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form expressions are given for the moments, moments of the order statistics and
quantile function of the new law; it is also shown that the members of this family of
distributions can be ordered in terms of the likelihood ratio order. The parameter
estimation is carried out by the method of maximum likelihood and a closed-form
expression is given for the Fisher information matrix, which is helpful for asymptotic
inferences. Then, a new regression model is introduced by considering the proposed
distribution, which is adequate for situations where the response variable is restricted
to a bounded interval, as an alternative to the well-known beta regression model,
among others. It relates the median response to a linear predictor through a link
function. Extensions for other quantiles can be similarly performed. The suitability
of this regression model is exemplified by means of a real data application.
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1. INTRODUCTION

The development of new parametric probability distributions attracts a
great deal of attention with the aim of providing useful models in many di-
fferent areas. Some recent contributions can be found in Bakoban and Abu-
Zinadah [7], Gómez-Déniz et al. [18] and Jodrá et al. [24], among others. With
respect to models with bounded support, considerable effort has been focussed
on providing alternatives to the beta distribution. A prominent alternative is
the two-parameter Kumaraswamy distribution introduced by Kumaraswamy [28]
and thoroughly studied by Jones [25]. Other less known two-parameter models
are the transformed Leipnik distribution (see Jorgensen [26, pp. 196–197]) and
the recently introduced Log–Lindley law (see Gómez-Déniz et al. [17] and Jodrá
and Jiménez-Gamero [23]). There are more proposals such as the four-parameter
Kumaraswamy Weibull distribution (Cordeiro et al. [10]) and the five-parameter
Kumaraswamy generalized gamma distribution (Pascoa et al. [35]), that present
the drawback of having a high number of parameters and in these cases the
parameter estimation often presents some difficulties.

This paper introduces a new two-parameter probability distribution with
bounded support derived from the extended exponential-geometric (EEG) dis-
tribution. The EEG law is a continuous probability distribution studied by
Adamidis et al. [2] to model lifetime data. More precisely, a random variable Y
is said to have an EEG distribution if the probability density function (pdf) is
given by

fY (y;α, β) =
α(1 + β)e−α y

(1 + β e−α y)2
, y > 0, α > 0, β > −1,

where α and β are the model parameters. In particular, the case α > 0 and
β ∈ (−1, 0) corresponds to the exponential-geometric distribution proposed by
Adamidis and Loukas [3]. A generalization of the EEG law is the three-parameter
Weibull-geometric distribution introduced by Barreto-Souza et al. [8].

From the EEG distribution, we define a new random variable X with
support in the standard unit interval (0, 1) by means of the transformation
X = exp (−Y ). It is easy to check that X has the following pdf and cumulative
distribution function (cdf),

(1.1) f(x;α, β) =
α(1 + β)xα−1

(1 + β xα)2
, 0 < x < 1, α > 0, β > −1,

and

F (x;α, β) =
(1 + β)xα

1 + β xα
, 0 < x < 1, α > 0, β > −1,

respectively. In the sequel, the random variable defined by (1.1) will be referred
to as the Log-extended exponential-geometric (LEEG) distribution. The LEEG
distribution presents an advantage with respect to the beta distribution since it
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does not include special functions in its formulation. Figure 1 represents the pdf
of X for several values of the parameters. It is interesting to note that the special
case β = 0 corresponds to the power function distribution, which includes the
uniform distribution for α = 1.
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Figure 1: f(x;α, β) for different values of α and β.

Clearly, the LEEG distribution can be used to model real data taking values
in the unit interval. Furthermore, as a linear transformation (b− a)X + a moves
a random variable X defined on (0, 1) to any other bounded support (a, b), with
a < b, the LEEG law can be extended to any bounded domain in a straightforward
manner, so there is no need to explain such an extension.

On the basis of the proposed distribution, we introduce a new regression
model which assumes that the response variable takes values in the standard unit
interval, as an alternative to the well-known beta regression model (see Ferrari
and Cribari-Neto [15]). Other regression models for bounded responses can be
found in [33, 34, 36]. Regression models usually express a location measure of a
distribution as a function of covariates. The location measure is commonly taken
the mean (which is the case of classical regression models) or some quantile (which
is the case of quantile regression, see, for example, the book by Koenker [27]).
With this aim, it is noted that the LEEG distribution can be easily reparametrized
in terms of any of its quantiles. As the median is a robust central tendency
measure, we choose to reparametrize the LEEG law with its median and construct
the associated regression model, which relates the median response to a linear
predictor through a link function. Nevertheless, it will become evident that any
other quantile could be used.
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The literature on parametric quantile regression is rather scarce. An exam-
ple is the parametric regression quantile in Noufaily and Jones [32], designed for a
positive response, while our proposal is for a bounded response. In addition to this
evident distinctive feature, the main difference between our approach and that
in [32] lies in the following: Noufaily and Jones [32] assume a distribution for the
response (specifically, the generalized gamma with three parameters) and consider
parametric forms for the dependence of the parameters (or some subset of them)
on the covariate (they only assume a unique covariate, although their proposal
can be extended to more covariates); then they replace the parameters in the
expression of the quantile function of the assumed model by the fitted regression
equations for the parameters. By contrast, we reparametrize the distribution in
terms of the median (although we could consider any other quantile) and assume
a parametric form for the dependence of the median on the covariates (we do
not limit the number of covariates). In our proposal, only one of the parameters
is allowed to depend on the covariates, but it would be an obvious extension to
express both of them as functions of the covariates. Note that our strategy is
closer, in spirit, to Koenker [27], which assumes a regression model for a quantile;
if the quantile is changed then the regression model also changes. In our scheme,
if the distribution is parametrized in terms of another quantile (different from
the median), the model parameters will change. On the contrary, in Noufaily
and Jones [32] the model parameters are the same for each quantile since they
do not fit a genuine quantile regression model, they just allow the distribution
parameters to vary with the covariates and then replace them in the expression
of the quantile function.

The remainder of this paper is organized as follows. In Section 2, some
statistical properties of the LEEG distribution are studied. Precisely, it is shown
that the LEEG law can be derived as the distribution of the minimum or maxi-
mum of a geometric random number of independent random variables with power
function distribution, the moments, as well as the moments of the order statis-
tics, can be expressed analytically in terms of the Lerch transcendent function,
the quantile function can be given in closed form and the members of the new
family of distributions can be ordered in terms of the likelihood ratio order. For
the sake of clarity, the proofs of this section are deferred to Appendix B. Sec-
tion 3 deals with the parameter estimation problem. Specifically, the method
of maximum likelihood is theoretically and numerically studied. In addition, an
explicit expression for the Fisher information matrix is obtained, which is use-
ful for asymptotic inferences on the parameters. The proof of these results is
deferred to Appendix C. Some numerical results studying the finite sample per-
formance of the maximum likelihood estimators as well a real data set application
are also displayed in this section. Section 4 shows how to construct a regression
model for bounded responses on the basis of the LEEG distribution. A real data
application demonstrates that such model may be more appropriate than others
previously proposed. For the sake of completeness, Appendix A presents a known
result concerning a logarithmic integral, which is used to provide unified proofs
in Appendices B and C.
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2. Statistical properties

This section studies some statistical properties of the LEEG distribution.
Specifically, an stochastic representation is provided together with the shape of
the pdf, the computation of moments, the computer-generation of pseudo-random
data and the computation of moments of the order statistics. In all cases, closed-
form expressions are given. Additionally, it is shown that the new family of
distributions can be ordered in terms of the likelihood ratio order.

2.1. Stochastic representation

The LEEG distribution has been defined in (1.1) via an exponential trans-
formation of the EEG distribution. It should be noted that the LEEG law can
also be derived as follows. Let N be a random variable having a geometric dis-
tribution with probability mass function (pmf) given by

P (N = n) =

(
1− 1

1 + β

)n−1 1

1 + β
, n = 1, 2, . . . ,

with β > 0. Let M be a random variable having a geometric distribution with
pmf given by

P (M = m) = (−β)m−1(1 + β), m = 1, 2, . . . ,

with β ∈ (−1, 0). Let T1, T2, . . . be independent identically distributed random
variables having Ti a power function distribution with parameter α > 0, that
is, its cdf is given by FTi

(t;α) = tα, 0 < t < 1. Assume that N and M are
independent of Ti, i = 1, 2, . . . .

Proposition 2.1. (i) The random variable V = min{T1, T2, . . . , TN}
has a LEEG distribution with parameters α > 0 and β > 0. (ii) The random

variable W = max{T1, T2, . . . , TM} has a LEEG distribution with parameters

α > 0 and β ∈ (−1, 0).

2.2. Shape and mode

As it can be seen from Figure 1, the pdf of the LEEG distribution has a
wide variety of shapes. The next result characterizes the shape of the pdf in
terms of the parameter values.

Proposition 2.2. LetX be a LEEG distribution with parameters α > 0
and β > −1.
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(i) For any α > 1, if β > (α − 1)/(1 + α) then X has a mode at x =(
α− 1

(1 + α)β

)1/α

and if β ∈ (−1, (α− 1)/(1 +α)] then (1.1) is an increasing

function.

(ii) For any 0 < α < 1, if β ∈ (−1, (α− 1)/(1 + α)) then (1.1) has a minimum

at x =

(
α− 1

(1 + α)β

)1/α

and if β ≥ (α−1)/(1+α) then (1.1) is a decreasing

function.

(iii) If α = 1 and β = 0, then (1.1) is the pdf of the uniform distribution on

(0, 1).

2.3. Moments

The moments of X can be expressed in closed form in terms of the Lerch
transcendent function, Φ. Remind that Φ is defined as the analytic continuation
of the series

Φ(z, λ, v) =

∞∑

i=0

zi

(i+ v)λ
,

which converges for any real number v > 0 if z and λ are any complex numbers
with either |z| < 1 or |z| = 1 and Re(λ) > 1 (see Apostol [5] for further details).

Proposition 2.3. LetX be a LEEG distribution with parameters α > 0
and β > −1. The moments of X are given by

(2.1) E[Xk] = 1− (1 + β)k

α
Φ

(
−β, 1, 1 +

k

α

)
, k = 1, 2, . . . .

It is interesting to note that the Lerch transcendent function is available in
computer algebra systems such as Maple (function LerchPhi(z,λ,v)) and Ma-
thematica (function LerchPhi[z,λ,v]). Accordingly, usual statistical measures
involving E[Xk] can be efficiently computed from Eq. (2.1).

2.4. Quantile function

An interesting advantage of the LEEG distribution with respect to the beta
distribution is that the cdf of X is readily invertible.

Proposition 2.4. The quantile function of the LEEG distribution with

parameters α > 0 and β > −1 is given by

F−1(u;α, β) =

(
u

1 + β − β u

)1/α

, 0 < u < 1.
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From Proposition 2.4, the quartiles of the LEEG law are given by

Q1 =

(
1

4 + 3β

)1/α

, Q2 =

(
1

2 + β

)1/α

, Q3 =

(
3

4 + β

)1/α

.

The explicit expression in Proposition 2.4 is helpful in simulation studies
because pseudo-random data from the LEEG distribution can be generated by
computer using the inverse transform method.

2.5. Order statistics

Next, analytical expressions to compute the moments of the order statistics
are provided. To this end, it is shown that the moments of the largest order
statistic of the LEEG law can be given in terms of a finite sum involving the
Lerch transcendent function Φ and the generalized Stirling numbers of the first
kind Rj

n (see Appendix A for the definition and calculation of these numbers).

Let X1, . . . ,Xn be a random sample of size n from the LEEG distribution
with parameters α > 0 and β > −1. Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the
order statistics obtained by arranging Xi, i = 1, . . . , n, in non-decreasing order
of magnitude. For any n = 1, 2, . . . and k = 1, 2, . . . , denote by E[Xk

r:n] the kth
moment of Xr:n, r = 1, . . . , n.

Proposition 2.5. Let X1, . . . ,Xn be a random sample of size n from a

LEEG distribution with parameters α > 0 and β > −1. Let Xn:n be the largest

order statistic. Then

E[Xk
n:n] =

(1 + β)n

Γ(n)

n∑

j=0

Rj
n(k/α, 1)Φ

(
−β, 1− j, n +

k

α

)
, k = 1, 2, . . . .

The result in Proposition 2.5 is useful to evaluate the moments of Xr:n, for
r = 1, . . . , n − 1, thanks to the following well-known formula (see, for example,
David and Nagaraja [13, p. 45])

E[Xk
r:n] =

n∑

j=r

(−1)(j−r)

(
j − 1

r − 1

)(
n

j

)
E[Xk

j:j ], r = 1, . . . , n− 1.

2.6. Stochastic orderings

To conclude Section 2, it is shown that the members of the new distribution
can be ordered in terms of the likelihood ratio order, which is defined as follows
(see, for example, Shaked and Shanthikumar [40, Chapter 1]).
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Definition 2.1. Let X1 and X2 be two continuous random variables
with pdfs f1 and f2, respectively, such that f2(x)/f1(x) is non-decreasing over
the union of the supports of X1 and X2. Then X1 is said to be smaller than X2

in the likelihood ratio order, denoted by X1 ≤LR X2.

The likelihood ratio order is stronger than the hazard rate order and the
usual stochastic order, which are defined as follows.

Definition 2.2. Let X1 and X2 be two random variables with cdfs F1

and F2 and hazard rates h1 and h2, respectively. Then

(i) X1 is said to be stochastically smaller than X2, denoted by X1 ≤ST X2, if
F1(x) ≥ F2(x) for all x.

(ii) X1 is said to be smaller than X2 in the hazard rate, denoted by X1 ≤HR X2,
if h1(x) ≤ h2(x) for all x.

The LEEG family can be ordered in the following way.

Proposition 2.6. Let X1 and X2 be two random variables having a

LEEG distribution with parameters (α, β1) and (α, β2), respectively, for some

α > 0, β1, β2 > −1. If β1 ≥ β2 then X1 ≤LR X2.

As an immediate consequence of Proposition 2.6 and the well-known fact
that

X1 ≤LR X2 ⇒ X1 ≤HR X2 ⇒ X1 ≤ST X2,

the following corollary is stated.

Corollary 2.1. Let X1 andX2 be two random variables having a LEEG

distribution with parameters (α, β1) and (α, β2), respectively, for some α > 0,
β1, β2 > −1. If β1 ≥ β2 then

(i) E(Xk
1 ) ≤ E(Xk

2 ), ∀k > 0.

(ii) h1(x) ≤ h2(x), ∀x ∈ (0, 1).

As a special case of Corollary 2.1 (i) it follows that, for fixed α > 0, the
mean of the LEEG distribution decreases as β increases.

3. Parameter estimation

This section considers the estimation of the parameters of the LEEG dis-
tribution. Specifically, Subsection 3.1 describes the maximum likelihood (ML)
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method. A closed-form expression for the Fisher information matrix is provided
in Subsection 3.2. The performance of the ML method is evaluated via a Monte
Carlo simulation study in Subsection 3.3. Finally, a real data application is pre-
sented in Subsection 3.4.

3.1. Maximum likelihood method

Let X1, . . . ,Xn be a random sample of size n from a LEEG distribution
with unknown parameters α > 0 and β > −1 and denote by x1, . . . , xn the
observed values. From the likelihood function, L(α, β) =

∏n
i=1 f(xi;α, β), the

log-likelihood function is given by

(3.1) logL(α, β) = n log α+n log (1 + β)+(α−1)

n∑

i=1

log xi−2

n∑

i=1

log (1 + β xαi ).

The ML estimates of α and β are the values α̂ and β̂ that maximize logL(α, β).
The partial derivatives of logL(α, β) with respect to each parameter are the
following:

∂

∂α
logL(α, β) =

n

α
+

n∑

i=1

log xi − 2β

n∑

i=1

xαi log xi
1 + β xαi

,(3.2)

∂

∂β
logL(α, β) =

n

1 + β
− 2

n∑

i=1

xαi
1 + β xαi

.(3.3)

The ML estimates of the parameters satisfy the system that results from equating
to 0 the equations (3.2) and (3.3). Nevertheless, since such system does not
have an explicit solution, in order to obtain the ML estimates it is preferable to
maximize the function (3.1). Subsection 3.3 will deal with this practical issue.

Another practical point is the possible presence of extreme values in the
data. Although we are assuming that the data are continuous, which implies that
the probability of observing the values zero and one is null, in applications, due to
rounding errors, these extreme cases may appear in the observations. By looking
at the expression of the log-likelihood (3.1), the presence of ones involves no
problem; on the other hand, the presence of zeroes implies that the log-likelihood
cannot be calculated. In such a case, we recommend replacing all zeroes by a
positive small quantity.

3.2. Fisher information matrix

Below, an analytical expression for the Fisher information matrix is given,
which let us explicitly calculate the asymptotic covariance matrix of the ML
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estimators. To this end, the polylogarithm function, which is a particular case of
the Lerch transcendent function (see Appendix A), plays an important role.

Proposition 3.1. Let X1, . . . ,Xn be a random sample of size n from

a LEEG distribution with parameters α > 0 and β > −1. For α > 0 and

β ∈ (−1, 0) ∪ (0,∞) the Fisher information matrix is given by

I(α, β) =




n

α2
− 2n

3α2β
{(1 + β)Li2(−β) + β} n(1 + β)

3αβ

(
1

(1 + β)2
− log (1 + β)

β

)

n(1 + β)

3αβ

(
1

(1 + β)2
− log (1 + β)

β

)
n

3(1 + β)2


,

where Li2 denotes the polylogarithm function of order two. For α > 0 and β = 0,

I(α, 0) =




n

α2
− n

2α

− n

2α

n

3


.

As it is well-known, it is useful to have an explicit expression for I(α, β)
since by inverting this matrix we get the asymptotic covariance matrix of the ML
estimators and it can be used to approximate their standard errors. Denote by

N2 a bivariate normal distribution and by
d−→ the convergence in distribution.

Proposition 3.2. Let X1, . . . ,Xn be a random sample of size n from a

LEEG distribution with parameters α > 0 and β > −1. Let θ̂ denote the ML

estimator of θ = (α, β). Then,

√
n(θ̂ − θ)

d−→ N2(0,Σ),

where Σ = Σ(α, β) is such that for β 6= 0

Σ(α, β) =




− 3α2β4

(1 + β)c(β)
−3αβ2[(1 + β)2 log(1 + β)− β]

c(β)

−3αβ2[(1 + β)2 log(1 + β)− β]

c(β)

3β3(1 + β)[2(1 + β)Li2(−β)− β]

c(β)


,

with

c(β) = (1 + β)3 log2(1 + β)− 2β(1 + β) log(1 + β) + β3[2Li2(−β)− 1] + β2

and Li2 stands for the polylogarithm function of order two, and for β = 0

Σ(α, 0) =

[
4α2 6α

6α 12

]
.
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3.3. Simulation study

As discussed in Subsection 3.1, in order to obtain the ML estimates of the
parameters the following optimization problem is solved

(3.4)

max logL(α, β)

s.t. α > 0

β > −1,

where logL(α, β) is given in Eq. (3.1). In our simulations, problem (3.4) was
solved by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, avai-
lable in the function constrOptim of the R programming language [37]. We chose
the BFGS algorithm because (3.4) is an optimization problem with linear ine-
quality constraints. The BFGS algorithm requires a starting point, which must
be in the interior of the feasible region, together with the gradient function of
logL(α, β). As starting point we tried several options with little or no effect on
the final solution. All numerical results in this paper were obtained by using as
starting point the pair (1, 1).

The performance of the ML estimators was assessed via a Monte Carlo
simulation study. The following notation was used. The number of random
samples generated is denoted by N and the size of each random sample is denoted
by n. The following quantities were computed for the simulated estimates α̂j ,
j = 1, . . . , N :

(i) The mean: ᾱ = (1/N)
∑N

j=1 α̂j.

(ii) The bias: Bias(α̂) = ᾱ− α.

(iii) The mean-square error: MSE(α̂) = (1/N)
∑N

j=1(α̂j − α)2.

The quantities β̄, Bias(β̂) and MSE(β̂) are analogously defined and were also
computed. In particular, we generated N = 10, 000 random samples of different
sizes n for several values of α and β. Some simulation results are shown in
Table 1, where it is included the mean, bias and MSE of the simulated estimates
together with the asymptotic variance of the estimators calculated directly from
the diagonal elements of (1/n)Σ(α, β), with Σ(α, β) given by Proposition 3.2, and
denoted by Var[α̂] and Var[β̂]. From the obtained results, it can be concluded
that the ML method provides acceptable estimates of the parameters, although
it should be noted that the ML method tended to slightly overestimate the value
of both parameters in the cases considered in the present study.
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n = 500 1.0044 0.0044 0.0031 0.0031 5.1294 0.1294 0.9255 0.8489 1.5044 0.0044 0.0057 0.0056 10.2248 0.2248 3.4507 3.1119

α = 15.0 β = 2.0 α = 15.0 β = 10.0

ᾱ Bias(α̂) MSE(α̂) Var[α̂] β̄ Bias(β̂) MSE(β̂) Var[β̂] ᾱ Bias(α̂) MSE(α̂) Var[α̂] β̄ Bias(β̂) MSE(β̂) Var[β̂]

n = 50 15.6584 0.6584 10.9093 9.4940 2.6075 0.6075 4.0518 2.0166 15.4493 0.4493 6.2381 5.6530 12.6339 2.6339 71.0531 31.1192

n = 75 15.4822 0.4822 7.0518 6.3293 2.4081 0.4081 2.1360 1.3444 15.2776 0.2776 4.0164 3.7687 11.6095 1.6095 35.2727 20.7461

n = 100 15.3295 0.3295 5.1931 4.7470 2.2870 0.2870 1.4440 1.0083 15.2294 0.2294 3.0211 2.8265 11.2339 1.2339 24.5033 15.5596

n = 200 15.1849 0.1849 2.4365 2.3735 2.1432 0.1432 0.5975 0.5041 15.1187 0.1187 1.4387 1.4132 10.5759 0.5759 9.6097 7.7798

n = 500 15.0682 0.0682 0.9674 0.9494 2.0565 0.0565 0.2204 0.2016 15.0389 0.0389 0.5740 0.5653 10.2267 0.2267 3.3672 3.1119

Table 1: ML estimates of α and β.
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3.4. A real data application

In this subsection, a real data set illustrates the practical usefulness of the
LEEG distribution by showing that it may be a more appropriate model than
other distributions with support in the standard unit interval.

The data set is available from the personal website of Professor E.W. Frees1

and consists of 73 observations on 7 variables. The data were collected from a
questionnaire carried out with the purpose of relating cost effectiveness to ma-
nagement philosophy of controlling the company’s exposure to various property
and casualty losses, after adjusting for company effects such as size and industry
type. These data have been previously analyzed by Schmit and Roth [38], Frees
[16, Chapter 6], Gómez-Déniz et al. [17] and Jodrá and Jiménez-Gamero [23].

In this section, interest is centered on the variable FIRMCOST (divided by
100), which is a measure of the cost effectiveness of the risk management practices
of the firm. Based on Subsection 3.1, the LEEG law was fitted to the variable
FIRMCOST/100. The ML estimates obtained were α̂ = 1.4322 and β̂ = 52.1069.
It can also be checked that the correlation coefficient between the theoretical and
the empirical cumulative probabilities is 0.9956.

Additionally, we applied the following goodness-of-fit tests based on the
empirical cdf: the Cramér von Mises statistic W 2, the Watson statistic U2, the
Anderson–Darling statistic A2 and the Kolmogorov–Smirnov statistic D. A de-
tailed definition together with simple formulae for computing these statistics can
be found in D’Agostino and Stephens[12, Chapter 4]. To get the p-values we
applied a parametric bootstrap generating 10,000 bootstrap samples (see Stute
et al. [41] and Babu and Rao [6] for full details). We also applied two test based
on the empirical characteristic function [19, 20] by using the integral transfor-
mation, as proposed in Meintanis et al. [30], taking as weight functions: the
standard normal law, FC1, and the pdf w(t) = {1 − cos(t)}/πt2, which is the
choice recommended in Epps and Pulley [14] (see also Section 4 in [20]), FC2.
The results are shown in Table 3.4 and suggest that the LEEG law provides a
satisfactory fit.

W 2 U2 A2 D FC1 FC2

Statistic value: 0.0571 0.0571 0.5133 0.0626 0.0011 0.1142

p-value: 0.2610 0.2610 0.1363 0.5320 0.1164 0.2663

Table 2: Goodness-of-fit tests.

The LEEG fitting was compared to the ones provided by other two-parameter

1http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling

/BookWebDec2010/data.html, filename: RiskSurvey.
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distributions used to model data in the unit interval. Specifically, we considered
the beta, Kumaraswamy, Log–Lindley and transformed Leipnik distributions. In
order to compare these models, we calculated the Akaike information criterion
AIC (see Akaike [4]), the consistent Akaike information criterion CAIC (see Boz-
dogan [9]) and the Bayesian information criterion BIC (see Schwarz [39]), which
are defined as follows, AIC = 2m − 2 logL, CAIC = m(1 + log n) − 2 logL and
BIC = m[log n− log(2π)]− 2 logL, respectively, where m is the number of para-
meters, n is the sample size and L denotes the maximized value of the likelihood
function. As it is well-known, the model with lowest values of AIC, CAIC and
BIC is preferred. For each fitted distribution, Table 3.4 shows the ML estimated
parameters together with the log-likelihood, AIC, CAIC and BIC values. Looking
at Table 3.4, the LEEG distribution provides the best fit. Moreover, the Vuong
test [42] was applied to compare the LEEG model to the beta, Kumaraswamy,
Log–Lindley and transformed Leipnik distributions. In the four cases the Vuong
statistic was very close to 0, so suggesting that all these distributions can be
considered equally close to the data. In this regard, we consider the LEEG dis-
tribution an attractive alternative to the aforesaid models.

Distribution ML estimates logL AIC CAIC BIC

LEEG(α, β) α̂ = 1.4322

f(x;α, β) =
α(1 + β)xα−1

(1 + β xα)2
β̂ = 52.1069 93.63 −183.26 −176.68 −182.35

Beta(a, b) â = 0.6125

f(x; a, b) =
1

B (a, b)
xa−1(1− x)b−1 b̂ = 3.7978 76.11 −148.23 −141.65 −147.32

Kumaraswamy(a, b) â = 0.6648

f(x; a, b) = abxa−1(1− xa)b−1 b̂ = 3.4407 78.65 −153.30 −146.72 −152.40

Log–Lindley(a, b) â = 0.6906

f(x; a, b) = a[b+ a(b− 1) log x]xa−1 b̂ = 0.0231 76.60 −149.20 −142.62 −148.30

Transformed Leipnik(µ, λ) µ̂ = 0.0261

f(x;µ, λ) =
[x(1− x)]−

1

2

B
(

λ+1

2
, 1

2

)

(

1 +
(x− µ)2

x(1− x)

)

−
λ

2

λ̂ = 6.4061 80.51 −157.02 −150.43 −156.11

Table 3: Fitted distribution, ML estimates, log-likelihood, AIC, CAIC
and BIC.

4. A regression model for bounded responses

Regression models are commonly used to model the mean of a response
variable as a function of a set of covariates (also called independent variables or
regressors). As shown in Proposition 2.3, the moments of the LEEG distribution
can be expressed in terms of the Lerch transcendent function, which implies that
the mean does not possess a simple expression. This fact makes difficult to build
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a regression model which relates the mean response with covariates. By contrast,
the expression of the quantiles of the LEEG distribution is quite tractable, so our
proposal is to use them to construct a regression model. In principle, we could
choose any quantile, but since the median is a robust measure of location and,
in this regard, it is considered as a competitor of the mean, we will choose the
median.

As a first step towards the construction of the regression model, the LEEG
distribution is reparametrized in terms of the median Q2 by equating Q2 to a
new parameter θ and solving the resultant equation for β. The resulting pdf is

(4.1) f(x;α, θ) =
αθα(1− θα)xα−1

[θα + (1− 2θα)xα]2
, 0 < x < 1, α > 0, 0 < θ < 1.

It should be noted that all properties studied for the parametrization (1.1) carry
over for the above one with β = (1− 2θα)/θα.

Let X1, . . . ,Xn be n independent random variables and denote by x1,
. . . , xn the observed values. Assume that each Xi has pdf f(x;α, θi) given
by (4.1). Suppose that the median of Xi satisfies θi = g(ztiγ), i = 1, . . . , n,
where zi = (zi1, . . . , zik)

t is the vector of covariates associated to the response
xi, γ = (γ1, . . . , γk) is an unknown vector of regression coefficients and g is the
link function. It is assumed that the link function g is a strictly monotonic and
twice differentiable function. There are several possible choices for g satisfying
the required conditions, such as the logit, probit, log-log, Cauchy, etc.

From Eq. (4.1), the log-likelihood function of the model with covariates is
given by

ℓ(α, γ) = n logα+ (α− 1)

n∑

i=1

log xi + α

n∑

i=1

log θi +

n∑

i=1

log(1− θαi )

−2
n∑

i=1

log(θαi + xαi − 2θαi x
α
i ).

The derivatives of ℓ(α, γ) with respect to each parameter, which are required to
compute the ML estimates of the parameters, are given by

∂

∂α
ℓ(α, γ) =

n

α
+

n∑

i=1

log xi +

n∑

i=1

log θi −
n∑

i=1

θαi log θi
1− θαi

−2
n∑

i=1

θαi log θi + xαi log xi − 2xαi θ
α
i (log θi + log xi)

θαi + (1− 2θαi )x
α
i

,

∂

∂γr
ℓ(α, γ) = α

n∑

i=1

1

θi

∂

∂γr
θi − α

n∑

i=1

θα−1
i

1− θαi

∂

∂γr
θi − 2α

n∑

i=1

(1− 2xαi )θ
α−1
i

θαi + (1− 2θαi )x
α
i

∂

∂γr
θi,

for r = 1, . . . , k. The derivative ∂
∂γr

θi will depend on the chosen link function.
For example, if it is considered the logit link, which is given by

θi =
exp(ztiγ)

1 + exp(ztiγ)
,
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then
∂

∂γr
θi = θi(1− θi)zir, i = 1, . . . , n, r = 1, . . . , k.

As in most regression models, for the proposed model it is possible to
evaluate the marginal effects that each covariate has on the conditional median,
given the covariates, by calculating (see, for example, [36, § 2.2.3])

(4.2) δij =
∂θi
∂zij

= θi(1− θi)γj , i = 1, . . . , n, j = 1, . . . , k.

This marginal effect indicates that a small change in the jth covariate, say ν,
increases or decreases the conditional median θi by a quantity δijν + o(ν). As a
summary measure of all these k×n effects, one can calculate the average marginal
effects that each covariate has on the conditional median by evaluating the above
derivative at θ̄ = θ(z̄), obtaining

δ̄j =
∂θ̄

∂zij
= θ̄(1− θ̄)γj , j = 1, . . . , k.

For the practical use of these quantities, all parameters must be replaced by
estimators.

As an application, we analyze the data set considered in Subsection 3.4.
The full data set consists of 73 observations on 7 variables: FIRMCOST, previ-
ously studied; ASSUME, the per occurrence retention amount as a percentage of
total assets; CAP, which indicates that the firm owns a captive insurance com-
pany; SIZELOG, the logarithm of total assets; INDCOST, a measure of the firm
industry risk; CENTRAL, a measure of the importance of the local managers in
choosing the amount of risk to be retained; and SOPH, a measure of the degree
of importance in using analytical tools.

As response variable we took x =FIRMCOST/100 and the other variables
were considered as covariates. An intercept was also included in the regression
model. The data were analyzed using the beta regression model and the LEEG
regression model presented in this paper. Following [17], the logit link was con-
sidered in all cases. This data set was also analyzed in [17] by using the Log–
Lindley regression model. Nevertheless, due to the problems observed in [23],
we will not consider such model in our study. The response variables x and
1 − x were both studied. For the analysis of the beta regression model we used
the package betareg (see [11]) of the R programming language [37]; to obtain
the ML estimates of the parameters in the LEEG regression model we used the
function optim of the R language. Table 4 reports the value of the log-likelihood
function for the models under consideration.

As expected, the values of the log-likelihood function for x and 1 − x for
the beta fitting are identical, since if a random variable X has a beta law with
parameters a and b, then 1 − X has a beta law with parameters b and a. On
the other hand, the values of the log-likelihood for x and 1 − x for the LEEG
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x 1− x

Beta 87.72 87.72

LEEG 122.48 103.33

Table 4: Values the of the log-likelihood with covariates for the responses
x and 1− x.

fittings differ, since these laws do not possess the aforementioned property of the
beta distribution. Hence, if the value of the log-likelihood function is used as
a criterion for comparison, we see that the best fit is obtained for the LEEG
regression model for the response variable x.

In addition, we applied the Vuong test [42] for testing the null hypothesis
that both models are equally close to the actual model, against the alternative
that one model is closer than the other. The test rejected the null hypothesis in
favor of the hypothesis that the LEEG regression model is closer than the beta
regression model (the p-value is 0.0012).

We also compared the Pearson residuals of both models. Figure 2 displays
them.

0 10 20 30 40 50 60 70

−
2

0
2

4
6

8

index

P
ea

rs
on

 r
es

id
ua

ls

Figure 2: Pearson residuals for the beta regression model (black) and the
LEEG regression model (white).

Table 5 displays the estimation results for the LEEG regression model with
response variable x. The standard errors of the parameter estimates were approxi-
mated by means of the square root of the diagonal elements of the negative of
the observed information matrix, that is, the matrix whose entries are the second
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order derivatives of the log-likelihood (its expression is omitted for the sake of
brevity). The p-values of the Wald test for testing the nullity of each parame-
ter were calculated by using the normal approximation. From these results, it
can be inferred that the covariates SIZELOG and INDCOST have a significant
non-null effect on the response variable. These two covariates have the largest
average marginal effects, negative for SIZELOG, indicating that an increase in
SIZELOG diminishes the median of the response variable, and positive for IND-
COST, indicating that an increase in INDCOST increases the median of the
response variable.

Before ending this section we would like to remark that the lack of a simple
expression for the quantiles of the classic beta distribution hampers the develop-
ment of a quantile regression based on it.

Parameter Estimate S.E. t-Wald p-value a.m.e.

α 2.20257 0.22661 9.71975 0.0000

Intercept 3.98741 1.21128 3.29191 0.0010

ASSUME −0.01234 0.01216 −1.01482 0.3102 −0.00080

CAP −0.05257 0.22327 −0.23545 0.8139 −0.00340

SIZELOG −0.90907 0.12466 −7.29242 0.0000 −0.05884

INDCOST 2.34318 0.62296 3.76138 0.0002 0.15166

CENTRAL −0.13648 0.08385 −1.62766 0.1036 −0.00883

SOPH 0.00932 0.01965 0.47398 0.6355 0.00060

Table 5: Parameter estimates for the LEEG regression model with res-
ponse x and average marginal effects (a.m.e.).

Appendix A

This appendix is devoted to present a known result concerning a logarithmic
integral. Such result will be used to solve in a unified manner the integrals arising
in Appendices B and C.

For any real numbers a ≥ 0, s ≥ 1 and z > −1, denote by

(4.3) Γn(z, s, a) =

∫ 1

0

ua logs−1(1/u)

(1 + zu)n+1
du, n = 1, 2, . . . .

Jodrá and Jiménez-Gamero [22] showed that Γn(z, s, a) can be expressed as a
finite sum involving the Lerch transcendent function together with the generalized
Stirling numbers of the first kind. To be more precise, Mitrinović [31] defined the
generalized Stirling numbers of the first kind, Rj

n(ρ, τ), by means of the following
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generating function

n−1∏

j=0

(w − ρ− τj) =
n∑

j=0

Rj
n(ρ, τ)w

j ,

where n is a non-negative integer and ρ, τ are complex numbers with τ 6= 0.
Mitrinović [31] expressed these numbers in terms of the best-known signed Stirling
numbers of the first kind Rj

n(0, 1) (see Abramowitz and Stegun [1, p. 824])

(4.4) Rj
n(ρ, τ) =

n−j∑

k=0

(
j + k

k

)
(−1)kρkτn−j−kRj+k

n (0, 1), ρ 6= 0,

which is important from a computational point of view since the numbersRj
n(0, 1)

are available in most computer algebra systems. Jodrá and Jiménez-Gamero [22,
Theorem 2.1] established that for any a ≥ 0, s ≥ 1 and z > −1,
(4.5)

Γn(z, s, a) =
Γ(s)

Γ(n+ 1)

n∑

j=0

Rj
n(a− n+ 1, 1)Φ(−z, s − j, a+ 1), n = 1, 2, . . . ,

which in the special case z = 0 becomes Γn(0, s, a) = Γ(s)/(a+1)s. Additionally,
(4.5) can be expressed in terms of the polylogarithm function if a = 0, 1, . . . , n−1
(see [22, Corollary 2.6] and also [21]), specifically,

(4.6) Γn(z, s, a) =
Γ(s)

(−z)a+1Γ(n+ 1)

n∑

j=1

Rj
n(a− n+ 1, 1)Lis−j(−z).

It is interesting to note that the Lerch transcendent function includes as a par-
ticular case the polylogarithm function, more precisely, Liλ(z) = zΦ(z, λ, 1) (see
Apostol [5]). In particular, the case λ = 1 corresponds to the natural logarithm,
Li1(z) = − log (1− z), and the case λ = 2 is known as dilogarithm or polyloga-
rithm function of order two.

Appendix B

Here, we give the proofs of the results stated in Section 2.

Proof of Proposition 2.1: The conditional cdf of the random variable
V |N = n is FV |N=n(v;α) = 1−(1−vα)n, with 0 < v < 1, α > 0 and n = 1, 2, . . . .
Then, it is clear the following

P (V ≤ v,N = n) = [1− (1− vα)n]

(
1− 1

1 + β

)n−1 1

1 + β
,

where β > 0. Hence, part (i) follows from the fact that the marginal cdf of V is

FV (v;α, β) =

∞∑

n=1

P (V ≤ v,N = n) =
(1 + β)vα

1 + β vα
, 0 < v < 1, α > 0, β > 0.
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The proof of part (ii) follows a similar pattern. The conditional cdf of W |M = m
is FW |M=m(w;α) = wαm, with 0 < w < 1, α > 0 and m = 1, 2, . . . . Therefore,
P (W ≤ w,M = m) = wαm(−β)m−1(1 + β), where β ∈ (−1, 0). Finally, conside-
ring that FW (w;α, β) =

∑∞
m=1 P (W ≤ w,M = m) the result is obtained.

Proof of Proposition 2.2: The first derivative of (1.1) is given by

(4.7)
∂

∂x
f(x;α, β) = − α(1 + β)

(1 + βxα)3
[β(1 + α)xα − (α− 1)].

The solution of the equation (∂/∂x)f(x;α, β) = 0 is x0 =

(
α− 1

(1 + α)β

)1/α

. More-

over, after some calculations, it can be checked that

∂2

∂x2
f(x;α, β)

∣∣∣∣
x=x0

= −(1 + β)(1 + α)2(α− 1)2

8αβ
.

On the one hand, if α > 1 and β > (α − 1)/(1 + α) then x0 ∈ (0, 1) and
∂2

∂x2 f(x;α, β)
∣∣
x=x0

< 0 which implies that x0 is the mode of X. In addition,

from (4.7), it can be seen that (1.1) is an increasing function if α > 1 and
β ∈ (−1, (α − 1)/(1 + α)] since (∂/∂x)f(x;α, β) > 0. This proves part (i).
On the other hand, if 0 < α < 1 and β < (α − 1)/(1 + α) then x0 ∈ (0, 1)

and ∂2

∂x2 f(x;α, β)
∣∣
x=x0

> 0 which implies that (1.1) achieves a minimum at x0.

It can also be checked that (1.1) is a decreasing function if 0 < α < 1 and
β ≥ (α − 1)/(1 + α). This proves part (ii). Part (iii) is directly obtained from
(1.1).

Proof of Proposition 2.3: For any k = 1, 2, . . . , the k-th moment of
X can be computed as follows

E[Xk] =

∫ 1

0
xkf(x;α, β)dx =

∫ 1

0
xk

α(1 + β)xα−1

(1 + β xα)2
dx = (1+β)

∫ 1

0

uk/α

(1 + β u)2
du,

where in the last equality we have made the change of variable xα = u. Hence,
the k-th moment of X can be rewritten as below

E[Xk] = (1 + β)

∫ 1

0

uk/α

(1 + β u)2
du = (1 + β)Γ1(β, 1, k/α),

where Γ1 is given by Eq. (4.3). Using Eq. (4.5), we have

Γ1(β, 1, k/α) = R1
1(k/α, 1)Φ

(
−β, 0, 1 +

k

α

)
+R0

1(k/α, 1)Φ

(
−β, 1, 1 +

k

α

)
.

By virtue of (4.4), R1
1(k/α, 1) = 1 and R0

1(k/α, 1) = −k/α since R0
1(0, 1) = 0

and R1
1(0, 1) = 1. Moreover, Φ(−β, 0, 1 + k/α) = 1/(1 + β). Hence, the result is

obtained.
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Proof of Proposition 2.4: The result is obtained directly by solving
the equation F (x;α, β) = u, 0 < u < 1, with respect to the variable x.

Proof of Proposition 2.5: For any n = 1, 2, . . . , the k-th moment of
the largest order statistic Xn:n is given by

E[Xk
n:n] = n

∫ 1

0
xk [F (x;α, β)]n−1 f(x;α, β)dx = n(1 + β)n

∫ 1

0

uk/α+n−1

(1 + βu)n+1
du,

where in the second equality we have made the change of variable u = xα. Now,
taking into account Eq. (4.3), E[Xk

n:n] can be written as follows

E[Xk
n:n] = n(1 + β)nΓn

(
β, 1,

k

α
+ n− 1

)
.

Finally, the claimed result follows by applying Eq. (4.5) in the above equation.

Proof of Proposition 2.6: Let us denote v(x) = ∂
∂x log

(
f(x;α,β2)
f(x;α,β1)

)
=

num
den , where den = x(1 + β1x

α)(1 + β2x
α) and num = 2αxα(β1 − β2). It can be

checked that den > 0 for any x ∈ (0, 1), α > 0 and β1, β2 > −1 and also that
num ≥ 0 for any x ∈ (0, 1) and α > 0 if and only if β1 ≥ β2. Since v(x) ≥ 0

implies that f(x;α,β2)
f(x;α,β1)

is non-decreasing in x, the result follows.

Appendix C

Here, we give the proofs of the results presented in Subsection 3.2.

Proof of Proposition 3.1: The Hessian matrix of logL(α, β) is de-
fined by

H(α, β) =




∂2 logL(α, β)

∂α2

∂2 logL(α, β)

∂α∂β
∂2 logL(α, β)

∂β∂α

∂2 logL(α, β)

∂β2


,

with

∂2

∂α2
logL(α, β) = − n

α2
− 2β

n∑

i=1

xαi (log xi)
2

(1 + β xαi )
2
,(4.8)

∂2

∂α∂β
logL(α, β) = −2

n∑

i=1

xαi log xi
(1 + β xαi )

2
,(4.9)

∂2

∂β2
logL(α, β) = − n

(1 + β)2
+ 2

n∑

i=1

x2αi
(1 + β xαi )

2
.(4.10)
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From (4.8)–(4.10), the Fisher information matrix, I(α, β) = −E[H(α, β)], is given
by

I(α, β) =




n

α2
+ 2βn

∫ 1

0

xα(log x)2

(1 + β xα)2
f(x)dx 2n

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx

2n

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx

n

(1 + β)2
− 2n

∫ 1

0

x2α

(1 + β xα)2
f(x)dx


,

where we have used the notation f(x) instead of f(x;α, β) for brevity. Below, we
consider each integral expression in the elements of I(α, β). Let us first assume
that β 6= 0. Making the change of variable u = xα and taking into account (4.3),
those integrals can be expressed as follows

∫ 1

0

xα(log x)2

(1 + β xα)2
f(x)dx =

1 + β

α2

∫ 1

0

u(log(1/u))2

(1 + β u)4
du =

1 + β

α2
Γ3(β, 3, 1),

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx = −1 + β

α

∫ 1

0

u log(1/u)

(1 + β u)4
du = −1 + β

α
Γ3(β, 2, 1),

∫ 1

0

x2α

(1 + β xα)2
f(x)dx = (1 + β)

∫ 1

0

u2

(1 + β u)4
du = (1 + β)Γ3(β, 1, 2).

Now, by virtue of (4.6) and after some calculations we get

Γ3(β, 3, 1) = − 1

3β

(
Li2(−β)

β
+

1

1 + β

)
,

Γ3(β, 2, 1) =
1

6β

(
log (1 + β)

β
− 1

(1 + β)2

)
,

Γ3(β, 1, 2) =
1

3(1 + β)3
,

where Li2 denotes the polylogarithm function of order two. Now, the stated result
is obtained by substituting in the elements of I(α, β) the value of the correspon-
ding integrals.

The result for β = 0 is derived by means of routine calculations, so we omit
the details.

Proof of Proposition 3.2: The result follows by using standard large
sample theory results for ML estimators (for example, by applying Lehmann and
Casella [29, Theorem 5.1, p. 463]). In particular, the asymptotic covariance
matrix of the ML estimators, Σ, is obtained by inverting the expected Fisher
information matrix (1/n)I(α, β), with I(α, β) provided in Proposition 3.1.
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