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Abstract:

• The Birnbaum–Saunders distribution is asymmetrical and has received considerable attention due to
its properties and its relationship with the normal distribution. In this paper, we propose a methodol-
ogy for estimating the mean of small areas based on a Birnbaum–Saunders distribution which is repa-
rameterized in terms of its mean, similarly to the normal distribution, but in an asymmetric framework.
In addition, the variance of the reparameterized Birnbaum–Saunders distribution is a function of its
mean, similarly to the gamma distribution, which allows a GLM type modeling. The Birnbaum–
Saunders area model has properties that are unavailable in its competing models, as describing the
mean in the original scale, unlike the existing models which employ a logarithmic transformation that
reduces the test power and complicates the interpretation of results. The Birnbaum–Saunders area
model can be formulated similarly as the Gaussian area model, permitting us to capture the essence of
the small area estimation based on sample means and variances obtained from the areas. The method-
ology includes a formulation based on the Fay–Herriot model, estimation of model parameters with
the maximum likelihood and Bayes empirical methods, as well as diagnostics using residuals. We
illustrate the methodology with real-world survey data and compare the results with those obtained
by the standard Fay–Herriot model.
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1. INTRODUCTION

In sample surveys, it is of interest to obtain estimates for some parameters of the pop-
ulation from which the data are collected (Lumley and Scott, 2017). These estimates can be
obtained not only for the target population, but also for sub-populations usually named small
areas or domains. The small area estimation is a statistical technique used to estimate parame-
ters in small sub-populations (Rao, 2003; Avila et al., 2019), which may consist of geographical
areas or socio-demographic groups, as a country, region, county, municipality or neighborhood.

Due to the high acceptance in relation to small area estimation, several models have been
derived, used and analyzed. A summary of design-based small area estimation methodologies
is presented in the book of Särndal et al. (2003), whereas reviews of model-based small area
estimation methodologies are provided in Ghosh and Rao (1994), Rao (2003), Datta (2009),
Lehtonen and Veijanen (2009) and, more recently, in Coelho and Casimiro (2008); Coelho and
Pereira (2011), Pereira and Coelho (2012), Avila et al. (2019) and Rueda et al. (2019).

For small area estimation, the area model was first proposed by Fay and Herriot (1979).
The Fay–Herriot (FH) model is considered as a generalization of the model formulated by Carter
and Rolph (1974), incorporating auxiliary variables (covariates). The FH model proposes an
adaptation to the Carter-Rolph and James-Stein estimators, which was applied to income esti-
mates in small areas during the population and housing census of the United States in 1970. The
FH model assumes normality and incorporates linear regression in the context of heterogeneity
variances, so that it can be considered as a mixed model. To estimate the components of vari-
ance, different methods have been considered. Fay and Herriot (1979) used weighted residual
square sums and the moment method. Prasad and Rao (1990) proposed an ordinary least square
estimator. Datta and Lahiri (2000) used the maximum likelihood (ML) and restricted maximum
likelihood (REML) estimators.

When estimating means of small areas based on sampling design, there are desirable
properties, such as unbiasedness and consistency, at country and region levels, but at lower
levels (for example municipalities), the consistency property of the estimator is not fulfilled
(Rao, 2003). Small area estimation is often based on the FH model, which allows for results
in a more reliable way in order to produce statistics at lower levels than countries or regions.
The FH model has good properties at low geographic levels when combining survey data with
data from other sources, such as administrative or census records. In particular, the Chilean
government has used the FH model since 2010 to estimate small areas (Casas-Cordero et al.,
2016). However, one of the drawbacks of the FH model is the assumption of normality for
the response variable and random effect, because often this assumption is not fulfilled, due to
asymmetry in the data distribution (Berg and Chandra, 2014). A solution to solve the problem of
asymmetrical patterns present in the data is working with their log-transformations. However,
data analyses performed under a wrong transformation reduces the power of the study (Huang
and Qu, 2006; Dreassi et al., 2014). Therefore, the research question is whether there is a gain in
modifying the distributional assumption in terms of the accuracy of the estimator for producing
statistics at a small area level or not.
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Small-area estimation in non-normal models has been studied by few authors, even though
this was postulated by Rao (2003, Chap. 9) as an open problem. Fabrizi and Trivisano (2010)
extended the FH model assuming that the random effects follow power exponential distribu-
tions. Berg and Chandra (2014) presented an empirical Bayes (EB) estimator for small area
estimation based on a log-normal model and Fabrizi et al. (2016) used the beta model for small
area estimation.

The Birnbaum–Saunders (BS) distribution is asymmetrical and it has good properties
(Ferreira et al., 2012; Santos-Neto et al., 2014; Bourguignon et al., 2017). Statistical modeling
based on the BS distribution has received much attention because of its relationship with the
normal distribution and other properties. Rieck and Nedelman (1991) were the pioneers in
deriving BS regression models, whereas Villegas et al. (2011) extended this regression model
considering mixed effects and using an EB estimator to predict the random effect. Leiva et al.
(2014) and Santos-Neto et al. (2016) focused on a reparameterized BS (RBS) distribution to
model the response with no transformations following the idea of generalized linear models
(McCullagh and Nelder, 1989). This modeling approach was based on fixed effects and no
studies were reported using random effects. One of the parameters of the RBS distribution is
its mean, such as the normal distribution, but in an asymmetric framework. In addition, the
variance of the RBS distribution is a function of its mean, such as the gamma distribution. In
Balakrishnan and Kundu (2019) and Leiva et al. (2019), detailed information is reviewed for
these models. However, no area models for small area estimation based on BS, gamma and
log-normal distributions have been reported in the literature.

In small area estimation, an alternative solution to solve the problem of asymmetric data
is considering generalized linear models and, in particular, the RBS distribution (Leiva et al.,
2014). This solution provides some advantages over the log-transformation solution. First,
the mean is modeled directly, making inference straightforward and avoiding the need of re-
transformations back to the original scale. Second, this solution enables us to go beyond expo-
nential family and allows some flexibility through the choice of a link function (for example,
logarithmic, inverse or logit) and a distribution for the response through its mean-variance re-
lationship. Moreover, the use of the the RBS distribution permits us to capture the essence of
the small area estimation problem based on sample means and variances obtained from the ar-
eas, because it is possible to express its precision parameter as a function of these area means
and variances, such as in the normal case; see Santos-Neto et al. (2014) and Subsection 2.2 for
more details about this important aspect. Therefore, the RBS distribution seems to be a good
alternative to the FH type models for small area estimation.

The main objective of this work is to estimate the mean of small areas based on an RBS
area model. The specific objectives are: (i) to establish an algorithm for estimating parameters
from an RBS area model; (ii) to propose a residual for this model, allowing the examination of
the model assumptions; and (iii) to illustrate the proposed methodology with survey data and
to compare its results to the standard FH model. This methodology is implemented in the R
software www.r-project.org and R Core Team (2016).

The paper is organized as follows. In Section 2, we present a background about the
standard FH model and a modeling approach based on the RBS distribution. Section 3 proposes
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the new RBS area model and its corresponding estimation, inference and residual analysis for its
diagnostic. In Section 4, the methodology is illustrated with unpublished Chilean survey data,
comparing it to a standard methodology. Section 5 gives our conclusions about this research.

2. BACKGROUND

In this section, we provide some preliminaries aspects related to the standard FH model
and RBS regression modeling.

2.1. The Fay–Herriot model

Fay and Herriot (1979) proposed their model to improve the accuracy of the estimator
Yi = θ̂i based on the sampling design (direct estimator) used to infer on the true small area
mean θi, for i = 1, . . . ,m, where m is the number of areas. The FH model has a hierarchical
structure consisting of the following two levels:

Level 1. Sampling model: Yi|θi
IND∼ N(θi, ψi), for i = 1, . . . ,m,

Level 2. Linking model: θi
IND∼ N(x>i β, σ

2), for i = 1, . . . ,m,
(2.1)

where “IND” denotes “independent”, ψi corresponds to the variance of the sampling error,
xi = (1, x1i, . . . , x(p−1)i) are the values of p−1 covariates for the area i, β = (β0, β1, . . . , βp−1)

>

is a vector of unknown regression parameters, and σ2 is the unknown variance of the area
random effect, both to be estimated. Note that Level 1 describes the variability of the direct
estimator θ̂i of θi attributed to the sampling, whereas Level 2 links θi to the vector of p − 1
known area covariates (Jiang and Lahiri, 2006; Li and Lahiri, 2010). Mixing the components
of both models at Levels 1 and 2, we get the linear mixed model

Yi|θi = x>i β + bi + εi, εi
IND∼ N(0, ψi), i = 1, . . . ,m, (2.2)

where bi
IID∼ N(0, σ2) are independent and identically distributed (IID) area random effects with

unknown σ2 to be estimated from the data, whereas εi
IND∼ N(0, ψi) are the sampling errors with

known variances ψi. Furthermore, it is assumed that bi and εi are independent random variables.

We want to estimate/predict the small area mean θi = x>i β + bi, for i = 1, . . . ,m, and to
obtain a uncertainty measurement related to this estimation/prediction. Considering the model
defined in (2.2), the best predictor (BP) of θi (Rao and Molina, 2015), which minimizes the
mean squared error, may be formulated as a weighted average of the direct estimator θ̂i and the
regression-synthetic estimator x>i β (Rao and Molina, 2015), expressed as

θ̂ BP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, . . . ,m, (2.3)
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with the weight 0 < Bi < 1 defined as Bi = ψi/(σ
2 + ψi). Observe that (1 − Bi) is function

of the variance ratio σ2/ψi and measures the uncertainty when θi is estimated in relation to the
total variance σ2 + ψi (Rao and Molina, 2015). In addition, the parameter σ2 is a homogeneity
measure of the areas after accounting for the values xi of covariates. If σ2 is known, β may
be approximated using the standard weighted least square estimator β̃ Mert (2015). Hence,
by replacing it in (2.3), we obtain the best linear unbiased prediction (BLUP) of θi (Rao and
Molina, 2015) by

θ̂ BLUP
i = (1−Bi)θ̂i +Bi x

>
i β̃, i = 1, . . . ,m, (2.4)

where

β̃ =

m∑
i=1

xiθ̂i/(σ
2 + ψi)

m∑
i=1

xix
>
i /(σ

2 + ψi)
. (2.5)

The BLUP of θi defined by (2.4) depends on σ2 through of β̃, which is unknown in practice.
From (2.4), we get the empirical best linear unbiased predictor (EBLUP) of θi as

θ̂ EBLUP
i = (1− B̂i)θ̂i + B̂i x

>
i β̃, (2.6)

where B̂i is the estimates of Bi = ψi/(σ
2 + ψi) when σ2 is replaced by an estimator σ̂ 2, and β̃

is given in (2.5). Note that the model defined in (2.2) may be rewritten as matrix by

Y = Xβ + Imb+ ε, (2.7)

where Y = (Y1, . . . , Ym)>, with Yi = θ̂i, for i = 1, . . . ,m, X = (x1, . . . , xm)> is of full
rank, Im is the m × m identity matrix, β is given below (2.1), b = (b1, . . . , bm)> and ε =

(ε1, . . . , εm)>. Furthermore, b and ε are independently distributed with b ∼ Nm(0m×1,G), ε ∼
Nm(0m×1,R), where 0m×1 is m × 1 vector of zeros, G = σ2Im and R is a diagonal matrix
defined as R = diag{ψ1, . . . , ψm}. The model defined in (2.7) is a particular case of a linear
mixed model with its variance-covariance matrix assuming the form V = G + R (Datta et al.,
2005).

Observe that the EBLUP given in (2.6) depends on σ̂ 2, with several methods being pro-
posed in the literature for doing this estimation (Fay and Herriot, 1979; Prasad and Rao, 1990).
The ML method has been widely used in small area estimation (Jiang and Lahiri, 2006; Rao
and Molina, 2015), with Datta and Lahiri (2000) using it in the context of the FH model. In this
case, the log-likelihood function takes the form

`(σ2, β; y) = c− 1

2
log(|V |)− 1

2
(y −Xβ)>V −1(y −Xβ), (2.8)

where c is a constant that is independent of σ2 and y is the observed value of Y . By taking
derivatives of (2.8) with respect to β and σ2, we obtain

∂`(σ2, β; y)

∂β
= X>V −1y −X>V −1Xβ, (2.9)

∂`(σ2, β; y)

∂σ2
=

1

2
(y −Xβ)>V −2(y −Xβ)− 1

2
tr(V −1), (2.10)

where tr(A) is the trace of the matrix A. Thus, equating (2.9) and (2.10) to zero, and solving
them simultaneously with respect to σ2 and β, we generate the corresponding ML estimators.



The Fay-Herriot model in small area estimation 7

2.2. Birnbaum–Saunders statistical modeling

The BS distribution can be parameterized in terms of its mean µ and precision δ from its
original parameterization by α =

√
2/δ and β = δ µ/(δ + 1) (Leiva, 2016). Thus, we have

δ = 2/α2 and µ = β (1 + α2/2), where δ > 0 and µ > 0 (Santos-Neto et al., 2016). Hence, if
Y ∼ RBS(µ, δ), its probability density function (PDF) is given by

f(y;µ, δ) =
exp (δ/2)

√
δ + 1

4
√
πµ y3/2

(
y +

δµ

δ + 1

)
exp

(
−δ
4

(
(δ + 1)y

δµ
+

δµ

(δ + 1)y

))
, y > 0. (2.11)

The RBS PDF defined in (2.11) has diverse shapes as µ changes, when δ is fixed, and similarly
as δ changes when µ is fixed. Note that the µ controls the scale of the RBS distribution but
it is also its mean, which may be proved because b Y ∼ RBS(bµ, δ), with b > 0. Notice that
the parameter δ controls the shape of the RBS distribution, making it more platykurtic as δ
increases. In addition, the RBS variance decreases when δ increases, converging to 5.0, as δ
approaches zero, doing it to be a precision parameter, as mentioned. For more details about the
graphical plots and shape analysis of the RBS distribution, see Leiva et al. (2014), Balakrishnan
and Kundu (2019) and Leiva et al. (2019).

Note that random variables Y and Z with RBS and standard normal distributions, respec-
tively, are related by

Y =
δ µ

δ + 1

 Z√
2 δ

+

√(
Z√
2 δ

)2

+ 1

2

, (2.12)

Z =

√
δ

2

(√
(δ + 1)Y

µ δ
−

√
µ δ

(δ + 1)Y

)
.

Thus, from (2.12), the cumulative distribution function (CDF) and the quantile function (QF)
of Y ∼ RBS(µ, δ) are defined respectively as

F (y;µ, δ) = Φ

(√
δ

2

(√
(δ + 1) y

µ δ
−

√
µ δ

(δ + 1) y

))
, y > 0, (2.13)

y(q;µ, δ) = F−1(q) =
δ µ

δ + 1

 z(q)√
2 δ

+

√(
z(q)√

2 δ

)2

+ 1

2

, 0 < q < 1,

where Φ and z are the standard normal CDF and QF, respectively, whereas F−1 is the inverse
function of the RBS CDF. The mean and variance of Y ∼ RBS(µ, δ) are given by E[Y ] = µ and
Var[Y ] = ψ = µ2(2δ + 5)/(δ + 1)2, respectively. Note the similarity of the variances of the
RBS and gamma distributions, which allows the RBS distribution to model data analogously as
in generalized linear models Leiva et al. (2014). Note also that, as mentioned, the RBS distri-
bution has the mean as one of its parameters, which is an advantage on the gamma distribution.
Note that, in small area estimation, one has available the sample mean and variance of each
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area, which is a natural aspect under normality. However, in the case of the RBS distribution, it
is characterized by the mean (as in the normal case) but also by a precision parameter δ, which
is different from the variance of the normal case. Santos-Neto et al. (2014) proposed a moment
estimator of δ through

δ̂ =
Y − S2 +

√
Y

4
+ 3Y

2
S2

S2
, (2.14)

where Y and S2 represent the mean and sample variance of the random variable Y , respec-
tively. Thus, (2.14) allows us to see the problem under the RBS perspective such as the normal
framework.

Rieck and Nedelman (1991) defined that if Y ∼ BS(α, β), then Z = log(Y ) follows a
logarithmic BS distribution with shape parameter α and location parameter γ = log(β) ∈ R. In
this regression model, the original response must be transformed to a logarithmic scale. Thus,
although in this scale the mean γ = log(β) is modeled, in the natural scale β = exp(γ) is
modeled, which in the BS case corresponds to the median. Leiva et al. (2014) introduced a
new approach for BS modeling, generalizing the existing works on the topic. In the estimation
process, they considered Y1, . . . , Ym as independent RBS(µi, δ) distributed random variables,
for i = 1, . . . ,m. Then, the authors defined a statistical model based on the systematic com-
ponent µi = g−1(x>i β), where g−1 is the inverse function of the link function g, β is a vector
of unknown parameters to be estimated, and xi represents the values of the covariates. For
the vector of parameters (β>, δ)>, simplifying the notation according to `(β, δ; y) = `(β, δ),
`i(µi, δ; yi) = `i(µi, δ), and by using this same simplified notation from now on, the log-
likelihood function of the model is given by `(β, δ) =

∑m
i=1 `i(µi, δ), where

`i(µi, δ) =
δ

2
− log(16π)

2
− 1

2
log

(
(δ + 1)y3i µi

(δyi + yi + δµi)2

)
− yi(δ + 1)

4µi
− δ2µi

4(δ + 1)yi
.

The score functions with first derivatives of βl, for l = 0, 1 . . . , p − 1, and δ are respectively
given by ˙̀

βl = ∂`(β, δ)/∂βl and ˙̀
δ = ∂`(β, δ)/∂δ. Thus, the score vector is ˙̀

β,δ = ( ˙̀>
β ,

˙̀
δ)
>;

see details in Leiva et al. (2014). To estimate the model parameters by the ML method, the
equation ˙̀

β,δ = 0p×1 must be solved. However, no closed-form expressions for these estimates
are available. Then, an iterative approach is needed, such as the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm; see details in Nocedal and Wright (1999). This iterative approach
is used for solving unconstrained non-linear optimization problems, belonging to the class of
quasi-Newton methods.

3. THE NEW STATISTICAL MODEL

In this section, we propose a methodology based on the FH model and the RBS regression
model. The methodology considers the formulation of the new RBS area model, the estimation
algorithm and inference for the population mean, as well as a residual analysis for model di-
agnostics. The standard FH model defined in (2.1) assumes normality for random effects and
errors. In this case, the EB estimator and the EBLUP coincide. Note that the distribution of the
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direct domain mean estimator comes from the survey design, which from design-based theory
is known to be approximately normal (for large enough samples). The normal approximation is
not necessarily good in small areas with very small sample sizes. We consider the RBS distri-
bution to model small area mean, whereas the random effect distribution is also assumed RBS
for computational and theoretical convenience. When non-normality is assumed in the response
or in the random effects, Rao (2003) proposed to use the EB estimator.

3.1. Formulation

Such as in the standard model defined in (2.1), the proposed model consists of the two
following levels:

Level 1. Sampling model: Yi|θi
IND∼ RBS(θi, δi), for i = 1, . . . ,m,

Level 2. Linking model: θi
IND∼ RBS(g−1(x>i β), κ), for i = 1, . . . ,m,

(3.1)

where θi is the mean of the area i, g−1 is the inverse of the link function g, β and xi are as
defined in (2.1), whereas κ is the unknown precision parameter of the area random effect to be
estimated. Note that δi depends on known variances ψi of the area i which are related according
to the results proposed by Santos-Neto et al. (2014), from where the empirical relationship is
given in (2.14). Therefore, from this relationship, we have

δi =
θi − ψi +

√
θ4i + 3θ2iψi

ψi
, i = 1, . . . ,m. (3.2)

Thus, from (3.2), we put the model proposed in (3.1) in a small area framework.

The BS area models proposed have properties that are unavailable in the models of this
type existing in the literature. Specifically, the BS area models considered in this work allow
us to describe the mean of the data in their original scale, unlike the existing models, which
employ a logarithmic transformation of the data, provoking a possible reduction of the power of
the study and difficulties of interpretation. In addition, these BS area models can be formulated
in a similar form as the normal area models, permitting us to capture the essence of the small
area estimation problem based on sample means and variances obtained from the areas.

3.2. EB estimation and quadrature methods

We consider the EB approach to estimate the small area mean. First, by considering
the PDF given in (2.11), we obtain the marginal PDF from the conditional (sampling model)
and prior (linking model) distributions. Second, we estimate the parameters β and κ based on
the corresponding marginal likelihood function. Third, we obtain the posterior distribution by
plugging it in the estimated value of λ = (β>, κ)>. Fourth, we find the EB estimator of the
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conditional expectation of a small area mean given the observed data with respect to the RBS
area model. In order to calculate this expected value, we use the posterior distribution presented
in (3.13). The EB approach described above is detailed in Algorithm 1.

Algorithm 1 Empirical Bayes approach
1: Establish the conditional PDF of Yi given θi, denoted by f(yi|θi), for i = 1, . . . ,m.
2: Indicate the prior distribution π(θi;λ), for i = 1, . . . ,m.
3: Obtain the marginal PDF

m(yi;λ) =

∫
Rθi

f(yi|θi)π(θi;λ) dθi, i = 1, . . . ,m,

recalling that Rθi is the parameter space of θi.
4: Estimate the model parameter λ by maximizing the marginal likelihood function

L(λ) =
m∏
i=1

∫
Rθi

f(yi|θi)π(θi;λ) dθi.

5: Calculate the posterior distribution

π(θi|yi; λ̂) =
f(yi|θi)π(θi; λ̂)∫

Rθi
f(yi|θi)π(θi; λ̂) dθi

, i = 1, . . . ,m,

to make inferences about θi, where λ̂ is an estimator of λ.
6: Determine the EB estimator of θi using

θ̃EB
i = E(θi|yi; λ̂) =

∫
Rθi
θif(yi|θi)π(θi; λ̂) dθi∫

Rθi
f(yi|θi)π(θi; λ̂) dθi

, i = 1, . . . ,m.

The conditional PDF (sampling model), for i = 1, . . . ,m, is given by

f(yi|θi) =
exp (δi/2)

√
δi + 1

4
√
πθi y

3/2
i

(
yi +

δiθi
δi + 1

)
exp

(
−δi

4

(
yi(δi + 1)

δiθi
+

δiθi
yi(δi + 1)

))
, (3.3)

whereas the prior distribution, for i = 1, . . . ,m, is defined as

π(θi;λ) =
exp (κ/2)

√
κ+ 1

4
√
π g−1(x>i β) θ

3/2
i

(
θi +

κg−1(x>i β)

κ+ 1

)
exp

(
−κ

4

(
θi(κ+ 1)

κg−1(x>i β)
+
κg−1(x>i β)

θi(κ+ 1)

))
.

(3.4)
Based on (3.3) and (3.4), the marginal PDF is obtained as

m(yi;λ) =

∫ ∞
0

f(yi|θi)π(θi;λ) dθi, i = 1, . . . ,m. (3.5)

In order to calculate the integral given in (3.5), a Gaussian quadrature can be used. A quadrature
rule is an approximation of the definite integral of a function, usually stated as a weighted sum
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of values at specified points within the domain of integration, which is conventionally taken as
[−1, 1]. Thus, this rule may be stated as∫ 1

−1
f(u) du =

n∑
j=1

wjf(uj). (3.6)

Observe that the Gaussian quadrature given in (3.6) only produces good results if the function
f is well approximated by a polynomial function within the range [−1, 1]. Then, the integration
problem presented in (3.5) can be expressed in a more general way by introducing a positive
weight function ω into the integrand, and allowing an interval other than [−1, 1]. In this way,
the problem reduces to calculating ∫ b

a

ω(u) f(u) du, (3.7)

for some choices of a, b and ω. Note that if a = −1, b = 1 and ω(u) = 1, the integral given
in (3.7) is the same as that given in (3.6). Some particular cases of the Gaussian quadrature are
presented in Table 1.

Table 1: intervals and forms for ω(u) of some Gaussian quadratures cor-
responding to the indicated orthogonal polynomial.

Interval ω(u) Orthogonal polynomial

[−1, 1] 1 Legendre

(−1, 1) (1− u)α(1 + u)β, α, β > −1 Jacobi

(−1, 1) 1/
√

1− u2 Chebyshev

[0,∞) exp(−u) Laguerre

(−∞,∞) exp(−u2) Hermite

Note that the Gauss–Laguerre (GL) quadrature is an extension of the Gaussian quadrature
method over the interval [0,∞) to approximate the integral obtained in (3.5) (Abramowitz and
Stegun, 1972). Therefore, we approximate the marginal PDF presented in (3.5) by the GL
quadrature by means of

m(yi; β, κ) =
n∑
j=1

wjf(yi|θij)π(θij;λ) exp(θij), i = 1, . . . ,m, (3.8)

where n is the number of quadrature points, m is the number of areas, θij is the jth root of the
Laguerre polynomial in the area i given by

Ln(θij) =
n∑
r=0

(
n

r

)
(−1)r

r!
θrij,

and the weight wj is given by

wj =
θij

(n+ 1)2(Ln+1(θij))2
, i = 1, . . . ,m, j = 1, . . . , n.
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3.3. ML estimation and Fisher information

Once the marginal PDF presented in (3.5) is approximated by the GL quadrature, we
can approximate the corresponding likelihood function to estimate the parameters of the model
defined in (3.1) with the ML method. Recalling that λ = (β>, κ)>, the marginal likelihood
function is given by

L(λ) =
m∏
i=1

m(yi;λ).

Therefore, the corresponding log-likelihood function approximated by the GL quadrature is
given by

`(λ) =
m∑
i=1

log

(
n∑
j=1

wjf(yi|θij)π(θij;λ) exp(θij)

)
. (3.9)

The respective score vector, obtained by differentiating (3.9) with respect to λ, is established as

˙̀(λ) =
∂`(λ)

∂λ
= (˙̀

β(λ)>, ˙̀
κ(λ))>.

The ML estimates of β and κ, β̂ and κ̂ namely, respectively, are the solution to the system of
equations given by ˙̀

β(λ) = 0p×1 and ˙̀
κ(λ) = 0. Since the corresponding ML estimates cannot

be expressed in a closed form, we compute them by maximizing the log-likelihood function
defined in (3.9) numerically with the BFGS algorithm. As starting values, the estimates obtained
under an RBS regression model can be considered.

The second derivatives of `(λ) defined in (3.9), with respect to β and κ, are expressed as

∂2`(λ)

∂βl∂βk
,
∂2`(λ)

∂βl∂κ
,
∂2`(λ)

∂κ2
, l = 0, 1, . . . , p− 1.

Consequently, the corresponding Hessian matrix is given by

῭(λ) =


∂2`(λ)

∂β β>
∂2`(λ)

∂β∂κ

∂2`(λ)

∂κ∂β>
∂2`(λ)

∂κ2

 .

In addition, the expected Fisher information matrix is obtained as

K(λ) = −E[῭(λ)]. (3.10)

3.4. Inference

Regularity conditions (see Cox and Hinkley, 1974) must be fulfilled for an RBS area
model if its parameters are within the parameter space. Then, the ML estimator λ̂ is consistent
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and follows an asymptotic joint distribution, which is normal with asymptotic mean λ, and
an asymptotic variance-covariance matrix Σ(λ). Thus, as m → ∞ and recalling that λ =
(β>, κ)>, we have

√
n (λ̂− λ)

D→ Np+1(0(p+1)×1,Σ(λ)), (3.11)

where D→ denotes convergence in distribution. Note that if J(λ) = limn→∞(1/n)K(λ) exists
and is non-singular, with K(λ) being the expected Fisher information matrix given in (3.10),
then Σ(λ) = J(λ)−1. The diagonal elements of K(λ)−1, k−1ll (λ) namely, may be used for
approximating the corresponding asymptotic standard errors (SEs), that is, by using

SE[λ̂l] =
√
k−1ll (λ), l = 1, . . . , p+ 1. (3.12)

Note that K̂(λ)−1 = K(λ̂)−1 is a consistent estimator of Σ(λ) and then the associated asymp-
totic SEs given in (3.12) may be estimated as ŜE[λ̂l] = (k−1ll (λ̂))1/2, for l = 1, . . . , p + 1.
Asymptotic inference on parameters can be conducted using (3.11) and (3.12).

3.5. Estimating the small area mean and bootstrapping

To estimate a small area mean, we use the posterior PDF evaluated at the ML estimates
given by

π(θi|yi; β̂, κ̂) =
f(yi|θi)π(θi; β̂, κ̂)

m(yi; β̂, κ̂)
, (3.13)

wherem(yi; β̂, κ̂) is presented in (3.8), and β̂, κ̂ are the corresponding ML estimates. Therefore,
the EB estimator for the mean of an RBS area model, based on the GL quadrature, is given by

θ̃EB
i = E(θi|yi; β̂, κ̂) =

∑n
j=1wjθijf(yi|θij)π(θij; β̂, κ̂) exp(θij)∑n
j=1wjf(yi|θij)π(θij; β̂, κ̂) exp(θij)

, i = 1, . . . ,m, (3.14)

Suppose that we have a random sample from an unknown distribution function F , and we want
to make statistical inference about a parameter θi, for i = 1, . . . ,m. Bootstrapping is a non-
parametric approach which relies upon the assumption that the current sample is representative
of the population, and therefore, the empirical CDF F̂ is a non-parametric estimate of the pop-
ulation CDF F . From the sample, the statistic of interest, θ̃EB

i namely, can be calculated as
an empirical estimate of the true parameter. To measure the accuracy of the estimator, a boot-
strapped SE, defined as

SE(θ̃EB
i ) =

√
Var(θ̃EB

i ),

can be calculated; see Algorithm 2.
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Algorithm 2 Bootstrap standard error
1: Collect a random sample of size m with replacement (bootstrap sample) from a matrix of

data with m rows corresponding to the areas and three columns related to the response
Yi = θ̂i, which is based on the sampling design used to estimate the true small area mean
θi, the variance of the sampling error ψi, and the covariates xi, for i = 1, . . . ,m.

2: Fit an RBS area model with the bootstrap sample of Step 1 and compute the statistic of
interest θ̃EB

i , for i = 1, . . . ,m.
3: Repeat Steps 2-3 a large number of times (for example, B = 10, 000) and compute B

bootstrap values of θ̃EB
i , which forms its empirical sampling distribution.

4: Calculate the sample standard deviation (SD) of the B bootstrap values of θ̃EB
i , which allows

us to obtain the bootstrap SE of θ̃EB
i , for i = 1, . . . ,m.

3.6. Model selection

Models are often compared using selection measures as the log-likelihood function or
Akaike information (AIC) and Bayesian information (BIC) criteria. Note that AIC and BIC are
defined as

AIC = −2`(λ̂) + 2(p+ 2), BIC = −2`(λ̂) + (p+ 2) log(m), (3.15)

where ` is the corresponding log-likelihood function given in (3.9), p + 1 is the number of
parameters and m the number of areas. AIC and BIC correspond to the log-likelihood function
plus a component penalizing such a function, as the model has more parameters making it more
complex. A model with a smaller AIC or BIC is better than another competing model (Ferreira
et al., 2012).

3.7. Diagnostic analysis

Residuals are frequently used to validate the assumptions of statistical models and may
also be employed as tools for model selection. Based on Nobre and da Motta-Singer (2007), we
define a conditional residual which follows a standard normal distribution and accommodates
the extra source of variability present in linear mixed models as r(C)

i = yi − θ̃EB
i , where θ̃EB

i is
given in (3.14) and yi is an observed value of Yi. We consider the randomized quantile (RQ)
residual proposed by Dunn and Smyth (1996), which is useful for asymmetric distributions.
We use an index plot of the conditional RQ residual to verify homoscedasticity, whereas the
distributional assumption is analyzed by simulated envelopes (Atkinson, 1985). For the RBS
area model proposed in this work, the conditional RQ residual is defined as

rRQ(C)
i = φ−1(F (yi; θ̃

EB
i , κ̂)) i = 1, . . . ,m, (3.16)

where F is the RBS CDF defined in (2.13). As F is continuous, then F (Yi) is uniformly
distributed on the unit interval. In order to verify the normality of the conditional RQ residual
based on the RBS area model, we utilize a theoretical quantile versus empirical quantiles (QQ)
plot with simulated envelopes proposed by Atkinson (1985); see Algorithm 3.
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Algorithm 3 Goodness of fit to any distribution based on QQ plots with simulated envelopes.
1: Collect data y1, . . . , ym.
2: Obtain the empirical quantiles yi:m as observed order statistics for i = 1, . . . ,m from
y1, . . . , ym.

3: Estimate the parameters of the model by λ̂ with y1, . . . , ym.
4: Compute wi:m = (i− 0.5)/m, for i = 1, . . . ,m.
5: Calculate the theoretical quantiles ti:m = F−1(wi:m), where F−1 is the inverse function of

the CDF F .
6: Draw the QQ plot with points yi:m versus ti:m, for i = 1, . . . ,m.
7: Specify an α level for the simulated envelopes.
8: Generate s samples of size m from a distribution with CDF F and estimated parameters λ̂.
9: Construct envelopes with limits given by li = yi:m(α/2) and ui = y1:m(1 − α/2) for
i = 1, . . . ,m.

10: Establish that the assumed distribution is adequate if all the points are inside of the enve-
lope, otherwise it is not adequate.

4. SURVEY DATA ANALYSYS

In this section, we provide an illustrative example with a Chilean survey data set for anal-
ysis of service quality. Also, we compare the results obtained with the proposed methodology
to a standard methodology based on the normal distribution.

4.1. The data set

The data set under analysis was collected between January-2017 and November-2017
in 34 of 52 municipalities located at the Metropolitan region of Chile. In this data set, the
response is the Chilean business confidence index (CBCI). This index is built from a sample
survey which measures the confidence of customers towards the service provided by diverse
companies. The CBCI is calculated by the Center of Experiences and Services (CES) of the
Adolfo Ibáñez University (UAI), CES-UAI in short; see http://www.ces-uai.cl and
more details of the CBCI in Leiva et al. (2018). Figure 1 shows the industrial sectors that allow
us to estimate the CBCI. In this study, we consider as covariate the urban life quality index
(ULQI) which allows us to model the CBCI. This covariate is obtained from the Institute of
Urban and Territorial Studies of the Pontifical Catholic University of Chile (http://fadeu.
uc.cl). The data set used in this illustration is presented in Table 2.
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Figure 1: structure of Chilean industries and sectors used to calculate the
CBCI in 2017.

4.2. Exploratory data analysis

Table 3 provides a descriptive summary of the CBCI in the different municipalities of
the Chilean Metropolitan region, which includes y, median (MD), SD, coefficients of variation
(CV) of skewness (CS) and of kurtosis (CK), as well as the minimum (y(1)) and maximum
(y(m)) values. Figure 2 presents the histogram, adjusted box-plot and standard box-plot of the
CBCI, as well as the scatter-plot between CBCI and UQLI. Figure 3 displays the map of the
municipalities (with their abbreviations detailed in Table 3) located in the Chilean Metropolitan
region with their corresponding CBCI colored in gray according to an intensity related to the
value of this index.

Based on Figure 2 and Table 3, we conduct an exploratory data analysis (EDA). First, from
Figure 2 (left and center), note that the CBCI follows a positive skew (asymmetric) distribution
(CS > 0). We use an adjusted boxplot for asymmetric data (see Rousseeuw et al., 2016), from
which we conclude that there are no atypical data. In addition, Figure 2 (right) presents a linear
or logarithmic relationship between CBCI and UQLI. Furthermore, a non-constant variance is
detected by this scatter-plot. Supported by this EDA, the RBS area model proposed in this work
seems to be a good candidate to describe the data set under study.

4.3. Modeling, estimation and inference

Based on the EDA above performed, we use the RBS area model defined in (3.1), with i =
1, . . . , 34. In addition, δi can be obtained from (3.2) as δi = (yi − ψi + (y4i + 3y2iψi)

1/2)/ψi,
for i = 1, . . . , 34, where ψi is the known variance of the municipality i. RBS area models with
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Table 2: CBCI (with variance and size sample) and UQLI values for the
indicated municipality.

Municipality ID Yi|θi ψi ni xi
1. Pedro Aguirre Cerda (PC) 30.11 83.93 382 26.45
2. Conchalı́ (CO) 30.32 81.32 508 30.74
3. Quinta Normal (QN) 31.17 82.77 401 30.18
4. Lo Espejo (LE) 31.49 82.69 416 24.11
5. Cerro Navia (CN) 31.80 82.34 522 26.98
6. La Granja (LG) 32.23 78.28 453 33.98
7. Renca (RN) 32.63 83.67 472 36.42
8. Independencia (IN) 34.41 80.64 529 30.05
9. Estación Central (EC) 34.81 81.91 497 33.41
10. Lo Prado (LP) 34.81 83.05 451 30.09
11. San Ramón (SR) 35.63 84.88 394 35.53
12. Quilicura (QU) 37.13 83.31 505 39.70
13. El Bosque (EB) 37.25 80.58 502 28.10
14. Pudahuel (PU) 37.28 80.74 566 36.27
15. Puente Alto (PA) 37.87 79.54 676 36.92
16. Huechuraba (HU) 38.46 78.78 559 37.26
17. La Pintana (LA) 38.99 79.32 477 24.29
18. San Joaquı́n (SJ) 39.18 79.05 462 38.29
19. La Cisterna (LC) 39.23 80.12 418 32.89
20. Recoleta (RE) 40.00 79.11 520 32.36
21. Cerrillos (CE) 42.25 79.10 426 32.65
22. San Miguel (SM) 42.66 78.59 511 43.42
23. Maipú (MP) 43.50 78.39 1016 46.43
24. San Bernardo (SB) 43.91 76.56 608 28.93
25. Santiago (SA) 44.00 78.14 759 40.55
26. Peñalolen (PE) 48.54 75.99 789 38.83
27. La Florida (LF) 49.22 74.69 963 38.95
28. Macul (MA) 49.50 79.59 605 47.87
29. La Reina (LR) 51.82 74.49 716 52.45
30. Ñuñoa (NU) 52.14 73.89 980 54.27
31. Lo Barnechea (LB) 56.08 73.62 658 57.67
32. Vitacura (VI) 65.60 72.21 643 57.93
33. Providencia (PR) 71.10 68.81 928 59.96
34. Las Condes (LN) 73.60 72.58 1099 63.61

Table 3: descriptive statistics for the CBCI in municipalities of the
Chilean Metropolitan region.

y(1) MD y y(m) SD CV CS CK
30.11 39.09 42.32 73.6 11.12 26.27 1.36 4.33

identity and logarithmic link functions, in short log-RBS, defined in (3.1) are compared to FH
models with these same link functions. We use naive model selection tools such as AIC and BIC
given in (3.15). Based on the values of AIC and BIC reported in Table 4, note that the RBS area
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Figure 2: histogram (left) and box-plot (center) of CBCI, and scatterplot
between CBCI and UQLI (right).

Figure 3: map with CBCI of the indicated municipalities located at the
Chilean Metropolitan region.

model with logarithmic link function is the best one among the competing models to fit Chilean
survey data. Once the RBS area model with logarithmic link function is selected, we estimate
its parameters and the SE of the EB estimator using bootstrapping, denoted by ŜE(θ̃EB

i ) =

(V̂ar(θ̃EB
i ))1/2; see Algorithm 2. Table 5 presents the values for the response variables (Yi|θi),

EB estimates (θ̃EB
i ), estimated SE (ŜE(θ̃EB

i )) and lower limit (LL) and upper limit (UP) of the
95% bootstrap confidence interval for θ̃EB

i . The ML estimates of the parameters β0, β1 and
κ of the model given in (3.1) using a logarithmic link function, with the estimated SEs in
parenthesis, are: β̂0 = 4.027(0.237), β̂1 = 0.063(0.006) and κ̂ = 163.505(6.401). From this
information, note that all coefficients are significant at 5% based on the normal approximation
of the distribution of the ML estimators.
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Table 4: AIC and BIC values for the listed model and link by municipal-
ity ID with CBCI-UQLI data.

Criteria RBS-log RBS-identity Normal-log Normal-identity

`(λ̂) -119.807 -129.750 -130.250 -129.750
AIC 247.614 253.601 264.501 267.501
BIC 250.194 256.188 265.079 270.081

Table 5: estimates, SEs and 95% confidence intervals for the area small
mean based on the RBS area model with logarithm link function
using CBCI and UQLI data.

ID θ̃EB
i ŜE(θ̃EB

i ) LL UL ID θ̃EB
i ŜE(θ̃EB

i ) LL UL

PC 30.59 1.26 28.11 33.06 SJ 39.16 1.19 36.81 41.50
CO 31.38 2.39 26.68 36.08 LC 38.94 0.99 36.99 40.88
QN 32.05 1.90 28.32 35.77 RE 39.46 1.42 36.66 42.25
LE 31.68 0.86 29.99 33.36 CE 41.50 2.18 37.22 45.77
CN 32.17 0.89 30.41 33.92 SM 43.03 1.49 40.09 45.96
LG 33.17 2.64 27.98 38.35 MP 43.32 2.20 39.00 47.63
RN 33.77 3.28 27.32 40.21 SB 43.34 3.85 35.78 50.89
IN 34.74 0.74 33.27 36.20 SA 43.85 0.58 42.70 44.99
EC 35.44 1.40 32.68 38.19 PE 48.68 2.62 43.54 53.81
LP 35.09 0.64 33.83 36.34 LF 48.68 2.77 43.24 54.11
SR 36.21 1.71 32.85 39.56 MA 48.68 0.77 47.15 50.20
QU 37.13 2.48 32.26 41.99 LR 52.50 1.25 50.04 54.95
EB 36.42 1.62 33.24 39.59 NU 52.49 1.71 49.13 55.84
PU 37.00 1.27 34.49 39.50 LB 56.37 1.63 53.16 59.57
PA 37.28 1.26 34.80 39.75 VI 65.71 2.16 61.45 69.96
HU 37.80 1.13 35.57 40.02 PR 71.44 3.17 65.22 77.65
LA 37.59 3.25 31.22 43.96 LN 73.87 2.85 68.27 79.47

4.4. Diagnostics and model checking

Based on Figure 4, we evaluate the assumptions of the RBS area model with logarithm
link function by an analysis of the conditional QR residual defined in (3.16) based on Chilean
service quality data. This figure shows on the left an index plot of the conditional RQ residual
by municipality, whereas on the right, a QQ plot with simulated envelopes for this residual is
sketched. Note that outliers are not detected in these figures. In addition, since in the RBS
model the variance is a function of its mean, the RBS area model manages well the problem
of non-constant variance detected in the EDA. Also, note that the simulated envelopes for the
conditional RQ residual verify the distributional assumption for the RBS area model and the
absence of outlying observations. Therefore, based on this residual analysis and such as conjec-
tured in our EDA, the RBS area model with logarithm link function is an excellent formulation
for describing the Chilean service quality data analyzed in this study.
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Figure 4: index plot (left) of the conditional RQ residual and QQ plot
with simulated envelopes (right) with CBCI-UQLI data.

5. CONCLUSIONS

The Birnbaum–Saunders area models proposed in this article have properties that are
unavailable in the models of this type existing in the literature. Some of these properties are
quite needed for describing small areas problems. Specifically, the Birnbaum–Saunders area
models considered in this work allow us to describe the mean of the data in their original scale,
unlike the existing models, which employ a logarithmic transformation of the data with the
consequent problems. In addition, these Birnbaum–Saunders area models can be formulated
in a similar form as the normal area models, permitting capturing the essence of the small area
estimation problem based on sample means and variances obtained from the areas. Furthermore,
the Birnbaum–Saunders area models considered in this study assume a link function, which
enables for different structures present in the data. The proposed methodology allowed us
to find the estimator of the small area mean based on the empirical Bayes estimator using
Gaussian quadrature methods. We also considered a residual to evaluate the model assumptions
and atypical data. Finally, we performed a statistical modeling for small area estimation with
unpublished Chilean survey data by using the new approach proposed in the article, which have
shown the applicability and scope of our proposal. The methodology introduced in this article
has been implemented in the R software.
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