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Abstract:

• In this paper, we discuss several aspects about the slashed half-normal distribution.
We reparameterize the model based on the mean and we perform comparisons with
well-known regression models for positive data. Maximum likelihood estimation of the
parameters is carried out through the expectation-maximization algorithm. Some
properties of the estimators and two kinds of residuals are assessed in a simulation
study. Two real datasets illustrated the proposed model as well as other three models
for the sake of comparison.
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1. INTRODUCTION

The half-normal (HN) distribution is a very important model in the study
of skewed distributions. For instance, it is used in the stochastic representation
of the skew-normal distribution in Azzalini [4, 5] and Henze [15]. Several pa-
pers in the literature have paid attention to the half-normal distribution. For
instance, Chou and Liu [7] studied its properties and its uses in quality control.
Pewsey [22, 23] studied asymptotic inference and maximum likelihood estimation
for the general location-scale half-normal distribution. For analysis and applica-
tions from a Bayesian point of view, the reader is referred to Wiper et al. [32]
and Khan and Islam [17]. Also, the hnp R package [20], generates half-normal
plots with simulated envelopes using different diagnostics tools from a range of
different fitted models. Even though the HN distribution accommodates only
decreasing hazard rates, this distribution has been used to model positive data
and is becoming an important model in reliability theory,. Some of the general-
izations of this distribution can be found in Cooray and Ananda [8], Cordeiro et

al. [9], Olmos et al. [21], and Gómez and Bolfarine [13], Bourguignon et al. [6]
and Asgharzadeh et al. [1], among others. Particularly, we focus on the exten-
sion proposed in Olmos et al. [21], named slash half-normal (SHN) distribution,
where the goal is to increase the kurtosis with respect to its parent half-normal
distribution, and hence be more useful for modeling positive datasets that may
have a heavy right tail. In this work, we propose a reparameterization for this
model based on the mean. We use this parameterization because it is convenient
for proposing a regression model.

The article is organized as follows. In Section 2, we describe the repara-
metrized SHN regression model and compare it with some existing models. In
Section 3, we describe parameter estimation by the maximum likelihood (ML)
method using the expectation-maximization (EM) algorithm. Goodness of
fit through residuals is discussed in Section 4. In Section 5, we carry out two
simulation studies to assess the performance of the proposed estimators and the
two kinds of residuals. In Section 6, we apply the proposed model to analyze two
datasets on the diet of the hunter-gatherer and concentration of minerals in soil
samples. Concluding remarks are given in Section 7.

2. THE PROPOSAL

In this section, we present the proposed reparameterization for the SHN
model in terms of the mean. We also present three common distributions to
accommodate positive data that also are reparametrized in terms of the mean:
the gamma, Weibull and Birnbaum-Saunders models.
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2.1. Reparametrized slashed half-normal model

The SHN model (Olmos et al. (2012) [21]) is built in the following way. If
X ∼ HN(σ) (σ > 0) and Z ∼ Beta(α, 1) are independent random variables, then

(2.1) Y =
X

Z
∼ SHN(σ, α),

where α > 0 is a shape parameter that mainly controls the right tail of the
distribution. Lower values of α (0 < α < 1) lead to a heavier tail (see Figure
1 in Olmos et al. [21]). However, in practice we have found estimates for α
greater than 1 (see the two examples in Olmos et al. [21] and our applications).
For this reason, the potential advantages of the parameterization of the model in
terms of the mean (mainly related to the interpretation of the coefficients in a
regression model) justify the restriction α > 1. Such kind of restriction is not
uncommon in the literature. Without going further, the popular Student’s t
distribution has a finite mean if the degrees of freedom is greater than 1. We pro-
pose a reparameterization of the SHN model based on µ =

√
2/πασ/(α−1). The

probability density function of the reparametrized SHN, henceforth RSHN(µ, α),
is given by

fRSHN(y;µ, α) = α

√
2α

π

[√
π

2

µ(α− 1)

α

]α
Γ

(
α+ 1

2

)
y−(α+1)G

[
α2y2

πµ2(α− 1)2
,
α+ 1

2

]
,

(2.2)

for y > 0, where Γ(·) denotes the gamma function andG(y, a) =
∫ y
0 ua−1e−udu/Γ(a)

is the cumulative distribution function (cdf) of the gamma distribution with rate
parameter equal to 1. Based on results in Olmos et al. [21], we have E(Y ) = µ,
for α > 1,

Var(Y ) =
µ2

2

[
π − 2 +

π

α(α − 2)

]
, for α > 2,

√
ν3 =

π
√

2(α− 2)
[
4
πα

2(α− 2)(α − 3)− (α− 1)2(α− 4)(α + 1)
]

√
α(α− 3)[(π − 2)α(α − 2) + π]3/2

, for α > 3,

and

ν4 =
3α(α − 2)2(α− 3)

[
π2(α− 1)4 − 4α3(α− 4)

]
− 4πα2(α− 1)2(α − 2)(α − 4)(α2 − 3α + 8)

α2(α− 3)(α − 4)[(π − 2)α(α − 2) + π]2
,

for α > 4, where
√
ν3 and ν4 denote the skewness and kurtosis coefficients,

respectively. Note that this parameterization is very convenient because the
parameter µ is related only to the mean and the variance of the distribution.
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2.2. Reparametrized gamma distribution

For Y ∼ RG(µ, φ) (the gamma model parametrized in terms of the mean),
we have

E(Y ) = µ, Var(Y ) =
µ2

φ
,

√
ν3 =

2√
φ

and ν4 = 3 +
6

φ
.

The RSHN model is a competing distribution for the gamma distribution because
the coefficient of variation (cv), skewness and kurtosis coefficients do not depend
on µ in both models. Figure 1(a) shows the values of φ in the RG(µ, φ) model
and α in the RSHN(µ, α) model that lead to the same values of cv. Figure 1(b)
displays the kurtosis coefficient for those pairs (φ, α) corresponding to the same
value of cv. It is clear that the gamma model is more flexible in the sense that
it allows to obtain any positive value for the cv, whereas the RSHN distribution
only supports values for cv greater than [(π − 2)/2]1/2 ≈ 0.756, i.e., greater than
the cv of the half-normal distribution. However, there is a range of values of
α such that, for the same value of the cv, the RSHN distribution has a greater
kurtosis coefficient than the gamma distribution. In short, in the RSHN model
the variance is proportional to the square of the mean (similar to the gamma
model), but the RSHN model has a greater kurtosis coefficient for a certain
range of values of α.
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Figure 1: (a) Values for φ and α in the RG(µ, φ) and RSHN(µ, α) distri-
butions that produce the same coefficient of variation and (b)
their respective kurtosis coefficients.
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2.3. Reparametrized Weibull and Birnbaum-Saunders distributions

The reparametrized form of the Weibull distribution with parameters µ > 0
and δ > 0 has probability density function

fRW(y;µ, δ) =
φ

γ

(
y

γ

)δ−1

exp

[
−
(
y

γ

)δ
]
, for y > 0,

where γ = µ/Γ(1/δ + 1), so that

E(Y ) = µ and Var(Y ) = µ2

{
Γ(2/δ + 1)

[Γ(1/δ + 1)]2
− 1

}
.

We denote as Y ∼ RW(µ, δ).

In the same way, Santos-Neto et al. [31] also reparametrized the Birnbaum-
Saunders distribution in terms of the mean. With parameters µ > 0 and ξ > 0,
the probability density function is given by

fRBS(y;µ, ξ) =
exp(ξ/2)

√
ξ + 1

4
√
πµy3/2

(
y +

ξµ

ξ + µ

)
exp

{
−ξ

4

[
y(ξ + 1)

ξµ
+

ξµ

y(ξ + 1)

]}
,

for y > 0, so that E(Y ) = µ and Var(Y ) = µ2(2ξ + 5)/(ξ + 1)2. We use the
notation Y ∼ RBS(µ, ξ). The RW and RG (Section 2.2) will be compared with
the RSHN model fitted to real datasets in Section 6.

Remark 2.1. The RG and RW models are more flexible than the RBS
and RSHN models in the sense that, for a given value of µ, they allow to obtain
any positive value for the variance, whereas the RBS and RSHN models have
some restrictions. However, even when all the models produce the same mean
and variance, the skewness and kurtosis are not the same. Moreover, such terms
do not depend on µ. Table 1 shows four models with the same mean and variance.
However, the skewness and kurtosis coefficients are different.

Table 1: Examples of models with the same mean and variance.

Moment or Model
coefficient RG(µ, 1.333) RW(µ, 1.158) RBS(µ, 3.692) RSHN(µ, 4.125)

Mean µ µ µ µ
Variance 0.75µ2 0.75µ2 0.75µ2 0.75µ2

Skewness 1.732 1.390 12.662 1.791
Kurtosis 7.500 6.868 59.641 120.807

Remark 2.2. The mean and the variance of the RG, RW, RBS and
RSHN models are µ and µ2w2(η), where η represents φ, δ, ξ or α in each model,
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respectively and w(·) is a positive function representing the coefficient of varia-
tion. This function is presented in Table 2. The computational implementation
to model mean and dispersion parameters with a set of covariates linked to both
components in RG and RW models is implemented in the gamlss.dist package in
R (see Rigby and Stasinopoulos [28, 29]), while the RBS model is discussed in
Santos-Neto et al. [30]. A similar scheme to model mean and dispersion might
be considered for the RSHN distribution. However, we only consider a model for
the mean parameter in this work.

Table 2: Summary for some models with quadratic variance function.

Model RG(µ, φ) RW(µ, δ) RBS(µ, ξ) RSHN(µ, α)

w(η) 1/
√
φ

√
Γ(2/δ+1)

[Γ(1/δ+1)]2 − 1

√
(2ξ+5)

ξ+1

√
1
2

(
π − 2 + π

α(α−2)

)

3. ESTIMATION

In this section, we discuss some details about the estimation procedure
based on the ML method. We also consider an EM type algorithm to obtain a
more stable estimation procedure. Henceforth, we consider a set of p observed
covariates for each individual, say xi = (xi1, . . . , xip)

⊤. Since µ = E(Y ) is a
positive parameter, we adopt the logarithmic link function log(µi) = x⊤

i β, i =
1, . . . , n, where β is a p× 1 vector of regression coefficients.

3.1. General context

In Olmos et al. [21], parameter estimation (without covariates) was car-
ried out based on the direct maximization of the log-likelihood function using as
initial values the method of moments estimates of the parameters. In our model,
assuming the intercept is included, naive estimators for β0 and α can be obtained
ignoring the covariates, i.e., β1 = · · · = βp = 0. In this case, such estimators are
given by

(3.1) β̂0M = log
(
Y
)

and α̂M =
1

2
+

1

2

√
1 +

π

2Ay − 2 + π
, if Y 2 >

π

2
Y

2
,

where Ay = Y 2/Y
2
and Y 2 is the sample mean of the squared observations.

The log-likelihood function of ψ = (β⊤, α)⊤ in a random sample with
observations y1, . . . , yn is given by
(3.2)

ℓ(ψ) = c(α)+α log(µ)− (α+1)

n∑

i=1

log(yi)+

n∑

i=1

log

{
G

[
α2y2

πµ2(α− 1)2
,
α+ 1

2

]}
,
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where c(α) = −n(α− 1) log(α)− nα log(2)/2 + (α− 1/2) log(π) + α log(α− 1) +
n log[Γ(α/2+1/2)]. However, direct maximization of (3.2) is not simple and may
suffer from numerical instabilities. In Section 3.2, we propose a stable estimation
procedure for this model based on the stochastic representation in (2.1). We
develop in the sequel an EM algorithm (Dempster et al. [10]) for parameter
estimation.

3.2. ECM and ECME algorithms

To facilitate the estimation process, we include latent variables Z1, . . . , Zn

through the following hierarchical representation of the RSHN model:

Yi | Zi = zi;µi ∼ HN

[√
π

2

µi(α− 1)

αzi

]
and Zi ∼ Beta(α, 1).

Thus, the complete likelihood function for ψ is given by

Lc(ψ) =

(√
2

π

α2

α− 1

)n

exp

{
−

n∑

i=1

[log(µi)− α log(zi)]−
α2

π(α− 1)2

n∑

i=1

y2i Z
2
i

µ2
i

}
.

Consequently, up to a constant, the complete log-likelihood function for ψ is

ℓc(ψ) = − α2

π(α− 1)2

n∑

i=1

y2i z
2
i

µ2
i

−
n∑

i=1

[log(µi)−α log(zi)] +n[2 log(α)− log(α− 1)].

Let ẑ2i = E(Z2
i | ψ = ψ̂), ̂log(zi) = E(log(Zi) | ψ = ψ̂) and Q(ψ | ψ̂) = E(ℓc(ψ) |

ψ = ψ̂). With these definitions,

Q(ψ | ψ̂) = − α2

π(α− 1)2

n∑

i=1

y2i ẑ
2
i

µ2
i

−
n∑

i=1

[log(µi)−α ̂log(zi)]+n[2 log(α)−log(α−1)].

In addition,

f(zi | Yi = yi) ∝ (z2i )
(α

2
+1)−1 exp

[
− α2y2i z

2
i

πµ2
i (α− 1)2

]
I(0,1)(zi),

where IA(a) = 1 if a ∈ A and 0 otherwise. Define Wi = Z2
i , i = 1, . . . , n. It is

straightforward to show that

f(wi | Yi = yi) ∝ w
α+1
2

−1

i exp

[
−πµ2

i (α− 1)y2iwi

α

]
I(0,1)(wi),

so that

Wi | Yi = yi ∼ Gamma

[
α+ 1

2
,
πµ2

i (α− 1)y2i
α

]
I(0,1),
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i.e., the truncated gamma distribution on the (0, 1) interval. Thus,

ẑ2i =

πµi(α+ 1)(α − 1)2G

[
α2y2i

πµ2
i (α− 1)2

,
α+ 3

2

]

y2iG

[
α2y2i

πµ2
i (α− 1)2

,
α+ 1

2

] .

However, a closed form expression for ̂log(zi) is not available, but it can be com-
puted numerically noticing that E[log(Zi)] = E[log(Wi)]/2 = Ci1(ψ)/[2Ci0(ψ)],
where

(3.3) Cij(ψ) =

∫ 1

0
[log(w)]jw

α+1
2

−1 exp

[
−πµ2

i (α− 1)y2iw

α

]
dw,

for α > 1 and j = 0, 1. Note that if W ∗

i ∼ Gamma(ai, bi), ai, bi > 0, then
E[log(W ∗

i )] = η(ai)− log(bi), with η(·) denoting the digamma function. For this
reason, the convergence of Ci1(ψ) is guaranteed because Ci1(ψ) < E[log(W ∗

i )] <
∞, taking ai and bi conveniently. Therefore, the k-th iteration of the ECM
algorithm takes the form:

• E step. For i = 1, . . . , n, use ψ̂
(k−1)

, the estimate of ψ at the (k − 1)-th
iteration of the algorithm, to compute

ẑ
2(k)
i =

πµ̂i
(k−1)(α̂(k−1) + 1)(α̂(k−1) − 1)2G

[
α̂2(k−1)y2i

πµ̂i
2(k−1)(α̂(k−1) − 1)2

,
α̂(k−1) + 3

2

]

y2iG

[
α̂2(k−1)y2i

πµ̂i
2(k−1)(α̂(k−1) − 1)2

,
α̂(k−1) + 1

2

]

and ̂log(zi)
(k)

= Ci1(ψ̂
(k)

)/[2Ci0(ψ̂
(k)

)], where µ̂i
(k−1) = exp(x⊤

i β̂
(k−1)

)
and Cij(ψ), for j = 0, 1, is given in (3.3).

• CM step I. Given α̂(k−1) and ẑ2(k) = (ẑ
2(k)
1 , . . . , ẑ

2(k)
n )⊤, maximize the

expression

− α̂2(k−1)

π(α̂(k−1) − 1)2

n∑

i=1

y2i ẑi
2(k)

exp(2x⊤

i β)
−

n∑

i=1

x⊤

i β

with respect to β to obtain β̂
(k)

.

• CM step II. Given β̂
(k)

and l̂og(z)
(k)

= ( ̂log(z1)
(k)

, . . . , ̂log(zn)
(k)

)⊤, max-
imize the expression

− α2

π(α− 1)2

n∑

i=1

y2i ẑi
2(k)

µ̂i
2(k)

+ α
n∑

i=1

̂log(zi)
(k)

+ n[2 log(α)− log(α− 1)]

with respect to α, subject to α > 1, to obtain α̂(k).
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The maximization procedures in the CM steps can be performed using extant
software, e.g., with the optim function in the R language [24]. The E and CM
steps are repeatedly cycled until a suitable convergence rule is satisfied, e.g.,
the difference in successive values of the estimates given by the Euclidean norm
‖ψ(k+1) −ψ(k)‖ is less than a tolerance value.

In practice, the implementation of the ECM algorithm in this form can

be computationally expensive, mainly due to the computation of ̂log(zi), i =
1, . . . , n, in the E step. To avoid this problem and following the same idea used
in [19], we can replace the CM step II by the following step:

• CME step II. Given β = β̂
(k)

, update the estimate of α by maximizing
the expression

∑n
i=1 log[fRSHN(yi; µ̂i

(k), α)] with respect to α, subject to
α > 1, where fRSHN is presented in (2.2). In other words, α is updated
based on the maximization of the observed log-likelihood function with

β = β̂
(k)

. This step involves a unidimensional maximization, which can
be performed using, for instance, the Brent method available in the optim
function in R.

Finally, the covariance matrix of ψ̂ can be estimated based on the Hessian matrix
of the observed log-likelihood function. The numDeriv R package [12] provides
an accurate numerical approximation for this matrix. In Sections 5 and 6, this
estimate of the covariance matrix of ψ̂ is used to build approximate confidence
intervals and to compute standard errors. Computational codes are available
supplementary material.

Remark 3.1. For the case without covariates, the CM step I is reduced
to

CM step I. Update µ as follows: µ̂(k) = α̂(k)

α̂(k)−1

(
2
nπ

n∑

i=1

z2i ŷi
2(k)

)1/2

.

Remark 3.2. In the RSHN regression model, when the intercept term
is included in the model, an initial value to ψ can be obtained based on the
moment estimators presented in (3.1). Such initial value can be considered as

ψ̂
(0)

= (β̂0M , 0, . . . , 0, α̂M ).

4. RESIDUAL DIAGNOSTICS FOR THE RSHN MODEL

In this section, we discuss some aspects related to the deviance and quantile
residuals for the RSHN model.
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4.1. Deviance residuals

Residual diagnostics for the RSHN model can be carried out using the
deviance residuals defined as rDi

= sign(Yi − µ̂i)
√
2[ℓ(µ̃i, α̂)− ℓ(µ̂i, α̂)]

1/2, where
ℓ(·) denotes the log-likelihood function, µ̃i is the ML estimator of µi = exp(x⊤

i β)
under the saturated model and µ̂i is the ML estimator of µi under the working
model (with p < n regression coefficients). For the RSHN regression model, with
µ̃i = Yi and ℓ(·) coming from (3.2), these residuals are given by

rDi
= sign(Yi − µ̂i)

√
2

(
α̂ log(Yi/µ̂i) + log

{
G

[
α̂2

π(α̂− 1)
,
α̂+ 1

2

]}

− log

{
G

[
Y 2
i α̂

2

πµ̂2
i (α̂− 1)

,
α̂+ 1

2

]})1/2

, for i = 1, . . . , n,

where G(·) is given in (2.2). If the model is correct, the approximate distribution
of rDi

, i = 1, . . . , n, is the standard normal. The normality of the residuals can be
tested based on different tests such as the Shapiro-Wilk (SW), Anderson-Darling
(AD) and Cramér-von Mises (CVM) tests [33]. Moreover, simulated envelopes
(Atkinson [3]) are also useful to assess the fitting of the models.

4.2. Quantile residuals

A second alternative for residual analysis can be based on the normalized
quantile residuals (Dunn and Smyth [11]). These residuals are defined as

rQi
= Φ−1

[
F (Yi; ψ̂)

]
, i = 1, . . . , n,

where F (·;ψ) is the cdf of the response variable and Φ−1(·) denotes the quantile
function of the standard normal distribution. Except for the uncertainty due to
estimation of the parameters, if the model is correct, rQi

, i = 1, . . . , n, constitute
a random sample from the standard normal distribution. For the RSHN model,
we have

rQi
= α̂

√
2α̂

π

[√
π

2

µ̂i (α̂− 1)

α̂

]α̂
Γ

(
α̂+ 1

2

)∫ Yi

0
u
−(α̂+1)
i G

[
α̂2u2i

πµ̂2
i (α̂− 1)2

,
α̂+ 1

2

]
dui,

where the integral can be computed numerically using, for instance, the integrate
function in R.

5. SIMULATION STUDIES

In this section, we present two simulation studies. The first is devoted to
assess the performance of the ML estimator for the RSHN model in finite samples
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when the model is well specified. The main goal of the second study is similar to
the one in Leiva et al. [18], with the aim of assess the behavior of the deviance
and normalized quantile residuals when the model is either well or misspecified.

5.1. Parameters recovery

We stress that in Olmos et al. [21], the authors did not carry out a sim-
ulation study, so that it is of interest to address this issue. To draw synthetic
datasets from the RSHN model, we fix β = (β0, β1, β2)

⊤ (two covariates) and α
at the true values in Table 3. In practice, covariates may have any kind of as-
sociation. Therefore, we assume that the values of one covariate depends on the
other. In short, for i = 1, . . . , n, the steps to generate datasets are the following:

• Draw x1i ∼ U(10, 90) (the uniform distribution).

• Draw x2i ∼ Bernoulli(θi), where θi = exp(2 − 0.025x1i)/[1 + exp(2 −
0.025x1i)], i.e., x2i = 1 with probability θi that varies between 0.438 and
0.852 depending on the value of x1i.

• Compute µi = exp(x⊤

i β) and draw Wi ∼ HN(σi) independent from Zi ∼
Beta(α, 1), where σi =

√
2µiα/[

√
π(α− 1)].

• Compute Yi = Wi/Zi.

Once generated, the values of xi, i = 1, . . . , n, are kept fixed throughout
the simulations. For each generated sample, we apply the scheme described
in Section 3.2 to estimate β and α, while the standard errors of the estimates
are computed from the Hessian matrix in Section 3.2. We report the average
bias of the estimates (Bias), the average of the asymptotic standard error (SE),
the square root of the simulated mean squared error (RMSE) and the coverage
probability of the 95% asymptotic confidence intervals (CP).

We considered four different regression coefficients β, namely, (0.5, 0.5, 0.05),
(1.0, 0.5, 0.05), (0.5, 0.5, 0.025) and (1.0, 0.5, 0.025). Such values guarantee that
the drawn values of yi belong to the interval (1.649, 4.711) in all the cases. We
also considered α ∈ {2.5, 3.0, 5.0} (that guarantees a finite value for the variance
of yi) and n ∈ {50, 100, 200}. The results presented in Table 3 were obtained
from 1000 replications. Note that in all cases, the absolute value of bias and the
RMSE decrease when n increases, suggesting that the estimators are consistent,
and the coverage probabilities are close to the nominal value, as expected. Except
for the estimator of α, we see that SE and RMSE get closer when the sample size
increases, as expected from the asymptotic properties of the estimators. How-
ever, even for n = 200 the bias of α̂ is substantial. This result is in agreement
with other slashed distributions in the literature, see, for instance, Astorga [2]
and Reyes et al. [26, 25, 27]. This should not be a serious concern because in



A regression model for positive data 13

Table 3: Bias, average of the asymptotic standard error (SE), square root
of the simulated mean squared error (RMSE) and coverage prob-
ability of the 95% asymptotic confidence intervals (CP) of the
estimators under the RSHN regression model with 1,000 repli-
cations.

True n = 50 n = 100 n = 200
Parameter value Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

α 2.5 1.962 1.987 1.659 0.906 1.655 1.311 1.178 0.913 1.001 0.926 0.879 0.931
β0 0.5 -0.039 0.352 0.304 0.924 -0.028 0.287 0.231 0.928 -0.011 0.171 0.159 0.955
β1 0.5 -0.001 0.272 0.245 0.933 -0.001 0.192 0.151 0.936 -0.001 0.125 0.111 0.947
β2 0.05 -0.001 0.009 0.005 0.934 0.000 0.007 0.003 0.939 0.000 0.003 0.002 0.947
α 2.5 2.139 2.152 1.993 0.912 1.683 1.559 1.313 0.921 1.149 1.082 1.032 0.932
β0 1.0 0.041 0.281 0.265 0.935 0.031 0.256 0.225 0.937 0.010 0.181 0.169 0.945
β1 0.5 -0.031 0.223 0.201 0.936 -0.029 0.169 0.147 0.941 -0.024 0.127 0.119 0.941
β2 0.05 -0.005 0.010 0.006 0.931 -0.004 0.007 0.004 0.937 -0.004 0.005 0.004 0.942
α 2.5 2.389 1.559 1.379 0.918 1.446 1.333 1.052 0.922 0.982 0.790 0.754 0.935
β0 0.5 -0.089 0.369 0.311 0.912 -0.045 0.246 0.201 0.934 -0.021 0.171 0.152 0.952
β1 0.5 0.031 0.249 0.219 0.924 0.005 0.178 0.152 0.931 0.003 0.130 0.111 0.947
β2 0.025 0.001 0.010 0.005 0.926 0.000 0.008 0.003 0.931 0.000 0.003 0.002 0.939
α 2.5 2.424 1.587 1.401 0.914 1.452 1.156 1.038 0.921 0.951 0.891 0.858 0.941
β0 1.0 -0.079 0.402 0.351 0.924 -0.059 0.271 0.217 0.943 -0.013 0.178 0.156 0.953
β1 0.5 0.012 0.251 0.210 0.931 0.009 0.180 0.154 0.933 0.002 0.135 0.112 0.941
β2 0.025 0.000 0.009 0.005 0.924 0.000 0.007 0.003 0.931 0.000 0.003 0.002 0.941
α 3.0 2.094 1.852 1.650 0.918 1.912 1.210 1.003 0.919 0.929 0.974 0.936 0.937
β0 0.5 0.049 0.336 0.281 0.944 0.043 0.251 0.202 0.945 0.038 0.161 0.143 0.949
β1 0.5 -0.005 0.242 0.200 0.942 -0.002 0.186 0.142 0.943 0.000 0.125 0.101 0.947
β2 0.05 -0.001 0.009 0.004 0.922 -0.001 0.007 0.003 0.939 0.000 0.003 0.002 0.942
α 3.0 2.150 2.014 1.833 0.908 1.850 1.319 1.142 0.923 0.839 0.981 0.954 0.931
β0 1.0 0.090 0.369 0.316 0.914 0.050 0.299 0.245 0.929 0.040 0.214 0.190 0.943
β1 0.5 -0.049 0.241 0.206 0.932 -0.046 0.187 0.143 0.933 -0.038 0.111 0.097 0.944
β2 0.05 -0.006 0.009 0.006 0.917 -0.005 0.008 0.005 0.933 -0.004 0.005 0.004 0.941
α 3.0 2.202 1.263 1.029 0.902 1.456 1.099 0.878 0.914 1.141 0.725 0.697 0.935
β0 0.5 0.057 0.349 0.277 0.930 0.036 0.243 0.192 0.944 0.028 0.151 0.136 0.949
β1 0.5 0.037 0.271 0.203 0.929 0.019 0.160 0.135 0.935 0.013 0.123 0.101 0.943
β2 0.025 0.000 0.009 0.004 0.957 0.000 0.007 0.003 0.952 0.000 0.003 0.002 0.950
α 3.0 2.378 1.295 1.075 0.912 1.670 1.091 0.914 0.925 0.947 0.619 0.600 0.941
β0 1.0 0.035 0.356 0.287 0.948 0.031 0.251 0.193 0.949 0.022 0.178 0.152 0.950
β1 0.5 0.011 0.261 0.198 0.930 0.005 0.184 0.139 0.932 0.001 0.119 0.097 0.943
β2 0.025 0.000 0.008 0.004 0.939 0.000 0.007 0.003 0.946 0.000 0.003 0.002 0.949
α 5.0 2.419 2.514 2.297 0.902 1.926 1.894 1.640 0.930 1.503 1.212 1.199 0.937
β0 0.5 0.060 0.351 0.274 0.962 0.043 0.231 0.187 0.958 0.030 0.134 0.117 0.952
β1 0.5 -0.007 0.246 0.177 0.959 -0.002 0.157 0.116 0.957 -0.001 0.099 0.086 0.956
β2 0.05 -0.001 0.008 0.004 0.961 -0.001 0.007 0.003 0.960 0.000 0.003 0.002 0.957
α 5.0 2.134 2.152 1.958 0.904 1.069 1.419 1.275 0.912 0.825 0.974 0.951 0.939
β0 1.0 0.082 0.362 0.270 0.910 0.078 0.266 0.213 0.934 0.044 0.200 0.181 0.947
β1 0.5 -0.019 0.253 0.183 0.957 -0.015 0.184 0.136 0.954 -0.005 0.119 0.092 0.952
β2 0.050 -0.005 0.009 0.005 0.902 -0.005 0.008 0.005 0.922 -0.004 0.005 0.004 0.939
α 5.0 1.354 2.055 1.728 0.902 1.029 1.462 1.284 0.919 0.899 1.034 0.995 0.932
β0 0.5 0.025 0.314 0.246 0.959 0.018 0.233 0.179 0.954 0.013 0.145 0.126 0.953
β1 0.5 0.014 0.256 0.186 0.958 0.008 0.176 0.128 0.957 0.008 0.099 0.084 0.944
β2 0.025 0.000 0.008 0.004 0.958 0.000 0.007 0.003 0.956 0.000 0.003 0.002 0.952
α 5.0 1.768 2.263 1.928 0.922 1.483 1.500 1.396 0.930 1.156 1.127 1.091 0.938
β0 1.0 -0.007 0.325 0.257 0.962 -0.005 0.221 0.177 0.955 -0.003 0.152 0.131 0.952
β1 0.5 0.006 0.254 0.186 0.960 0.002 0.187 0.136 0.956 0.000 0.100 0.084 0.954
β2 0.025 0.000 0.009 0.004 0.939 0.000 0.007 0.002 0.940 0.000 0.003 0.002 0.942

practice the most important inferences pertain to the mean of the response vari-
able, which depends only on the regression coefficients vector β. Additionally,
since the coverage probability of the confidence interval for α ranges from 0.902 to
0.941, we see that the interval estimator behaves better than the point estimator.

5.2. Deviance and quantile residuals

In order to assess the performance of the distribution of the deviance and
quantile residuals, we take samples drawn from the RG(µi, φ = 1) model (which
also corresponds to the RW(µi, δ = 1) model) and RSHN(µi, α = 2.1) models,
where µi = exp(β0 + β1xi), and xi was drawn from the U(0, 10) distribution.
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For each sample, we fit the RSHN, RG, RW and RBS regression models and
present the quantile-quantile (QQ) plots with simulated envelopes based on 1000
replicates for the deviance and quantile residuals. We consider three sample sizes
n = 50, n = 100 and n = 200. We also present the p-value for the SW, AD
and CVM normality tests. Tables 4 and 5 show the QQ plots. As expected,
when the true model is the RG model, the QQ-plots related to the RG and RW
models present an approximately linear behavior and a good agreement with
the standard normal distribution for the three sample sizes for both, deviance
and quantile residuals. Moreover, the three normality tests do not reject the
hypothesis of normality under the common significance levels. In counterpart,
in this case the RSHN regression models yields unsatisfactory results and the
normality assumption of the residuals is questionable. When the true model is the
RSHN model, as expected, the QQ-plots for the deviance and quantile residuals
of the RSHN model present a good agreement with the standard normal for all
sample sizes. In addition, the deviance residuals for the RG and RW models
only provides fair results when n = 50. This result suggest that the RG and RW
regression models are very competitive in small sample sizes, even when the true
model is not the RG model or the RW model. Finally, the deviance and quantile
residuals of the RBS regression model are far away from the identity line in all
the cases, suggesting poor results when the true model is the RG model or the
RSHN model.

6. DATA ANALYSIS

In this section, the regression models formulated in Section 2 are applied
in the analysis of two datasets.

6.1. Hunter-gatherer group dataset

In this section, the regression models formulated in Section 2 are applied
in the analysis of a dataset described in Kelly [16]. The dataset is related to
the macroecological relationship between the size of the homerange (measured
in km2) of a hunter-gatherer group (response variable) and the contribution (in
percentage) of hunted foods to the diet. The dataset comprises 39 groups. The
sample mean, median and standard deviation of the size of the homerange are
4004.4, 906.0 and 10728.1 km2, respectively, while the sample skewness and kur-
tosis coefficients are

√
ν̂3 = 4.46 and ν̂4 = 23.43.

Figure 2 shows the scatterplot of the data and a smoothing spline, which
indicates that the logarithmic link function is adequate. We fit the RG, RW, RBS
and RSHN models, with results presented in Table 6. The deviance and quantile
residuals plots with envelopes are presented in the upper panels in Figures 4 and
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Table 4: QQ plots with simulated envelopes for the deviance and quantile
residuals when RG(µi, φ = 1) is the true model.

Fitted model
Residual n RSHN RG RW RBS

Deviance 50
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5. The lines in these plots represent the 2.5%, 50% and 97.5% quantile values of
the residuals computed from 100 bootstrap samples generated from the models in
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Table 5: QQ plots with simulated envelopes for the deviance and quantile
residuals when RSHN(µi, α = 2.1) is the true model.

Fitted model
Residual n RSHN RG RW RBS

Deviance 50
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Table 6. Note that, based on both residuals, all models seem appropriate for this
dataset. Furthermore, the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) values are similar for all models.
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Figure 2: Scatterplot and smoothing spline of the homerange, in 1000
km2, and the contribution of hunted foods to the diet (observa-
tion 2 was perturbed in the analysis).

In order to illustrate the robustness of the RSHN model, we perturb the
response variable of observation 2 in Figure 2 by adding two standard deviations
(originally with an area of 4,000 km2). The lower panels in Figures 4 and 5 show
the deviance and the quantile residuals plots for the models fitted to the perturbed
data. Note that for both residuals, the SW, AD and CVM tests support that
the residuals of the RSHN model come from the standard normal distribution for
datasets without and with perturbation. This fact suggests that the RG, RW and
RBS models do not yield a good fit for the perturbed dataset, differently from
the RSHN model, which yields a good fit in both scenarios. Information criteria
for the perturbed dataset in Table 6 also suggest that the best fit is achieved
with the RSHN model. Due to the perturbation, estimates of the coefficient
of the contribution of hunted foods to the diet (β1) decrease 33.3%, 24.2% and
28.4% under the RG, RW and RBS models, respectively, whereas for the RSHN
model the reduction amounts to 8.5%. Estimated means of the homerange for
unperturbed and perturbed data are displayed in Figure 3. We stress that the
ratio of the estimated area for unperturbed data to perturbed data is much more
stable for the RSHN model, especially for large values of the contribution of
hunted foods to the diet, as can be seen in Figure 3(c).
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Table 6: Parameter estimates (standard errors) and information criteria
for the RG, RW, RBS and RSHN regression models fitted to the
hunter-gatherer group dataset.

Dataset Model
Parameter RG RW RBS RSHN

Unperturbed β0 5.442 (0.504) 5.456 (0.436) 5.290 (0.478) 5.718 (0.136)
β1 0.063 (0.013) 0.062 (0.012) 0.067 (0.013) 0.059 (0.010)
α − − − 2.225 (1.541)
φ 0.811 (0.159) − − −
δ − 0.845 (0.100) − −
ξ − − 0.805 (0.227) −

AIC 670.26 669.25 668.02 670.11
BIC 675.25 674.24 673.01 675.10

Perturbed β0 6.588 (0.759) 6.345 (0.482) 6.407 (0.491) 6.332 (0.340)
β1 0.042 (0.020) 0.047 (0.013) 0.048 (0.014) 0.054 (0.013)
α − − − 1.517 (1.301)
φ 0.602 (0.115) − − −
δ − 0.695 (0.078) − −
ξ − − 0.587 (0.227) −

AIC 698.80 693.57 691.66 688.20
BIC 703.79 698.56 696.64 693.19
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Figure 3: Scatterplot of the homerange and the contribution of hunted
foods to the diet together with estimated means under different
models for data (a) without perturbation and (b) with pertur-
bation, and (c) ratio of the estimated area for unperturbed data
(µ̂unpert) to perturbed data (µ̂pert).

6.2. Minerals concentration dataset

This dataset is related to the concentration of some minerals in soil sam-
ples obtained at the Mining Department, University of Atacama, Chile. This
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Figure 4: Deviance residual plots with simulated envelopes for the (a) RG,
(b) RW, (c) RBS and (d) RSHN regression models fitted to
the hunter-gatherer group dataset without perturbation (upper
panel) and with perturbation (lower panel).
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Figure 5: Quantile residual plots with simulated envelopes for the (a) RG,
(b) RW, (c) RBS and (d) RSHN regression models fitted to
the hunter-gatherer group dataset without perturbation (upper
panel) and with perturbation (lower panel).
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dataset was previously analyzed in Gómez et al. [14] and Olmos et al. [21] . The
measurements are related to nickel (Ni) and zinc (Zn) respectively. In our appli-
cation, we consider to model jointly the positive measurements related to thorium
(Th, n=71), uranium (U, n=57), vanadium (V, n=86) and zinc (Zn, n=86). The
unit of measurement of the concentrations (response variable) is parts-per mil-
lion (ppm). The dataset comprises 300 observations. The sample mean, median
and standard deviation of the concentrations are 72.43, 29.00 and 110.06, respec-
tively, while the sample skewness and kurtosis coefficients are

√
ν̂3 = 4.37 and

ν̂4 = 35.87. Note that the kurtosis is unusually greater than the kurtosis of the
normal distribution. Given the high value of kurtosis, we consider appropriate
to model this dataset with the RSHN model in Section 2, linking the covariates
to the mean as µi = exp(βThxiTh + βUxiU + βVxiV + βZnxiZn), i = 1, . . . , 300,
where xiTh, xiU, xiV and xiZn are indicator variables assuming the value 1 when
the i-th observation corresponds to the referred mineral. We also compare the
results with the RG, RW and RBS regression models. Results are presented in
Table 7. Note that AIC and BIC attain the smallest values for the RSHN model.
Figure 6 shows the histogram of thorium and zinc concentrations compared with
the fitted density functions. Table 8 also presents the p-value for the univariate
Kolmogorov-Smirnov (KS) test for comparison of empirical and fitted cdf’s from
each mineral. Note that all p-values are greater than 5% for the RSHN model,
suggesting a better fit for this model over the RG, RW and RBS models.

Table 7: Parameter estimates (standard errors) and information criteria
for the RG, RW, RBS and RSHN regression models fitted to the
minerals dataset.

Model
Parameter RG RW RBS RSHN

βTh 2.871 (0.119) 2.866 (0.110) 3.005 (0.146) 2.989 (0.127)
βU 2.436 (0.133) 2.434 (0.123) 2.508 (0.155) 2.581 (0.136)
βV 4.896 (0.108) 4.892 (0.100) 4.646 (0.107) 5.071 (0.124)
βZn 4.572 (0.108) 4.589 (0.101) 4.555 (0.122) 4.458 (0.114)
α − − − 2.871 (2.541)
φ 1.206 (0.088) − − −
δ − 1.080 (0.046) − −
ξ − − 1.147 (0.082) −

AIC 2917.55 2920.67 2980.57 2906.97
BIC 2936.07 2939.18 2999.09 2925.49

Table 8: p-values for the Kolmogorov-Smirnov goodness of fit test.

Mineral RG RW RBS RSHN

Th 0.269 0.195 0.009 0.580
U 0.947 0.955 0.119 0.535
V 0.105 0.112 <0.001 0.348
Zn 0.003 0.002 0.040 0.065
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Besides the information criteria in Table 7, Figures 7 and 8 show the de-
viance and the quantile residuals plots for the fitted models. Note that for both
residuals, the SW, AD and CVM tests support (at a 5% significance level) that
only the residuals of the RSHN model come from the standard normal distribu-
tion. This fact suggests that the RG, RW and RBS models do not yield a good
fit for this dataset.
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Figure 6: Histogram and fitted density functions for RSHN, RG, RW and
RBS models in minerals dataset:(a) thorium and (b) zinc.
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(d)

Figure 7: Deviance residual plots with simulated envelopes for the (a) RG,
(b) RW, (c) RBS and (d) RSHN regression models fitted to the
minerals dataset.

7. CONCLUSION

In this work, a reparameterization of the distribution proposed by Olmos
et al. [21] based on the mean motivated us to propose a regression model for
positive data. The proposed model is an alternative to some well-known models
for positive response variables. Maximum likelihood estimates are computed with
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Figure 8: Quantile residual plots with simulated envelopes for the (a) RG,
(b) RW, (c) RBS and (d) RSHN regression models fitted to the
minerals dataset.

the EM algorithm. A simulation study was carried out to assess some properties
of the proposed estimator. The analysis of two datasets illustrates the robustness
of the model. Extensions of this work might include Bayesian inference, influence
assessment and mixed models.
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