+1)

(p2+p+1)(p2−1)


.

The MD increases with p→ 1.

2.5. Stress-strength reliability

Stress-strength reliability (SSR) analysis is widely used in reliability en-
gineering. Assume that both stress and strength are in the positive domain.
Let Xstress ∼ DBL(p) and Xstrength ∼ DBL(q). Then, the expected SSR can be
expressed in a closed form as

(2.21) SSR := P [Xstress ≤ Xstrength] =
∞∑
x=0

fXstress(x; p)RXstrength
(x; q).

Using (2.5) and (2.6), we get

(2.22) SSR =
4q3(p3 − 1)

p3q3 − 1
+

6q2(1− p3)
p3q2 − 1

+
6q3(1− p2)
p2q3 − 1

+
9q2(p2 − 1)

p2q2 − 1
.

Figure 5 shows the SSR for various values of the parameters p and q. According
to Figure 5, we concluded that: (i) the SSR increases for q → 1 with fixed value
of p; (ii) the SSR decreases for p→ 1 with fixed value of q.

2.6. Order statistics

Let x1:n, x2:n, ..., xn:n be the order statistics of a random sample from the
DBL distribution. The cdf of ith order statistics for an integer value of x is given



10 E. Altun, M. El-Morshedy and M. S. Eliwa

Figure 5: The SSR utilizing the DBL distribution.

by

Fi:n(x; p) =

n∑
k=i

(
n
k

)
[Fi(x; p]k [1− Fi(x; p)]n−k

=

n∑
k=i

n−k∑
j=0

Υ
(n,k)
(m) [Fi(x; p)]k+j

=

n∑
k=i

n−k∑
j=0

Υ
(n,k)
(m) Fi(x; p, k + j),(2.23)

where Υ
(n,k)
(m) := (−1)j

(
n
k

)(
n− k
j

)
and Fi(x; p, k+j) =

[
1−

(
3− 2px+1

)
p2(x+1)

]k+j
represents the cdf of the exponentiated DBL distribution with power parameter
k + j. The corresponding pmf to (2.23) is given by

fi:n(x; p) = Fi:n(x; p)− Fi:n(x− 1; p)

=

n∑
k=i

n−k∑
j=0

Υ
(n,k)
(m) fi(x; p, k + j),(2.24)

where fi(x; p, k + j) represents the pmf of the exponentiated DBL distribution
with power parameter k + j. Thus, the bth moments of Xi:n can be written as

(2.25) E(Xb
i:n) =

∞∑
x=0

n∑
k=i

n−k∑
j=0

Υ
(n,k)
(m) x

bfi(x; p, k + j).
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3. ESTIMATION METHODS

We use two estimation methods to estimate the unknown parameter of the
DBL distribution. These methods are maximum likelihood estimation (MLE)
and method of moments (MM).

3.1. Maximum likelihood estimation

Let X1, X2, ..., Xn be random variables from the DBL distribution. The
log-likelihood function (L) of the DBL distribution is

(3.1) L(x; p) = n ln(p− 1) + 2 ln p
n∑
i=1

xi +
n∑
i=1

ln
[
2pxi

(
p2 + p+ 1

)
− 3p− 3

]
.

By differentiating (3.1) with respect to the parameter p, we have the following
equation.

(3.2)
n

p− 1
+

2

p

n∑
i=1

xi +
n∑
i=1

2pxi (2p+ 1) + 2xip
xi−1

(
p2 + p+ 1

)
− 3

2pxi (p2 + p+ 1)− 3p− 3
= 0.

The solution of the above equation gives MLE of the parameter p. However, it
is not possible to obtain the exact form of the MLE of the parameter p since
the equation has non-linear functions. For this reason, it has to be solved nu-
merically. The other possible way to obtain the MLE of the parameter p is to
direct minimization of the negative log-likelihood function. To do this, we use
the constrOptim function of R software.

3.2. Moment estimation

The MM estimator of the parameter p is obtained by solving (3.3)

(3.3)
p2(p2 + p+ 3)

(p2 + p+ 1)(p2 − 1)
− x̄ = 0,

where x̄ =
n∑
i=1

xi/n. We use nleqslv to solve (3.3).
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4. INAR(1) PROCESS WITH DBL INNOVATIONS

Time series of counts arise in different fields such as econometrics, actuarial
and medical sciences. For instance, yearly incidents of terrorism, daily number
of doctor visits, yearly number of traffic accidents and among others. McKenzie
(1985) and Al-Osh and Alzaid (1987) introduced the INAR(1) process with Pois-
son innovations to analyze these kind of data sets. It is said that {Xt}t∈Z follows
a stable INAR(1) process if

(4.1) Xt = α ◦Xt−1 + εt, t ∈ Z,

where 0 ≤ α < 1. The innovation process, {εt}t∈Z, constitutes a sequence of
iid discrete random variables. The mean and variance of the innovation process
are E (εt) = µε and Var (εt) = σ2ε , respectively. This model was shortly denoted
as INAR(1)P process. Note that the innovations, {εt}t∈Z, are independent from
Xt−k, k ≥ 1. The binomial thinning operator, ◦, is defined by

(4.2) α ◦Xt−1 :=

Xt−1∑
j=1

Wj ,

where {Wj}j≥1 is a sequence of iid Bernoulli random variables with probabilities
Pr (Wj = 1) = 1 − Pr (Wj = 0) = α. The one-step transition probability of the
INAR(1) process is

(4.3) Pr (Xt = k|Xt−1 = l) =

min(k,l)∑
i=1

Pr (Bα
l = i) Pr (εt = k − i) , k, l ≥ 0,

where Bα
n ∼ Binomial (α, n) and α ∈ [0, 1). According to the works of Al-Osh and

Alzaid (1987) and McKenzie (1985), we introduce a new INAR(1) model with a
more flexible innovation distribution. We assume that the innovations follow a
DBL distribution with parameter p. We call this process as INAR(1)DBL. Since
the dispersion of the DBL can be under or over the value 1, the INAR(1)DBL can
be used to model both under-dispersed and over-dispersed time series of counts.
Using (4.3), the one-step transition probability of INAR(1)DBL process is given
by

γi,j = Pr (Xt = k|Xt−1 = l) =

min(k,l)∑
i=1

(
l
i

)
αi(1− α)l−i

×
[
2
(
p3 − 1

)
p3(k−i) − 3

(
p2 − 1

)
p2(k−i)

]
.(4.4)
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The equation in (4.4) represents the one-step transition probability of the process
from state l to state k. The marginal probability function of the INAR(1)DBL
process is

γj = Pr (Xt = k)

=

∞∑
l=0

γij Pr (Xt−1 = l)

=
∞∑
l=0

min(k,l)∑
i=1

(
l
i

)
αi(1− α)l−i

[
2
(
p3 − 1

)
p3(k−i) − 3

(
p2 − 1

)
p2(k−i)

]
γi,(4.5)

where k = 0, 1, 2, ..., (see Jazi et al., 2012). Following the results given in Al-Osh
and Alzaid (1987), we obtain the mean, variance and DI of the INAR(1)DBL
process and given, respectively, by

(4.6) µX =
p2
(
p2 + p+ 3

)
(p2 + p+ 1) (1− p2) (1− α)

,

(4.7)

σ2X =
α

α2 − 1

(
3p2

(
p2 − 1

)
(p2 − 1)2

−
2p2

(
p2 − 1

)
(p3 − 1)2

)
−
p2
(
3p4 + 4p3 − p2 + 4p+ 3

)
(α2 − 1) (p4 + p3 − p− 1)2

,

and

(4.8) DIX =

(
α− 3 p4 + 4 p3 − p2 + 4 p+ 3

p6 + 2 p5 + 4 p4 + 2 p3 − 2 p2 − 4 p− 3

)
(α+ 1)−1 .

According to Al-Osh and Alzaid (1987), the conditional expectation and variance
of INAR(1)DBL process are given, respectively, by

(4.9) E (Xt|Xt−1) = αXt−1 +
p2(p2 + p+ 3)

(p2 + p+ 1)(1− p2)
,

(4.10) Var (Xt|Xt−1) = α (1− α)Xt−1 +
p2(3p4 + 4p3 − p2 + 4p+ 3)

(p2 + p+ 1)2(p2 − 1)2
.

4.1. Estimation of INAR(1)DBL process

Bourguignon et al. (2019) and Ĺıvio et al. (2018) used three estimation
methods to obtain the parameters of INAR(1) process defined under different
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innovation distributions. These methods are conditional least squares (CLS),
Yule-Walker (YW) and the conditional maximum likelihood (CML) estimation
methods. They compared the finite sample performance of these estimation meth-
ods for different sample sizes and parameter settings and concluded that CML
estimation method provides better results than CLS and YW estimation methods.
Here, we use these three estimation methods to obtain the unknown parameters
of the INAR(1)DBL process. However, there are no explicit forms for the CLS
and YW estimators of the INAR(1)DBL process because of the non-linearity of
the equations.

Conditional maximum likelihood

The conditional log-likelihood function of the INAR(1)DBL process is

` (ΘΘΘ) =
T∑
t=2

ln [Pr (Xt = k|Xt−1 = l)]

=
T∑
t=2

ln

 min(xt,xt−1)∑
i=0

(
xt−1
i

)
αi(1− α)xt−1−i

×
{

2
(
p3 − 1

)
p3(xt−i) − 3

(
p2 − 1

)
p2(xt−i)

}
 ,(4.11)

where Θ = (αcml, pcml) is the unknown parameter vector. The CML estimator
of Θ, say Θ̂ can be obtained by maximizing the equation (4.11). It is well-known
that the maximization of (4.11) is equivalent to minimization of the negative
of (4.11). Minimization of the negative of (4.11) could be done by using differ-
ent software such as R, Matlab, C++ or S-Plus. Here, we prefer constrOptim
function of R software to minimize the negative of (4.11). Note that the CML
estimators are asymptotically normal and consistent under the regularity condi-
tions (Bourguignon et al., 2019).

Yule-Walker

The YW estimators are obtained by simultaneous solution of the equations
for the theoretical and empirical moments of the INAR(1)DBL process. The
autocorrelation function (ACF) of the INAR(1) process at lag h is ρX (h) = αh,
and ρX (1) = α for h = 1. Therefore, the YW estimator of the parameter α is

(4.12) α̂YW =

T∑
t=2

(
Xt − X̄

) (
Xt−1 − X̄

)
T∑
t=1

(
Xt − X̄

)2 .
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The YW estimator of the parameter p, say p̂YW , can be obtained by solving

(4.13)
p2
(
p2 + p+ 3

)
(p2 + p+ 1) (1− p2) (1− α̂YW )

= X̄,

where X̄ =
T∑
t=1

Xt

/
T . However, it is not possible to obtain the explicit

forms of the YW estimators of the parameter p. Therefore, (4.13) has to solved
numerically by using the software such as R or MATLAB. We use the uniroot
function of the R software to obtain p̂YW .

Conditional least squares

The CLS estimators of the parameters α and p can be obtained by mini-
mizing

(4.14) S (η) =
T∑
t=2

(Xt − E (Xt|Xt−1))
2,

where η = (αcls, pcls) and E (Xt|Xt−1) is given in (4.9). Replacing E (Xt|Xt−1)
with (4.9) in (4.14), we have

(4.15) S (η) =

T∑
t=2

(
Xt − αXt−1 −

p2
(
p2 + p+ 3

)
(p2 + p+ 1) (1− p2)

)2

.

The derivatives of (4.15) with respect to the parameters α and p and equating
them to zero, we have
(4.16)

∂S (η)

∂p
=

T∑
t=2

−
12 p

(
Xt − αXt−1 +

p2 (p2+p+3)
(p2−1) (p2+p+1)

) (
p4 + p3 + p2 + p+ 1

)
(−p4 − p3 + p+ 1)2

= 0,

(4.17)
∂S (η)

∂α
=

T∑
t=2

−2Xt−1

(
Xt − αXt−1 +

p2
(
p2 + p+ 3

)
(p2 − 1) (p2 + p+ 1)

)
= 0.

The simultaneous solutions of (4.16) and (4.17) give the CLS estimators of the
parameter α and p. However, since the mean of the DBL distribution has non-
linear functions, it is not possible to obtain the pcls in explicit form. However,
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when the parameter p is known, the CLS estimator of the parameter α is

(4.18) α̂cls =

T∑
t=2

(Xt + 1)
(
p4 + p3

)
−Xt (p+ 1) + 3p2

(p4 + p3 − p− 1)Xt−1
,

where p can be replaced with p̂cml (see, Bourguignon et al.,2019).

5. SIMULATION STUDIES

Here, two simulation studies are given to evaluate the parameter estimation
performance of proposed models.

5.1. Simulation of DBL model

The finite-sample performances of the MLE and MM methods are com-
pared for small and large sample sizes based on the simulation study. The below
simulation steps are used for this goal.

1. Generate N = 10000 samples of size n = 20, 50, 100, 200 and 500 from
DBL(0.1), DBL(0.5) and DBL(0.7), respectively.

2. Using each generated sample, compute the MLE and MM estimator of the
parameter p, say p̂j where j = 1, 2, ..., 10, 000.

3. Compute the biases, mean-squared errors (MSEs) and mean relative errors
(MREs) using following equations.

Bias(p) =
1

N

N∑
j=1

(p̂j − p) , MSE(p) =
1

N

N∑
j=1

(p̂j − p)2 and MRE =
1

N

N∑
j=1

p̂i
pi

The simulation results are reported in Table 1. The following remarks are
obtained according to the results in Table 1.

1. The estimated biases always decrease and near the zero when n→∞.

2. The estimated MSEs decrease and near the zero when n→∞.

3. The estimated MREs are near the desired value, 1, especially for large
sample sizes.

4. Both estimation methods work well for estimating the parameter p and
produce similar results.

The similar results can be obtained for different values of the parameter p.
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Table 1: The simulation results of DBL distribution.

Parameter Sample size
Bias MSE MRE

MLE MM MLE MM MLE MM

p = 0.1 20 -0.036585 -0.036506 0.006924 0.006926 0.634153 0.634937
50 -0.016756 -0.016717 0.003237 0.003238 0.832445 0.832833
100 -0.006808 -0.006800 0.001424 0.001424 0.931918 0.932002
200 -0.002833 -0.002825 0.000523 0.000523 0.971665 0.971747
500 -0.002338 -0.002341 0.000196 0.000196 0.976622 0.976590

p = 0.5 20 -0.008975 -0.008716 0.003892 0.003873 0.982050 0.982567
50 -0.002803 -0.002843 0.001605 0.001610 0.994394 0.994314
100 -0.001900 -0.001884 0.000682 0.000682 0.996201 0.996231
200 -0.000803 -0.000765 0.000317 0.000317 0.998394 0.998470
500 -0.000145 -0.000146 0.000150 0.000151 0.999101 0.999089

p = 0.7 20 -0.004901 -0.004959 0.001647 0.001647 0.992999 0.992915
50 -0.001908 -0.001971 0.000700 0.000702 0.997275 0.997184
100 -0.000833 -0.000854 0.000330 0.000329 0.998810 0.998780
200 -0.000734 -0.000764 0.000170 0.000170 0.998952 0.998909
500 -0.000856 -0.000859 0.000075 0.000075 0.998777 0.998773

5.2. Simulation of INAR(1)DBL process

We carry out a simulation study to evaluate the asymptotic behaviours of
the CML, YW and CLS estimators of INAR(1)DBL process for small and suffi-
ciently large sample sizes. The number of simulation replications is N = 10, 000
and three sample sizes are used: n = 25, 50 and 100. Four parameter vectors
are also used. These are (α = 0.3, p = 0.9), (α = 0.5, p = 0.5), (α = 0.2, p = 0.3)
and (α = 0.7, p = 0.6). The biases, MSEs and MREs are used to evaluate the
simulation results.

We expect that when the sample size is sufficiently large, the biases and
MSEs near the zero and MREs are near the one. The simulation results are sum-
marized in Table 2. As seen from the simulation results, the results of the CML
and YW estimation methods are very near each other. However, the CML esti-
mation method approaches to the desired values of the biases, MSEs and MREs
more faster than those of the CLS and YW estimation methods. The performance
of the CML method is better than the CLS and YW estimation methods for both
small and sufficiently large sample sizes. Therefore, we suggest to use the CML
estimation to obtain the unknown parameters of the INAR(1)DBL process.
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Table 2: Simulation results of INAR(1)DBL process.

Sample size Parameters
α = 0.3, p = 0.9

CML YW CLS

Bias MSE MRE Bias MSE MRE Bias MSE MRE

n=25 α -0.0020 0.0092 0.9959 -0.1239 0.0469 0.7620 -0.1198 0.0494 0.7768
p -0.0055 0.0016 0.9931 0.0209 0.0028 1.0261 0.0187 0.0030 1.0234

n=50 α -0.0032 0.0042 0.9936 -0.0686 0.0195 0.8629 -0.0685 0.0203 0.8631
p -0.0010 0.0007 0.9987 0.0140 0.0014 1.0175 0.0132 0.0016 1.0165

n=100 α -0.0003 0.0023 0.9993 -0.0270 0.0088 0.9461 -0.0257 0.0090 0.9487
p -0.0016 0.0004 0.9980 0.0038 0.0008 1.0048 0.0035 0.0009 1.0043

Sample size Parameters
α = 0.5, p = 0.5

CML YW CLS

Bias MSE MRE Bias MSE MRE Bias MSE MRE

n=25 α -0.0295 0.0257 0.9409 -0.1326 0.0533 0.7444 -0.1286 0.0579 0.7524
p 0.0002 0.0049 1.0003 0.0356 0.0079 1.0713 0.0333 0.0087 1.0665

n=50 α -0.0122 0.0112 0.9756 -0.0623 0.0207 0.8754 -0.0616 0.0218 0.8768
p 0.0014 0.0024 1.0029 0.0196 0.0035 1.0392 0.0193 0.0039 1.0386

n=100 α -0.0025 0.0054 0.9950 -0.0310 0.0095 0.9380 -0.0310 0.0100 0.9381
p -0.0010 0.0013 0.9979 0.0096 0.0020 1.0192 0.0098 0.0021 1.0197

Sample size Parameters
α = 0.2, p = 0.3

CML YW CLS

Bias MSE MRE Bias MSE MRE Bias MSE MRE

n=25 α -0.0285 0.0304 0.9661 -0.0910 0.0513 0.9550 -0.0814 0.0599 1.0285
p -0.0076 0.0046 0.9924 0.0033 0.0047 1.0111 -0.0007 0.0064 1.0053

n=50 α -0.0276 0.0222 0.9762 -0.0502 0.0290 0.8860 -0.0493 0.0298 0.8980
p -0.0049 0.0023 0.9838 -0.0009 0.0023 0.9969 -0.0014 0.0024 0.9954

n=100 α -0.0141 0.0116 0.9896 -0.0206 0.0135 0.9221 -0.0198 0.0134 0.9253
p -0.0017 0.0011 0.9944 -0.0006 0.0012 0.9980 -0.0007 0.0011 0.9976

Sample size Parameters
α = 0.7, p = 0.6

CML YW CLS

Bias MSE MRE Bias MSE MRE Bias MSE MRE

n=25 α -0.0134 0.0082 0.9808 -0.1689 0.0591 0.7590 -0.1657 0.0637 0.7649
p -0.0073 0.0047 0.9878 0.0667 0.0119 1.1112 0.0610 0.0141 1.1017

n=50 α -0.0058 0.0036 0.9917 -0.0855 0.0216 0.8779 -0.0856 0.0227 0.8777
p -0.0014 0.0021 0.9977 0.0401 0.0063 1.0669 0.0396 0.0069 1.0660

n=100 α -0.0051 0.0019 0.9928 -0.0433 0.0079 0.9381 -0.0434 0.0083 0.9380
p -0.0006 0.0011 0.9990 0.0208 0.0029 1.0346 0.0207 0.0031 1.0345

6. EMPIRICAL STUDIES

This section is devoted to illustrate the importance of the DBL distribution
by analyzing the three real data sets with proposed and competitive models.
The performance of fitted models are compared using goodness-of-fit criteria,
Kolmogorov-Smirnov (K-S) test with its corresponding p-value.
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6.1. Number of fires in Greece

The first data set deals with the numbers of fires in Greece for the period
from 1 July 1998 to 31 August of the same. This data set was reported by Karlis
and Xekalaki (2001) and also is given in Appendix. The performance of the DBL
distribution is compared with competitive models listed in Table 3.

Table 3: The competitive models of the DBL distribution

Distribution Abbreviation Author(s)

Geometric Geo -
Discrete Lindley DLi Gómez-Déniz and Caldeŕın-Ojeda (2011)
Discrete Rayleigh DR Roy (2004)
Discrete inverse Rayleigh DIR Hussain and Ahmad (2014)
Discrete Pareto DPa Krishna and Pundir (2009)
Poisson Poi Poisson (1837)
Discrete generalized exponential type II DGE-II Nekoukhou et al. (2013)
Discrete Weibull DW Nakagawa and Osaki (1975)
Discrete inverse Weibull DIW Jazi et al. (2010)
Discrete Burr type II DB-XII Para and Jan (2016a)
Exponentiated discrete Lindley EDLi El-morshedy et al. (2019)
Discrete log-logistic DLog-L Para and Jan (2016b)
Exponentiated discrete Weibull EDW Nekoukhou and Bidram (2015)

Tables 4 and 5 contain the MLEs of the parameters for each fitted distri-
bution with their standard errors (std-er). The asymptotic confidence intervals
(CI) and the results of the goodness-of-fit test are also reported in these tables.

Table 4: The MLEs, C.Is, K-S and p-values of fitted models with one-parameter
for the numbers of fires in Greece.

Statistic ↓ Model → DBL Geo DLi DR DIR DPa Poi

MLEp 0.867 0.844 0.741 0.980 0.018 0.546 5.398
Std-erp 0.008 0.013 0.014 0.023 0.007 0.029 0.209

95 % C. I Lowerp 0.852 0.818 0.712 0.935 0.004 0.488 4.988
Upperp 0.883 0.869 0.769 1.00 0.033 0.605 5.809

K-S 0.096 0.164 0.097 0.183 0.429 0.355 0.854
p-value 0.202 0.003 0.198 < 0.001 0 < 0.001 0

According to Tables 4 and 5, two model provide the sufficient results for
analyzing the number of fires in Greece since the p-values of these models are
greater than 0.05. These are DBL and DLi distributions. However, DBL dis-
tribution has the smallest value of K-S statistic and the largest p-value among
all competitive models as well as DLi distribution. Figures 6 and 7 show the
estimated cdfs and probability-probability (PP) plots. These figures support the
results reported in Tables 4 and 5.

Figure 8 shows the log-likelihood profile of p̂ where L = −346.902. It is
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Table 5: The MLEs, C.Is, K-S and p-values of fitted models with two and more
parameters for the numbers of fires in Greece.

Statistic ↓ Model → DGE-II DW DIW DB-XII EDLi DLog-L EDW

MLEp 0.822 0.879 0.079 0.761 0.766 4.226 0.860
Std-erp 0.019 0.023 0.022 0.043 0.021 0.389 0.099

95 % C. I Lowerp 0.785 0.835 0.035 0.677 0.725 3.462 0.665
Upperp 0.859 0.924 0.123 0.845 0.808 4.989 1.055

MLEα 1.255 1.131 1.035 2.503 0.797 1.717 1.081
Std-erα 0.175 0.082 0.079 0.487 0.113 0.138 0.238

95 % C. I Lowerα 0.912 0.969 0.881 1.548 0.575 1.446 0.615
Upperα 1.598 1.292 1.189 3.457 1.018 1.988 1.549

MLEθ − − − − − − 1.092
Std-erθ − − − − − − 0.448

95 % C. I Lowerθ − − − − − − 0.214
Upperθ − − − − − − 1.969

K-S 0.130 0.123 0.208 0.299 0.124 0.149 0.125
p-value 0.031 0.047 < 0.001 < 0.001 0.046 0.009 0.042
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Figure 6: The estimated CDFs of fitted models.

found that the log-likelihood profile of p̂ is unimodal-shaped. Thus, this estimator
is a unique and considered the best for the used data set.

Table 6 shows the results of MM method for the DBL parameter. It is clear
that MM method works well for estimating the parameter p.

Table 6: The estimated parameter of DBL distribution with MM method.

Method ↓ Measure → p̂ K-S p-value

MM 0.868 0.095 0.220

Using the MM estimator of the parameter of p, the statistical properties
of DBL distribution such as mean, mode, variance, DI, MD, CV, skewness and
kurtosis values are listed in Table 7.
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Figure 7: The PP plots of fitted models.

Figure 8: The log-likelihood profile of p̂ for the number of fires in Greece data
set.

Table 7: The statistical properties of DBL distribution for the number of fires in
Greece.

Method ↓ Measure → Mean Mode Variance DI MD CV Skewness Kurtosis

MM 5.3867 2.3936 18.1002 3.3601 3.2218 0.7897 1.4837 6.4127
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6.2. Failure times

The data used represents the failure times for a sample of 15 electronic
components in an acceleration life test (see Lawless, 2003). The performance of
the DBL distribution is compared with discrete flexible model with one parame-
ter (DFx-I), Geo, DR, DIR, DPa, DGE-II, DIW, DLog-L, DB-XII and discrete
Lomax (DLo) distributions. The results of the fitted models with goodness-of-fit
test are given in Tables 8 and 9.

Table 8: The MLEs, C.Is, K-S and p-values of fitted models with one-parameter
for failure times data.

Statistic ↓ Model → DBL DFx-I Geo DR DIR DPa

MLEp 0.971 0.973 0.965 0.999 1.8× 10−7 0.720
Std-erp 0.005 0.006 0.009 2.58× 10−4 0.055 0.061

95 % C. I Lowerp 0.960 0.961 0.948 0.998 0 0.600
Upperp 0.981 0.985 0.982 0.999 0.107 0.839

K-S 0.114 0.146 0.177 0.216 0.698 0.405
p-value 0.978 0.864 0.673 0.433 9.1× 10−7 0.009

Table 9: The MLEs, C.Is, K-S and p-values of fitted models with two-parameter
for the failure times data

Statistic ↓ Model → DGE-II DIW DLog-L DB-XII DLo

MLEp 0.956 2.2× 10−4 21.463 0.975 0.012
Std-erp 0.013 7.75× 10−4 5.387 0.051 0.039

95 % C. I Lowerp 0.930 0 10.904 0.874 0
Upperp 0.981 0.001 32.021 1 0.088

MLEα 1.491 0.875 1.791 13.367 104.506
Std-erα 0.535 0.164 0.388 27.785 84.409

95 % C. I Lowerα 0.441 0.554 1.031 0 0
Upperα 2.540 1.196 2.551 67.824 269.947

K-S 0.129 0.209 0.136 0.388 0.205
p-value 0.937 0.482 0.913 0.015 0.491

It is found that the DFx-I, Geo, DR, DGE-II, DIW, DLog-L and DLo distri-
butions work quite well besides the DBL distribution. But the DBL distribution
is the best among all tested models because it has the smallest value of K-S as
well as it has the highest p-value. Figures 9 and 10 show the estimated cdfs and
PP plots for the failure times data.

It is clear that the DBL, DFx-I, Geo, DR, DGE-II, DIW, DLog-L and DLo
distributions are suitable choices for this data set. However, the DBL distribution
is the best choice since it has lowest value of the K-S test statistic. Figure 11
shows the TTT plot and log-likelihood profile of p̂ where L = −64.784.
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Figure 9: The estimated cdfs for the failure times data.
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Figure 10: The PP plots for the failure times data.
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Figure 11: The TTT plot (left panel) and log-likelihood profile of p̂ (right panel)
for the failure times data.

Regarding Figure 11, it is clear that the shape of the hrf can be increas-
ing and the log-likelihood profile of p̂ is unimodal-shaped. Table 10 shows the
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estimation of the proposed model using the MM for the failure times data.

Table 10: Estimation and goodness of fit test for the failure times data.

Method ↓ Statistic → p K-S p-value

MM 0.971 0.109 0.994

According to the p-value of the K-S test, MM method works quite well
besides the MLE method for estimating the unknown parameter. But the MM
is the best. Using the MM estimator of the parameter p, some statistics of the
DBL distribution are reported in Table 11.

Table 11: Some descriptive statistics for data set II.

Method Mean Mode Variance DI MD CV Skewness Kurtosis

MM 27.816 13.284 417.044 14.992 15.533 0.734 1.493 6.442

The data herein is suffering from over dispersion phenomena as DI > 1.
Furthermore, it is moderately skewed right with leptokurtic.

6.3. Burglary crimes

The performance of the INAR(1)DBL process is compared with the INAR(1)P,
INAR(1)PL and INAR(1)G processes. The one-step translation probabilities of
the competitive INAR(1) models are given below.

1. INAR(1)P

Pr (Xt = k|Xt−1 = l) =

min(k,l)∑
i=0

(
l
i

)
αi(1− α)l−i

exp ( −λ)λk−i

(k − i)!
, λ > 0.

2. INAR(1)PL

Pr (Xt = k|Xt−1 = l) =

min(k,l)∑
i=0

(
l
i

)
αi(1− α)l−i

θ2 (k − i+ θ + 2)

(θ + 1)k−i+3
, θ > 0,

3. INAR(1)G

Pr (Xt = k|Xt−1 = l) =

min(k,l)∑
i=1

(
l
i

)
αi(1− α)l−i

[
p(1− p)k−i

]
, 0 < p < 1.
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The CML estimation method is used to obtain unknown parameters of
INAR(1)DBL, INAR(1)PL, INAR(1)G and INAR(1)P models. To decide the
best model, two information criteria are used: Akaike Information Criteria (AIC)
and Bayesian Information Criteria (BIC). The smallest values of AIC and BIC
and indicate the best fitted model on the data set.

The series of monthly counts of burglary crimes in the 22th police car beat
in Pittsburgh is used to compare the performance of INAR(1)DBL, INAR(1)PL,
INAR(1)G and INAR(1)P processes. The data set consists of 144 monthly obser-
vations between the date of January 1990 and December 2001 and is given in Ap-
pendix. The data set can be also found in http://www.forecastingprinciples.

com/index.php/crimedata. The mean, variance and DI values of the used data
set are 6.111, 13.372 and 2.188, respectively. It is clear that monthly counts
of burglary crimes exhibit over-dispersion. So, the innovation distribution of
INAR(1) process should be able to model over-dispersion. Therefore, INAR(1)
process with DBL innovations could be a good choice to model these data set.
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Figure 12: The plots of monthly counts of burglary crimes and its corresponding
ACF and PACF plots.

The autocorrelation function (ACF) and partial ACF plots of the used data
set are displayed in Figure 12. As seen from these plots, ACF has clear cut-off
after the first lag. Therefore, AR(1) process could be a good choice for analyzing
these data set.

The estimated parameters of the fitted INAR(1) process and model se-
lection criteria are listed in Table12. Since the INAR(1)DBL model has the
smaller values of AIC and BIC statistics than those of INAR(1)P, INAR(1)PL
and INAR(1)G processes, the INAR(1)DBL process provides better fits than
other competitive INAR(1) processes. More importantly, the obtained DI value

http://www.forecastingprinciples.com/index.php/crimedata
http://www.forecastingprinciples.com/index.php/crimedata
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Table 12: The CML estimates of INAR(1)DBL and INAR(1)P process and
goodness-of-fit statistics.

Model Parameters Estimate Std-er AIC BIC µX σ2X DI

INAR(1)DBL α 0.3032 0.0467 733.1232 739.0628 6.1505 14.6336 2.3792
p 0.8402 0.0121

INAR(1)PL α 0.3842 0.0365 739.8960 745.8356 6.1731 17.4559 2.8277
θ 0.4451 0.0147

INAR(1)G α 0.4319 0.0376 747.7226 753.6622 6.1649 21.2445 3.4460
p 0.2221 0.0192

INAR(1)P α 0.1952 0.0194 778.3730 784.3126 6.1381 6.1381 1
λ 4.9402 0.0537

Empirical 6.1111 13.3722 2.1882

of INAR(1)DBL process is very near the empirical one. It is obvious that
INAR(1)DBL astoundingly explains the characteristics of the data set.

Additionally, the residual analysis is conducted to evaluate the accuracy of
the fitted INAR(1)DBL model for the data used. The Pearson residuals of the
INAR(1)DBL process are given by

(6.1) rt =
Xt − E (Xt|Xt−1)

Var(Xt|Xt−1)
1/2

where E (Xt|Xt−1) and Var (Xt|Xt−1) are defined in (4.9) and (4.10), re-
spectively. When the fitted INAR(1) process is valid for the modeled data, the
Pearson residuals should have zero mean and unit variance as well as uncor-
related. The Pearson residuals of the INAR(1)DBL process are calculated by
using (6.1). The mean and variance of these residuals are obtained as 0.0005 and
0.9917, respectively. The obtained values of the mean and variance of the Pearson
residuals are very closed to the desired values. Moreover, the predicted values of
the burglary crimes and the ACF plot of the Pearson residuals are displayed in
Figure 13 which ensures that the residuals are uncorrelated.

7. CONCLUSIONS

A new one-parameter discrete model is introduced. The statistical proper-
ties of proposed model are studied extensively. Two parameter estimation method
are used. These are the maximum likelihood and method of moments estimation
methods. The relative efficiency of parameter estimation methods are discussed
via simulation study. Three applications to three real data sets are given to
convince the readers in favour of DBL model. Empirical findings show that the
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Figure 13: The predicted values of the burglary crimes (left) and the ACF plot
of the Pearson residuals (right).

DBL model is an attractive model and produce more reliable results than other
its counterparts. More importantly, INAR(1) process with DBL innovations pro-
duce better results than INAR(1)P model in case of over-dispersion. We hope
that DBL distribution gains much more attention and is applied to wider range
of application fields.
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APPENDIX

The data set used in Section 6.1.

Numbers of fires 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43
Observed values 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

The data set used in Section 6.2.
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1.0, 5.0, 6.0, 11.0, 12.0, 19.0, 20.0, 22.0, 23.0, 31.0, 37.0, 46.0, 54.0, 60.0,
66.0.

The data set used in Section 6.3.

4 4 16 12 11 12 20 7 4 5 5 6 8 3 5 3 4 5 19 7
12 9 6 3 9 4 4 4 10 3 5 10 9 12 15 8 9 9 9 8
3 3 7 6 2 5 6 5 10 7 5 2 8 1 8 4 5 8 6 13
9 9 6 11 9 2 5 4 2 1 6 4 3 7 5 2 8 8 4 3
4 2 5 10 2 14 16 3 3 4 4 3 7 4 14 5 9 5 5 7
4 7 8 12 9 2 4 5 2 7 6 5 4 1 3 5 3 3 6 6
10 4 2 4 2 2 2 1 7 6 4 2 2 4 7 7 3 3 7 4
7 3 8 11
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