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1. INTRODUCTION

In wireless communications, systems with multiple-input-multiple-output
(MIMO) design have become very popular since they allow higher bit rate and
because of their applications in the analysis of signal-to-noise ratio (SNR). In
the analysis of channel capacity, the formation of complex channel coefficients
play a deterministic role and been taken to be complex matrix variate normal
distributed so far, to the best of our knowledge. However, this normality assump-
tion has not been challenged. [2] mentioned that the Rayleigh density function is
usually derived based on the assumption that from the central limit theorem for
large number of partial waves, the resultant process can be decomposed into two
orthogonal zero-mean and equal-standard deviation normal random processes.
This is an approximation and the restriction of complex normal is unnecessary
- it is not always a large number of interfering signals. Thus a more general
assumption than complex matrix variate normal may not be that far from reality
(see also [12]). This speculative research challenges this assumption of a channel
being fed by normal inputs, and sets the platform for introducing our newly pro-
posed models to the MIMO wireless systems arena, and to provide deeper insight
into these systems.

The performance of these MIMO systems relies on the quadratic form of the
complex normal channel matrix, with n ”inputs” and p ”outputs”, colloquially
referred to as ”receivers” and ”transmitters” respectively. Thus, the distribution
of quadratic forms of the underlying complex normal channel matrix is of partic-
ular interest. Distributions of quadratic forms of complex normal matrix variates
is a topic that has been studied to a wide extent in literature ([7], [6], [16]).
In this paper the distribution of S = XHAX is of interest1, where X ∈ Cn×p1

is taken to be the complex matrix variate elliptical distribution to address the
criticism against the questionable use of the normal model (A ∈ Cn×n2 , where
Cn×p1 denotes the space of n×p complex matrices, and Cp×p2 denotes the space of
Hermitian positive definite matrices of dimension p). This complex matrix vari-
ate elliptical distribution, which contains the well-studied complex matrix variate
normal distribution as a special case, is defined next.

The complex matrix variate X ∈ Cn×p1 , whose distribution is absolutely
continuous, has the complex matrix variate elliptical distribution with parameters
M ∈ Cn×p1 , Φ ∈ Cn×n2 , Σ ∈ Cp×p2 , denoted by X ∼ CEn×p(M,Φ⊗Σ,g), if it has
the following density function2 (see also [10]):

(1.1) hX(X) =
1

|Σ|n|Φ|p
g
[
−tr

(
Σ−1(X−M)HΦ−1(X−M)

)]
.

In (1.1), g (·) denotes the density generator3 g : R+ → R+, which should be a
function of a quadratic form (see also [6]).

1XH denotes the conjugate transpose of X.
2|X| denotes the determinant of matrix X.
3R+ denotes the positive real line.
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[1] and [6] demonstrates that real elliptical distributions can always be
expanded as an integral of a set of normal densities. Similar to [13], we present the
following lemma to define the complex matrix variate elliptical distribution as a
weighted representation of complex matrix variate normal density functions. This
representation can be used to explore the distribution of S when the distribution
of X can be that of any member of the complex matrix variate elliptical class.

Lemma 1.1. If X ∼ CEn×p(M,Φ⊗Σ, g) with density function hX(X),
then there exists a scalar weight function W(·) on R+ such that

hX(X) =

∫
R+

W(t)fCNn×p(M,Φ⊗t−1Σ)(X|t)dt

where4 fCNn×p(M,Φ⊗t−1Σ)(X|t) = 1
πpn|Φ|p|t−1Σ|n etr

[
−
(
tΣ−1(X−M)HΦ−1(X−M)

)]
is the density function of X|t ∼ CNn×p(M,Φ⊗t−1Σ), with

W(t) = πnpt−npL−1
{
g
[
−tr

(
Σ−1(X−M)HΦ−1(X−M)

)]}
where L is the Laplace transform operator.

Proof: Let s = tr
(
Σ−1(X−M)HΦ−1(X−M)

)
. Using (1.1) we have

hX(X) = |Σ|−n |Φ|−p g [−s]
= |Σ|−n |Φ|−p L

[
W(t)π−nptnp

]
= |Σ|−n |Φ|−p

∫
R+

W(t)π−nptnpe−tsdt

=

∫
R+

W(t)π−np
∣∣t−1Σ

∣∣−n |Φ|−p e−tsdt
from where the result follows.

Remark 1.1. Under the assumptions of Lemma 1, using Fubbini’s The-
orem, we have

1 =

∫
Cn×p1

hX(X)dX =

∫
R+

W(t)

 ∫
Cn×p1

fX(X)dX

 dt =

∫
R+

W(t)dt.

Thus for a non-negative weight function W(·), the function W(·) is a density
function of t. Therefore Lemma 1 can only be interpreted as a representation of
a scale mixture of complex matrix variate normal distributions. However, W(·)
is not always positive and can be negative on some domains (see [13] for some

4etr(·) = etr (·) where tr (X) denotes the trace of matrix X, and X−1 denotes the inverse of
matrix X.
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examples). The only limitation of Lemma 1 is that it defines those complex matrix
variate elliptical distributions whose inverse Laplace transform exist. There are
some mild sufficient conditions that ensure the inverse Laplace transform exists
for most of the well-known complex matrix variate elliptical distributions.

In this paper two special cases of the complex matrix variate elliptical model
is of interest. Firstly, the complex random matrix X ∈ Cn×p1 has the complex
matrix variate normal distribution with weight function W(·) in Lemma 1 given
by

(1.2) W(t) = δ(t− 1)

where δ(·) is the dirac delta function (see [1] and [13]).

Secondly, X ∈ Cn×p1 has the complex matrix variate t distribution with the
parameters M ∈ Cn×p1 , Φ ∈ Cn×n2 , Σ ∈ Cp×p2 and degrees of freedom υ > 0,
denoted by X ∼ Ctn×p(M,Φ⊗Σ, υ), with the following density function:
(1.3)

fX(X) =
υnpCΓ (np+ υ)

πnpCΓp(υ)

{
1 +

1

υ
tr
(
Σ−1(X−M)HΦ−1(X−M)

)}−(np+υ)

where the complex multivariate gamma function is given by (see [7])

(1.4) CΓp(a) = π
1
2
p(p−1)

p∏
i=1

Γ (a− (i− 1)) .

In this case the weight function W(·) in Lemma 1 is given by

(1.5) W(t) =
(tυ)υe−tυ

tΓ(υ)

where Γ(·) denotes the well-known gamma function.

This paper is organized as follows: in section 2 the distribution of the
quadratic form within the complex elliptical class for the nonsingular- and sin-
gular case is derived, along with the density functions of the eigenvalues of these
quadratic forms. The distribution of the eigenvalues of the quadratic forms are of
particular interest in the MIMO environment as it describes the underlying distri-
bution for many of the performance measures for these MIMO systems. In section
3 this newly developed theory in the complex elliptical class is used to evaluate
the capacity of MIMO wireless systems for a specific channel environment; by
particularly assuming the complex matrix variate t distribution. Furthermore, a
Rayleigh-type distribution stemming from the underlying elliptical assumption,
is also defined. Section 4 highlights the advantages of the complex matrix variate
t distribution in the MIMO environment and includes some conclusions.



6 Ferreira et. al.

2. DISTRIBUTIONS OF QUADRATIC FORMS FROM THE COM-
PLEX ELLIPTICAL CLASS

In this section the necessary theoretical development is presented to set
the platform for section 3. The density functions of the nonsingular and singular
quadratic forms of complex elliptical random matrices are derived and particular
cases of them are of special focus. In addition, the density functions for the joint
eigenvalues are also derived; these densities are of particular importance when cal-
culating performance measures of MIMO systems. For the reader’s convenience,
Remark 2.1 provides background regarding matrix spaces.

Remark 2.1. Matrix spaces: The set of all n × p (n ≥ p) matrices,
E, with orthonormal columns is called the Stiefel manifold, denoted by CVp,n.
Thus CVp,n =

{
E (n× p) ; EHE = Ip

}
. The volume of this manifold is given

by V ol (CVp,n) =
∫
CVp,n

(
EHdE

)
= 2pπnp

CΓp(n) . If n = p then a special case of the

Stiefel manifold is obtained, the so-called unitary manifold, defined as CVn,n ={
E (n× n) ; EHE = In

}
≡ U (n) where U (n) denotes the group of unitary n× n

matrices. The volume of U (n) is given by V ol (U (n)) =
∫

U(n)

(
EHdE

)
= 2nπn

2

CΓn(n) .

2.1. Non-singular case

Theorem 2.1. Suppose that n ≥ p and X ∼ CEn×p(0,Φ⊗Σ, g), and
let Φ,A ∈ Cn×n2 and Σ ∈ Cp×p2 . Then the quadratic form S = XHAX ∈ Cp×p2

has the integral series complex Wishart-type (ISCW) distribution with density
function

(2.1) fS(S) =
|S|n−pG(S)

CΓp(n)|ΦA|p|Σ|n

where

G(S) =

∫
R+

tnp 0CF (p)
0

(
B,−tΣ−1S

)
W(t)dt

and B = A−
1
2 Φ−1A−

1
2 . This distribution is denoted as S ∼ISCWp (n,Φ⊗Σ,G(·)),

where 0CF (p)
0 (·, ·) denotes the complex hypergeometric function with two Hermi-

tian matrix arguments (see [7], [9]).

Proof: From Lemma 1, X|t ∼ CN
(
0,Φ⊗t−1Σ

)
. The result follows from

Theorem 1 of [16] and integrating with respect to the weight function W(t).
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Remark 2.2. We know that if X ∼ CNn×p (0,Φ⊗Σ) then XHAX has
the complex matrix variate quadratic distribution, denoted by CQn×p (A,Φ⊗Σ).
Assuming that X ∼ CEn×p (0,Φ⊗Σ,g), it then follows from Lemma 1 that

S = XHAX
d
=ZHAZ, where Z|t ∼ CNn×p

(
0,Φ⊗t−1Σ

)
with

ZHAZ|t ∼ CQn×p
(
A,Φ⊗t−1Σ

)
.

Therefore

fS (S) =

∫
R+

W(t)fCQn×p(A,Φ⊗t−1Σ)

(
ZHAZ|t

)
dt.

Particular cases of the density function (2.1) will be focussed on, since they
form part of the investigation in Section 3.

Remark 2.3. If A = In and Φ = In then S ∈ Cp×p2 has the complex
Wishart-type distribution with the following density function

(2.2) fS(S) =
|S|n−pG(S)

CΓp(n)|Σ|n

where

G(S) =

∫
R+

tnp etr
(
−tΣ−1S

)
W(t)dt.

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.2) simplifies to

fS(S) =
|S|n−pG(S)

CΓp(n)σ2np

where

G(S) =

∫
R+

tnp etr
(
−tσ−2S

)
W(t)dt.

Next, an expression for the density function of the joint eigenvalues of
S = XHAX is given, when S ∼ISCWp (n,Φ⊗Σ,G(·)) (see (2.1)).

Theorem 2.2. Suppose that S ∼ISCWp (n,Φ⊗Σ,G(·)), and let λ1 >
λ2 > ... > λp > 0 represent the ordered eigenvalues of S ∈ Cp×p2 . Then the
eigenvalues of S, Λ = diag (λ1, λ2, ..., λp), has density function5

f(Λ) = K

∫
R+

tnp
∫

E∈U(p)

0CF (p)
0

(
B,−tΣ−1EΛEH

)
dEW(t)dt(2.3)

= K

∫
R+

tnp
∞∑
k=0

∑
κ

CCκ (B)

k!Cκ (In)

CCκ
(
−tΣ−1

)
CCκ (Λ)

Cκ (Ip)
W(t)dt(2.4)

5CCκ(Z) denotes the complex zonal polynomial of Z corresponding to the partition κ =
(k1, . . . , kp), k1 ≥ · · · ≥ kp ≥ 0, k1 + · · ·+ kp = k and

∑
κ denotes summation over all partitions

κ.
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where B = A−
1
2 Φ−1A−

1
2 and K =

πp(p−1)

(
p∏
i=1

λn−pi

)(
p∏
k<l

(λk−λl)2
)

CΓp(n)CΓp(p)|ΦA|p|Σ|n .

Proof: Using Eq. 93 of [7] and (2.1), the joint density function of the
eigenvalues λ1 > λ2 > ... > λp > 0 of S is given by

f(Λ) =

πp(p−1)

(
p∏
k<l

(λk − λl)2

)
|Λ|n−p

CΓp(n)CΓp(p)|ΦA|p|Σ|n

∫
E∈U(p)

G(EΛEH)dE.

By using Definition 2.6 from [3], (2.4) follows directly.

Particular cases of the density function in (2.3) are focussed on next, since
they form part of the investigation in Section 3.

Remark 2.4. If A = In and Φ = In then the joint density function of
the eigenvalues of the complex Wishart-type distribution, f(Λ), simplifies to
(2.5)

f(Λ) =

πp(p−1)

(
p∏
i=1

λn−pi

)(
p∏
k<l

(λk − λl)2

)
CΓp(n)CΓp(p)|Σ|n

∫
R+

tnp 0CF (p)
0

(
Λ,−tΣ−1

)
W(t)dt.

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.5) simplifies to

f(Λ) =

πp(p−1)

(
p∏
i=1

λn−pi

)(
p∏
k<l

(λk − λl)2

)
CΓp(n)CΓp(p)σ2np

∫
R+

tnp exp

(
−tσ−2

p∑
i=1

λi

)
W(t)dt.

Remark 2.5. It is known that expressions containing hypergeometric
functions of matrix argument and zonal polynomials may be cumbersome to com-
pute, and that software packages have limitations to handle such computations.
In this paper only cases with specific interest in MIMO systems will be focussed
on. The reader is referred to [?], [5], and [9] for some analytical expressions to
compute such hypergeometric functions of matrix arguments.

The following table gives the density function for the special cases (see (2.2)
and (2.5)) for the complex matrix variate normal and complex matrix variate t
distribution (see (1.5)) case respectively. The expressions for the complex matrix
variate normal case reflects the results of [7].
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Distribution of X Density function

fS(S) (see (2.2))

Normal (CΓp(n)|Σ|n)−1 |S|n−petr
(
−Σ−1S

)
t (Γ (υ) CΓp(n)|Σ|n)−1 υυ|S|n−pΓ (np+ υ)

(
trΣ−1S + υ

)−(np+υ)

f(Λ) (see (2.5))

Normal

(CΓp(n)CΓp(p)|Σ|n)−1 πp(p−1)

(
p∏
i=1

λn−pi

)
×
(

p∏
k<l

(λk − λl)2

)
0CF (p)

0

(
Λ,−Σ−1

)
t

(CΓp(n)CΓp(p)|Σ|nΓ (υ) υnp)−1 πp(p−1)

(
p∏
i=1

λn−pi

)
×
(

p∏
k<l

(λk − λl)2

)∑∞
k=0

∑
κ

CCκ(−Σ−1)CCκ(Λ)

υkk!Cκ(Ip)
Γ (np+ υ + k)

Table 2.1. Density functions of certain cases of complex matrix variate
elliptical quadratic form

2.2. Singular case

In this section the singular case of the quadratic form of the complex matrix
variate elliptical distribution is also considered, where 0 < n < p.

Theorem 2.3. Suppose that 0 < n < p and X ∼ CEn×p(0,Φ⊗Σ, g),
and let Φ,A ∈ Cn×n2 and Σ ∈ Cp×p2 . Let Λ = diag (λ1, λ2, ..., λp). Then the
quadratic form S = XHAX ∈ Cp×p2 has the integral series complex singular
Wishart-type (ISCSW) distribution with density function

(2.6) fS(S) =
πn(n−p)|Λ|n−pG(S)

CΓn(n)|ΦA|p|Σ|n

where

G(S) =

∫
R+

tnp 0CF (n)
0

(
B,−tΣ−1S

)
W(t)dt

and B = A−
1
2 Φ−1A−

1
2 . This distribution is denoted as S ∼ISCSWn (p,Φ⊗Σ,G(·)).

Proof: See that

f(X) =

∫
R+

tnp|ΦA|−p|Σ|−nπ−npetr
(
−tBXΣ−1XH

)
W(t)dt

where X|t ∼ CN
(
0,Φ⊗t−1Σ

)
. Let XHA

1
2 = E1ΥH (where A

1
2 A

1
2 = A), and

note S = XHA
1
2 A

1
2 X = E1ΥHHHΥEH

1 = E1Υ
2EH

1 = E1ΛEH
1 (where Υ2 = Λ).
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From Remark 2.1 follows:

f(S) =
π−np|Λ|n−p

CΓn(n)|ΦA|p|Σ|n

∫
CVn,n

∫
R+

tnp 0CF (n)
0

(
B,−tΣ−1S

)
W(t)dtdH

from where the result follows after some simplification.

Particular cases of the density function (2.6) will be focussed on, since they
form part of the investigation in Section 3.

Remark 2.6. If A = In and Φ = In, then S has the complex singular
Wishart-type distribution with the following density function

(2.7) fS(S) =
πn(n−p)|Λ|n−pG(S)

CΓn(n)|Σ|n

where

G(S) =

∫
R+

tnp etr
(
−tΣ−1S

)
W(t)dt.

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.7) simplifies to

fS(S) =
πn(n−p)|Λ|n−pG(S)

CΓn(n)σ2np

where

G(S) =

∫
R+

tnp etr
(
−tσ−2S

)
W(t)dt.

Next, expressions for the density function of the joint eigenvalues for the
singular case are derived.

Theorem 2.4. Suppose that 0 < n < p and S ∼ISCSWn (p,Φ⊗Σ,G(·))
(see 2.6), and let λ1 > λ2 > ... > λn > 0 represent the ordered eigenvalues of S.
Then the joint distribution of the eigenvalues of S, Λ = diag (λ1, λ2, ..., λp), has
density function

f(Λ) =

πn(n−1)

(
n∏
i=1

λp−ni

)(
n∏
k<l

(λk − λl)2

)
CΓn(n)CΓn(p)|ΦA|p|Σ|n

×
∫
R+

tnp
∫
CVp,n

0CF (n)
0

(
B,−tΣ−1EΛEH

)
(dE)W(t)dt(2.8)

where B = A−
1
2 Φ−1A−

1
2 .
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Proof: Consider a partial spectral decomposition where S = EΛEH ,
where E ∈ CVp,n. The transformation from S to E,Λ has volume element

(dS) = (2π)−n
∣∣Λn−p∣∣−2

n∏
k<l

(λk − λl)2 (dΛ)
(
EHdE

)
.

Therefore, from (2.6) and Remark 3:

f(Λ) =
πn(n−p)

CΓn(n)|ΦA|p|Σ|n
(2π)−n

∣∣Λn−p∣∣−2 |Λ|n−p
(

n∏
k<l

(λk − λl)

)2

×
∫
R+

tnp
∫
CVp,n

0CF (n)
0

(
B,−tΣ−1

2 EΛEH
) (

EHdE
)
W(t)dt

and the result follows.

Some special cases of the density function in (2.8) are reported next.

Remark 2.7. If A = In and Φ = In, then the joint density function of
the eigenvalues of the complex singular Wishart type distribution, f(Λ), simplifies
to the following density function:
(2.9)

f(Λ) =

πn(n−1)

(
n∏
i=1

λp−ni

)(
n∏
k<l

(λk − λl)2

)
CΓn(n)CΓn(p)|Σ|n

∫
R+

tnp 0CF (n)
0

(
Λ,−tΣ−1

)
W(t)dt.

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.7) simplifies to

f(Λ) =

πn(n−1)

(
n∏
i=1

λp−ni

)(
n∏
k<l

(λk − λl)2

)
CΓn(n)CΓn(p)σ2np

∫
R+

tnp exp

(
−tσ−2

n∑
i=1

λi

)
W(t)dt.

The following table gives the density function for the special cases (see (2.7)
and (2.9)) for weight functions (1.2) and (1.5) respectively.
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Distribution of X Density function

fS(S) (see (2.7))

Normal (CΓn(n)|Σ|n)−1 πn(n−p)|Λ|n−petr
(
−Σ−1S

)
t (Γ(υ)CΓn(n)|Σ|n)−1 υυπn(n−p)|Λ|n−pΓ (np+ υ)

(
trΣ−1S + υ

)−(np+υ)

f(Λ) (see (2.9))

Normal

(CΓn(n)CΓn(p)|Σ|n)−1 πn(n−1)

(
n∏
i=1

λp−ni

)
×
(

n∏
k<l

(λk − λl)2

)
0CF (n)

0

(
Λ,−Σ−1

)
(see Eq. 25 in [15])

t

(CΓn(n)CΓn(p)|Σ|nΓ (υ) υnp)−1 πn(n−1)

(
n∏
i=1

λp−ni

)
×
(

n∏
k<l

(λk − λl)2

)∑∞
k=0

∑
κ

CCκ(−Σ−1)CCκ(Λ)

υkk!Cκ(Ip)
Γ (np+ υ + k)

Table 2.2. Density functions of certain cases of complex singular matrix
variate elliptical quadratic form

3. CHANNEL CAPACITY

Figure 4.1: MIMO System

Suppose that a communication system is being characterized by the follow-
ing output relation, as depicted in Figure 4.1:

y = Hx + v,
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where y,v ∈ Cnr×1
1 , x ∈ Cnt×1

1 and H ∈ Cnr×nt1 . In a correlated Rayleigh
channel, the distribution of an nr × nt channel matrix H is usually given by
H ∼ CNnr×nt(0, Inr ⊗ Σ) with nr ≥ nt (in other words, the channel coefficient
from different transmitter antennas to a single receiver antenna is correlated), and
note that the off-diagonal elements of Σ ∈ Cnt×nt2 are nonzero for correlated chan-
nels. Suppose that the channel matrix H and noise vector v are independently
distributed according the complex matrix variate elliptical and complex multivari-
ate normal distributions, respectively, in other words, H ∼ CEnr×nt(0, Inr⊗Σ, g),
and v ∼ CNnr×1(0, σ2Inr). In this section, the focus is to derive the channel ca-
pacity capacity if H ∼ Ctnr×nt(0, Inr⊗Σ, υ), with the weight function (1.5).

The input power is distributed equally over all transmitting antennas and is
constrained to ρ (the signal to noise ratio) such that (see [16])

E
(
xHx

)
≤ ρ.

For the purpose of this paper we are particularly interested in Rayleigh distributed
channels. However, having an underlying complex matrix variate elliptical distri-
bution for H results in having to consider a Rayleigh-type channel which is defined
next.

Proposition 3.1. Consider a complex elliptical process, Z = X + iY ,
where X, Y are independent and identically zero-mean elliptical random variates.
Let R =

√
X2 + Y 2 denote an element hij of H. The density function of R

emanating from the complex elliptical class is given by

h(r) =
r

σ2

∫
R+

t exp

(
− r2

2σ2t−1

)
W(t)dt

where r > 0, which is described as a Rayleigh-type density function (see also
[11]).

Moreover, if a block-fading model is assumed together with coding over many
independent fading intervals, then the ergodic capacity of the random MIMO
channel is given by (see [17])

C = EH

(
log

∣∣∣∣(Int +
ρ

nt
HHH

)∣∣∣∣)
= EΛ

(
log

nt∏
k=1

(
1 +

ρ

nt
λk

))
(3.1)

where λ1 > ... > λnt are the eigenvalues of S . Hence (3.1) can be evaluated
using the joint density functions of the eigenvalues ((2.3) and (2.8) respectively).
In the following two sections, the channel capacity is derived for the nonsingular-
and singular case, for both correlated- and uncorrelated cases.
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3.1. Nonsingular case

In this section the assumption is that the complex channel coefficients are
distributed according to the complex matrix variate t distribution. To this end,
we first consider the more general complex matrix variate elliptical distribution
and subsequently derive the results for the complex matrix variate t distribution.
We firstly derive the expressions for the channel capacity of a correlated- and
uncorrelated Rayleigh-type nr× 2 channel environment when the underlying dis-
tribution is complex matrix variate elliptical. In particular, a two-input (nt = 2),
nr output communication system is considered and the capacity graphically il-
lustrated.

Theorem 3.1. 1. For a two-input correlated Rayleigh-type channel
H ∼ CEnr×2(0, Inr⊗Σ, g), with nr ≥ 2, the capacity C is given by

C =
(a1a2)nr

Γ (nr) Γ (nr − 1) (a1 − a2)

∞∫
0

log
(

1 +
ρ

2
λ1

)
(3.2)

×
{
λnr−1

1 Γ (nr − 1) a
−(nr−1)
2

∫
R+

tnr exp (−ta1λ1)W(t)dt

−λnr−1
1 Γ (nr − 1) a

−(nr−1)
1

∫
R+

tnr exp (−ta2λ1)W(t)dt

−λnr−2
1 Γ (nr) a

−nr
2

∫
R+

tnr−1 exp (−ta1λ1)W(t)dt

+λnr−2
1 Γ (nr) a

−nr
1

∫
R+

tnr−1 exp (−ta2λ1)W(t)dt

}
dλ1

where a1 > a2 are the ordered eigenvalues of the diagonalized covariance matrix
Σ.

2. For a two-input uncorrelated Rayleigh-type channel H ∼ CEnr×2(0, Inr⊗σ2I2, g),
with nr ≥ 2, the capacity C is given by

C =

∞∫
0

log
(

1 +
ρ

2
λ1

){ ∫
R+

λnr1 tnr+1 exp
(
−tσ−2λ1

)
W(t)

2Γ (nr)σ2
dt(3.3)

−
∫
R+

λnr−1
1 tnr exp

(
−tσ−2λ1

)
W(t)

Γ (nr − 1)
dt

+

∫
R+

λnr−2
1 tnr−1Γ (nr + 1) exp

(
−tσ−2λ1

)
W(t)

2Γ (nr − 1)σ−2
dt

}
dλ1.
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Proof: 1. The unordered density function of (2.5) is obtained by divid-
ing by p! = nt! = 2!:

f(λ1, λ2) =
(λ1λ2)nr−2 (λ1 − λ2) (a1a2)nr

2!Γ (nr) Γ (nr − 1) (a2 − a1)

∫
R+

t2nr−1 |exp (−taiλj)|W(t)dt

since from (1.4) we have CΓ2(2) = πΓ (2) Γ (1) , CΓ2(nr) = πΓ (nr) Γ (nr − 1) ,
and using an expression for the complex hypergeometric function by [8]. Then

|exp (−taiλj)| =

∣∣∣∣ exp (−ta1λ1) exp (−ta1λ2)
exp (−ta2λ1) exp (−ta2λ2)

∣∣∣∣
= exp (−t (a1λ1 + a2λ2))− exp (−t (a1λ2 + a2λ1)) .

From (3.1) the capacity for a correlated Rayleigh-type fading model of dimension
nr × 2 under the complex matrix variate elliptical distribution is given by

C = 2

∫ ∞
0

log
(

1 +
ρ

2
λ1

)∫ ∞
0

f(λ1, λ2)dλ2dλ1

= K

∫ ∞
0

log
(

1 +
ρ

2
λ1

)∫ ∞
0

(
λnr−1

1 λnr−2
2 − λnr−2

1 λnr−1
2

)
×
∫
R+

t2nr−1 (exp (−t (a1λ1 + a2λ2))− exp (−t (a1λ2 + a2λ1)))W(t)dtdλ2dλ1

= K

∫ ∞
0

log
(

1 +
ρ

2
λ1

) ∫
R+

t2nr−1

∫ ∞
0

(
λnr−1

1 λnr−2
2 − λnr−2

1 λnr−1
2

)
× (exp (−t (a1λ1 + a2λ2))− exp (−t (a1λ2 + a2λ1))) dλ2W(t)dtdλ1

where K = (a1a2)nr

Γ(nr)Γ(nr−1)(a2−a1) . The latter integral equals

λnr−1
1 exp (−ta1λ1) Γ (nr − 1) (ta2)−(nr−1) − λnr−1

1 exp (−ta2λ1) Γ (nr − 1) (ta1)−(nr−1)

−λnr−2
1 exp (−ta1λ1) Γ (nr) (ta2)−nr + λnr−2

1 exp (−ta2λ1) Γ (nr) (ta1)−nr

by using Eq. 3.381.4 from [4]. Result (3.2) follows.

2. The proof follows similarly where Σ =σ2I2.

A particular focus is that of an underlying complex matrix variate t distri-
bution, therefore the weight function (1.5) is substituted into (3.2) and (3.3) to
obtain the corresponding capacity.

Corollary 3.1. 1. For a two-input correlated Rayleigh-type channel,
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H ∼ Ctnr×2(0, Inr⊗Σ, υ), with nr ≥ 2, the capacity is given by

C =
anr1 a2υ

υΓ (nr + υ)

(a1 − a2) Γ(υ)Γ (nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 (a1λ1 + υ)−(nr+υ) dλ1(3.4)

− a1a
nr
2 υυΓ (nr + v)

(a1 − a2) Γ(v)Γ (nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 (a2λ1 + υ)−(nr+υ) dλ1

− anr1 υυΓ (nr + υ − 1)

(a1 − a2) Γ(υ)Γ (nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 (a1λ1 + υ)−(nr+υ−1) dλ1

+
anr2 υυΓ (nr + υ − 1)

(a1 − a2) Γ(υ)Γ (nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 (a2λ1 + υ)−(nr+υ−1) dλ1.

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ Ctnr×2(0, Inr⊗σ2I2, υ),
with nr ≥ 2, the capacity C is given by

C =
υυΓ (nr + υ + 1)

σ2Γ(υ)Γ (nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr1

(
λ1

σ2
+ υ

)−(nr+υ+1)

dλ1(3.5)

− 2υυΓ (nr + υ)

Γ(υ)Γ (nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1

(
λ1

σ2
+ υ

)−(nr+υ)

dλ1

+
υυΓ (nr + υ − 1) Γ (nr + 1)

σ−2Γ(υ)Γ (nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1

(
λ1

σ2
+ υ

)−(nr+υ−1)

dλ1.

Figure 4.2 shows the calculated channel capacity (3.4) versus nr for different
values of ρ, assuming a correlation of 0.9, σ2 = 1, and υ = 10.
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Figure 4.2 (3.4) against nr for different values of ρ.

Figure 4.3 shows the calculated channel capacity (3.5) versus nr for different
values of ρ, assuming a correlation of 0, σ2 = 1, and υ = 10.

Figure 4.3 (3.5) against nr for different values of ρ.

Table 4.1 shows the capacity in nats6 for this nr × 2 correlated Rayleigh-
type fading channel matrix (as illustrated in Figure 4.2). Table 4.2 shows the
capacity in nats for this nr× 2 uncorrelated Rayleigh-type fading channel matrix
(as illustrated in Figure 4.3). Each column represents different levels of SNR,
in decibels (dB). Observe how the capacity is increasing in both Tables 4.1 and
4.2 with regards to increasing SNR, as well as increasing number of receivers
nr. Furthermore, note how the capacity for the uncorrelated case (Table 4.2) is
higher for all corresponding entries than that of the correlated case (Table 4.1).
The same is observed for other arbitrarily chosen υ.

6In (3.4) if loge is used then the measurement unit for capacity is termed ”nats”.
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nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.2916 2.0609 3.3057 4.8558 6.6852 8.7821 10.9059 13.1656

4 1.9816 2.9984 4.5956 6.5129 8.6450 10.8836 13.1643 15.4598

6 2.4582 3.6126 5.3811 7.4294 9.6327 11.9010 14.1924 16.4914

8 2.8266 4.0737 5.9455 8.0592 10.2922 12.5715 14.8665 17.1666

10 3.1289 4.4445 6.3856 8.5381 10.7872 13.0721 15.368 17.6696

12 3.3862 4.7550 6.7460 8.9240 11.1831 13.4713 15.7691 18.0700

14 3.6105 5.0222 7.0506 9.2467 11.5125 13.8028 16.1012 18.4021

16 3.8095 5.2564 7.3141 9.5234 11.7939 14.0856 16.3842 18.6850

18 3.9882 5.4646 7.5456 9.7650 12.0988 14.3313 16.6298 18.9303

20 4.1502 5.6515 7.7414 9.9786 12.2547 14.5476 16.8458 19.1458

Table 4.1.
Capacity (3.4) in nats for a nr × 2 system for different
values of ρ and υ = 10.

nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.4843 2.4498 4.0298 5.9281 8.0291 10.2403 12.5045 14.7941

4 2.4402 3.7860 5.7830 7.9676 10.2292 12.5184 14.8167 17.1179

6 3.1083 4.6148 6.7334 8.9714 11.2528 13.5486 15.8490 18.1509

8 3.6156 5.2064 7.3788 9.6373 11.9256 14.2237 16.5284 18.8269

10 4.0228 5.6647 7.8668 10.1360 12.4279 14.7270 17.0285 19.3307

12 4.3622 6.0382 8.2591 10.5948 12.8287 15.1285 17.4302 19.7325

14 4.6583 6.3532 8.5869 10.8670 13.1623 15.4625 17.7643 20.0668

16 4.9069 6.6253 8.8684 11.1516 13.4479 14.7484 18.0503 20.3525

18 5.1324 6.8648 9.1149 11.4004 13.6974 15.9981 18.3000 20.6022

20 5.3350 7.0785 9.3342 11.6214 13.9189 16.2197 18.5215 20.8237

Table 4.2.
Capacity (3.5) in nats for a nr × 2 system for different
values of ρ and υ = 10.

3.2. Singular case

For the singular case, the correlated- and uncorrelated Rayleigh-type 2×nt
channel matrix is considered, and its corresponding capacity derived.

Theorem 3.2. 1. For a two-input correlated Rayleigh-type channel,
H ∼ CE2×nt(0, I2⊗Σ,g), with nt ≥ 2, the capacity C is given by

C = K

∞∫
0

λ1∫
0

{
log

(
1 +

ρ

nt
λ1

)
+ log

(
1 +

ρ

nt
λ2

)}
(λ1λ2)nt−2 (λ1 − λ2)(3.6)

×
∫
R+

tnt+1 det (exp (−taiλj))W(t)dtdλ2dλ1
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where K =

nt∏
i=1

a2i

2Γ(nt)Γ(nt−1)
nt∏
k<l

(al−ak)

, and a1 > a2 > ... > ant > 0 are the eigenvalues

of Σ−1.
2. For a two-input uncorrelated Rayleigh-type channel, H ∼ CE2×nt(0, I2⊗σ2Int , g),
with nt ≥ 2, the capacity C is given by

C =
1

σ2nt+2Γ (nt)

∞∫
0

log

[
1 +

ρ

nt
λ1

]
λnt1

∫
R+

tnt+1 exp
(
−tσ−2λ1

)
W(t)dtdλ1(3.7)

− 2

σ2ntΓ (nt − 1)

∞∫
0

log

[
1 +

ρ

nt
λ1

]
λnt−1

1

∫
R+

tnt exp
(
−tσ−2λ1

)
W(t)dtdλ1

+
Γ (nt + 1)

σ2nt−2Γ (nt) Γ (nt − 1)

∞∫
0

log

[
1 +

ρ

nt
λ1

]
λnt−2

1

∫
R+

tnt−1 exp
(
−tσ−2.λ1

)
W(t)dtdλ1.

Proof: 1. The unordered density function of (2.9) is obtained by divid-
ing by n! = nr! = 2!:

f(λ1, λ2) =

π2(2−1)

(
2∏
i=1

λnt−2
i

)(
2∏
k<l

(λk − λl)2

)
2CΓ2(2)CΓ2(nt)|Σ|2

∫
R+

t2nt 0CF (2)
0

(
Λ,−tΣ−1

)
W(t)dt.

In the same way as Theorem 16, integrating with respect to λ2 and calculating
the expectation of (3.1) leads to the final result.

2. The proof follows similarly where Σ =σ2I2.

Corollary 3.2. 1. For a two-input correlated Rayleigh-type channel,
H ∼ Ct2×nt(0, I2⊗Σ, ν), with nt ≥ 2, the capacity C is given by

C = K
υυ

Γ(υ)

∞∫
0

λ1∫
0

{
log

(
1 +

ρ

nt
λ1

)
+ log

(
1 +

ρ

nt
λ1

)}
(λ1λ2)nt−2 (λ1 − λ2)(3.8)

×
∫
R+

tnt+υe−tυ det (exp (−taiλj)) dtdλ2dλ1

where K =

nt∏
i=1

a2i

2Γ(nt)Γ(nt−1) prod
nt
k<l(al−ak)

, and a1 > a2 > ... > ant > 0 are the eigen-

values of Σ−1.

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ Ct2×nt(0, I2⊗σ2Int , υ),
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with nt ≥ 2, the capacity C is given by

C =
υυΓ (nt + υ + 1)

σ2nt+2Γ(υ)Γ (nt)

∞∫
0

log

[
1 +

ρ

nt
λ1

]
λnt1

(
λ1

σ2
+ υ

)−(nt+υ+1)

dλ1(3.9)

− 2υυΓ (nt + υ)

σ2ntΓ(υ)Γ (nt − 1)

∞∫
0

log

[
1 +

ρ

nt
λ1

]
λnt−1

1

(
λ1

σ2
+ υ

)−(nt+υ)

dλ1

+
υυΓ (nt + υ − 1) Γ (nt + 1)

σ2nt−2Γ(υ)Γ (nt) Γ (nt − 1)

∞∫
0

log

[
1 +

ρ

nt
λ1

]
λnt−2

1

(
λ1

σ2
+ υ

)−(nt+υ−1)

dλ1.

Figure 4.4 shows the calculated channel capacity (3.8) (correlation 0.9) and
(3.9) (no correlation) versus SNR (ρ) for nt = 4 and υ = 10. Figure 4.5 illustrates
the higher capacity for the underlying complex matrix variate t distribution versus
the complex matrix variate normal distribution for the correlated nonsingular
case.

Figure 4.4. (3.8) and (3.9) against ρ, for nt = 4.
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Figure 4.5 (3.4) and eq. (29) from [14] against nr, for ρ, υ = 10.

4. CONCLUDING REMARKS

In this paper the distribution of the quadratic form and its associated joint
eigenvalues with an underlying complex matrix variate elliptical model was de-
rived. The proposed methodology is based on an integral representation that pro-
vides the researcher with expressions for allowing other underlying models than
that of the normal, providing new insightful research possibilities. Some special
cases were highlighted with the well-known Wishart distribution as a special case
when the complex matrix variate normal distribution is under consideration. An-
other special case is that of no correlation; this case is of specific interest in the
performance measure of channel capacity in the MIMO environment.

In particular the complex matrix variate t distribution was applied and the
literature is enriched with its representation. The channel capacity within the
MIMO environment is investigated for correlated and uncorrelated scenarios in
the nonsingular and singular cases. It is observed that

1. Correlation between transmitters/receivers degrade system capacity; and

2. The capacity of the system is higher in the case of underlying complex
matrix variate complex t distribution than that compared to an underlying
complex matrix variate normal distribution.

When no correlation exists between receivers, the well-known central limit
theorem can be assumed which results in H ∼ CNnr×nt(0, Inr ⊗ Σ). However,
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this paper provides new possibilities in the wireless communications systems en-
vironment with the elliptical platform. In particular, the complex matrix variate
t distribution is considered (as the t is a familiar candidate when placed alongside
the normal). These numerical examples (see Figure 4.5) of the channel capacity
show that the derived expressions under the complex matrix variate t distribution
provide significant insights on the behaviour of performance measures when the
assumption of the complex matrix variate normal distribution is challenged.

If the receivers and transmitters are correlated simultaneously, i.e. H ∼
CNnr×nt(0,Φnr⊗Σnt), then the well-known central limit theorem does not apply.
In that case the complex matrix variate elliptical distribution may provide greater
flexibility in this regard. Although the results in this paper are presented for the
Inr ⊗Σ and related cases, in the case of Φnr ⊗Σnt the covariance structure can
be adapted to Inr ⊗Σ via a transformation.
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