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Abstract:

• Lehmer’s mean-of-order p (Lp) generalizes the arithmetic mean, and Lp extreme value
index (EVI)-estimators can be easily built, as a generalization of the classical Hill
EVI-estimators. Apart from a reference to the asymptotic behaviour of this class of
estimators, an asymptotic comparison, at optimal levels, of the members of such a
class reveals that for the optimal (p, k) in the sense of minimal mean square error, with
k the number of top order statistics involved in the estimation, they are able to overall
outperform a recent and promising generalization of the Hill EVI-estimator, related
to the power mean, also known as Hölder’s mean-of-order-p. A further comparison
with other ‘classical’ non-reduced-bias estimators still reveals the competitiveness of
this class of EVI-estimators.
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1. GENERALIZED MEANS’ ESTIMATORS AND SCOPE OF
THE ARTICLE

Let us consider the notation (X1:n, . . . , Xn:n) for the ascending order statis-
tics associated with a random sample of size n, (X1, . . . , Xn), from a cumulative
distribution function (CDF) F . Let us further assume that there exist sequences
of real constants {an > 0} and {bn ∈ R} such that the maximum, linearly normal-
ized, i.e. (Xn:n − bn) /an, converges in distribution to a non-degenerate random
variable (RV). Then (Gnedenko, 1943), the limit distribution is necessarily of the
type of the general extreme value (EV) CDF, given by

(1.1) EVξ(x) :=


exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0.

The CDF F is then said to belong to the max-domain of attraction of EVξ, defined
in (1.1), we use the notation F ∈ DM (EVξ), and the parameter ξ is the extreme
value index (EVI), the primary parameter of extreme events. It is well-known
that the EVI measures the heaviness of the right-tail function F (x) := 1− F (x),
and the heavier the right-tail function, the larger ξ is. From a quantile point
of view, with F←(x) := inf{y : F (y) ≥ x} denoting the generalized inverse
function of F , further consider U(t) := F←(1 − 1/t), t ≥ 1, the reciprocal tail
quantile function (RTQF). Then, with Ra denoting the class of regularly varying
functions at infinity, with an index of regular variation equal to a ∈ R, i.e. positive
measurable functions g(·) such that for all x > 0, g(tx)/g(t) → xa, as t → ∞,
(see Bingham et al., 1987, among others),

(1.2) F ∈ D+
M := DM (EVξ)ξ>0 ⇐⇒ F ∈ R−1/ξ (Gnedenko, 1943)

⇐⇒ U ∈ Rξ (de Haan, 1984).

In this article we work with a Pareto-type underlying CDF, satisfying (1.2),
i.e. with an associated positive EVI for maxima. These heavy-tailed models are
quite common in a large variety of fields of application, like bibliometrics, bio-
statistics, computer science, insurance, finance, social sciences, statistical quality
control and telecommunications, among others. For Pareto-type models, the
classical EVI-estimators are the Hill (H) estimators (Hill, 1975), which are the
averages of the log-excesses, i.e.

(1.3) ξ̂H(k) ≡ H(k) :=
1

k

k∑
i=1

Vik,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n.

One of the interesting facts concerning the H EVI-estimators is that various
asymptotically equivalent versions of H(k) can be derived through essentially
different methods, such as the maximum likelihood method or the mean excess
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function approach, showing that the Hill estimator is quite natural. Details can
be found in Beirlant et al. (2004), among others. We merely note that from a
quantile point of view, and with U(·) the RTQF, we can write the distributional

identity X
d
= U(Y ), with Y a unit Pareto RV, i.e. an RV with a CDF FY (y) = 1−

1/y, y ≥ 1. For the order statistics associated with a random unit Pareto sample

(Y1, . . . , Yn), we have the distributional identity Yn−i+1:n/Yn−k:n
d
= Yk−i+1:k,

1 ≤ i ≤ k. Moreover, kYn−k:n/n
P−→

n→∞
1, i.e. Yn−k:n

P∼ n/k. Consequently, and

provided that k = kn, 1 ≤ k < n, is an intermediate sequence of integers, i.e. if

(1.4) k = kn →∞ and kn = o(n), as n→∞,

we get

(1.5) Vik
d
= ξ lnYk−i+1:k + oP(1)

d
= ξEk−i+1:k + oP(1),

with E denoting a standard exponential RV and the oP(1)-term uniform in i,
1 ≤ i ≤ k (see Caeiro et al., 2016a, among others, for further details on this
uniform behaviour). The log-excesses, Vik, 1 ≤ i ≤ k, in (1.3), are thus approx-
imately the k order statistics of a sample of size k from an exponential parent
with mean value ξ, motivating the H EVI-estimators in (1.3).

Beyond the average, the p-moments of log-excesses, i.e.

(1.6) M
(p)
k,n :=

1

k

k∑
i=1

{
lnXn−i+1:n − lnXn−k:n

}p
, p ≥ 1,

introduced in Dekkers at al. (1989)
[
M

(1)
k,n ≡ H(k)

]
have also played a relevant role

in the EVI-estimation, and can more generally be parameterized in p ∈ R \ {0}.
Note next that a simple generalization of the mean is Lehmer’s mean-of-order-p
(see Havil, 2003, p. 121). Given a set of positive numbers a = (a1, . . . , ak), such
a mean generalizes both the arithmetic mean (p = 1) and the harmonic mean
(p = 0), being defined as

Lp(a) :=

k∑
i=1

api /

k∑
i=1

ap−1i , p ∈ R.

Further note that lim
p→−∞

Lp(a) = min
1≤i≤k

ai and lim
p→+∞

Lp(a) = max
1≤i≤k

ai.

The H EVI-estimators can thus be considered as the Lehmer mean-of-order-
1 of the k log-excesses V := (Vik, 1 ≤ i ≤ k), in (1.3), k < n. We now more
generally consider the Lehmer mean-of-order-p of those statistics. From (1.5),
since E(Ep) = Γ(p + 1) for any real p > −1, with Γ(·) denoting the complete
Gamma function, the law of large numbers enables us to say that

1

k

k∑
i=1

V p
ik

P−→
n→∞

Γ(p+ 1)ξp.
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Hence the reason for the class of Lehmer mean-of-order-p (Lp) EVI-estimators,

(1.7) ξ̂Lp(k) ≡ Lp(k) :=
Lp(V)

p
=

1

p

k∑
i=1

V p
ik

k∑
i=1

V p−1
ik

=
M

(p)
k,n

pM
(p−1)
k,n

[
L1(k) ≡ H(k)

]
,

consistent for all ξ > 0 and real p > 0, and where M
(p)
k,n is given in (1.6).

As a possible competitive class of EVI-estimators, we further refer the one
recently studied in Brilhante et al. (2013), Gomes and Caeiro (2014) and Caeiro et
al. (2016a), among others, based on the power mean. Given a set of non-negative
numbers a = (a1, . . . , ak), such a mean generalizes the arithmetic mean (p = 1),
the geometric mean (p = 0) and the harmonic mean (p = −1), being defined as

Mp(a) :=

(
1

k

k∑
i=1

api

)1/p

, p ∈ R.

Further note that limp→0Mp(a) ≡ M0(a) =
(∏k

i=1 ai
)1/k

, lim
p→−∞

Mp(a) =

min
1≤i≤k

ai and lim
p→+∞

Mp(a) = max
1≤i≤k

ai. On the basis of the fact that the Hill

EVI-estimator in (1.3) is the logarithm of the geometric mean of

(1.8) Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n,

the consideration of the power mean, also known as Hölder’s mean-of-order-p
(MOp), of those same statistics leads to

(1.9) ξ̂Hp(k) ≡ Hp(k) :=


(

1−
(

1
k

k∑
i=1

Upik

)−1)
/p, if p < 1/ξ, p 6= 0,

H(k), if p = 0,

the so-called MOp EVI-estimators, almost simultaneously considered, for p ≥ 0,
in Brilhante et al. (2013), Paulauskas and Vaičiulis (2013) and Beran et al.
(2014). As a measure of comparison, and just as in Gomes and Henriques-
Rodrigues (2016) (see also Gomes and Henriques-Rodrigues, 2017), the Pareto
probability weighted moments (PPWM) EVI-estimators, introduced in Caeiro and
Gomes (2011), and further studied in Caeiro et al. (2014, 2016b) will also be
considered. The PPWM EVI-estimators, quite common in the areas of clima-
tology and hydrology, are consistent only for ξ < 1, depend on the statistics
âj(k) := 1

k

∑k
i=1

(
(i− 1)/(k − 1)

)j
Xn−i+1:n, j = 0, 1, and are defined by

(1.10) ξ̂PPWM(k) ≡ PPWM(k) := 1− â1(k)

â0(k)− â1(k)
, 1 ≤ k < n.

We also mention the possibly reduced-bias (RB) class of EVI-estimators in
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Caeiro and Gomes (2002b) (see also, Caeiro and Gomes, 2002a, 2014),

(1.11) ξ̂CGp,δ(k) ≡ CGp,δ(k) :=
Γ(p)

M
(p−1)
k,n

 M
(δp)
k,n

Γ(δp+ 1)

1/δ

, δ > 0, p > 0

[
CG1,1(k) ≡ H(k)

]
.

For δ = 2 in (1.11), we obtain a class studied in Caeiro and Gomes (2002a),

which generalizes the estimator CG1,2(k) =
√
M

(2)
k,n/2, studied in Gomes et al.

(2000), where also L2(k) = M2
k,n/

(
2M

(1)
k,n

)
was introduced and studied both

asymptotically and for finite samples. And we can also consider the class of
Lp EVI-estimators in (1.7), as a non-RB particular case of (1.11). Indeed,
Lp(k) ≡ CGp,1(k).

Remark 1.1. Note that all the aforementioned EVI-estimators are scale
invariant, but not location-invariant. They can however become location-
invariant if we apply the peaks over random threshold (PORT) methodology,
basing them not on the original sample, but on the excesses over a central em-
pirical quantile and even over the minimum of the available sample whenever
possible, i.e. when the underlying parent F has a finite left endpoint. For de-
tails on the topic, see, among others, Araújo Santos et al. (2006), where the
acronym PORT was introduced, Gomes et al. (2008), and more recently, Gomes
and Henriques-Rodrigues (2016) and Gomes et al. (2016).

In Section 2, after the introduction of a few technical details in the field
of extreme value theory (EVT), we deal with the asymptotic behaviour of the
Lp EVI-estimators, in (1.7). In Section 3, it is shown that at optimal k-levels
and for the optimal p, the members of such a class are able to overall outperform
the optimal EVI-estimators in (1.9), which on its turn had been shown in Bri-
lhante et al. (2013) to have a similar behaviour comparatively with the optimal
Hill EVI-estimators, for an adequate optimal p ( 6= 0). We next compare them,
asymptotically and at optimal levels, with the optimal PPWM EVI-estimators,
in (1.10). Finally, in Section 4, we advance with an overall comparison of a wide
number of EVI-estimators, drawing some concluding remarks.

2. ASYMPTOTIC BEHAVIOUR OF THE EVI–ESTIMATORS

After a reference, in Section 2.1, to the most common second-order frame-
work for heavy-tailed models, we briefly refer, in Section 2.2, the asymptotic
behaviour of the EVI-estimators defined in Section 1. A recent review on the
topic of statistical univariate EVT can be found in Gomes and Guillou (2015).
See also Beirlant et al. (2012) and Scarrot and MacDonald (2012).
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2.1. A few technical details in the field of EVT

In the area of statistical EVT and whenever working with large values, a
model F is commonly said to be heavy-tailed whenever (1.2) holds. The second-
order parameter ρ (≤ 0) rules the rate of convergence in any of the first-order
conditions, in (1.2), and can be defined as the non-positive parameter appearing
in the limiting relation

(2.1) lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=


(
xρ − 1

)
/ρ, if ρ < 0,

lnx, if ρ = 0,

which is assumed to hold for every x > 0, and where |A| must then be of reg-
ular variation with index ρ. This condition has been widely accepted as an
appropriate condition to specify the right-tail of a Pareto-type distribution in
a semi-parametric way. For technical simplicity, we often assume that we are
working in Hall-Welsh class of models (Hall and Welsh, 1985), with an RTQF,

(2.2) U(t) = C tξ
(

1 + ξ β tρ/ρ+ o(tρ)
)
, as t→∞,

C > 0, β 6= 0 and ρ < 0. Equivalently, we can say that, with (β, ρ) the vector of
second-order parameters, the general second-order condition in (2.1) holds with
A(t) = ξβtρ, ρ < 0. Further details on second-order conditions can be found in
Beirlant et al. (2004), de Haan and Ferreira (2006) and Fraga Alves et al. (2007),
among others.

2.2. Asymptotic behaviour of the EVI-estimators under consideration

Trivial adaptations of the results in de Haan and Peng (1998), Caeiro and
Gomes (2002b), Caeiro and Gomes (2011) and Brilhante et al. (2013), respectively
for the H, CGp,δ, PPWM and Hp classes of EVI-estimators, enable us to state:

Theorem 2.1. Under the validity of the first-order condition, in (1.2),
and for intermediate sequences k = kn, i.e. if (1.4) holds, the classes of Hp,
PPWM and CGp,δ EVI-estimators, respectively defined in (1.9), (1.10), and

(1.11), generally denoted by ξ̂•(k), are consistent for the estimation of ξ > 0,
provided that we work in S•, where SHp

= {(ξ, p) : ξ > 0, p < 1/ξ},
SPPWM ={ξ : 0 < ξ < 1} and SCGp,δ

={(ξ, p, δ) : ξ > 0, p > 0, δ > −1/p}.

Assume further that (2.1) holds. Then, for ξ > 0, adequate regions of the
spaces of parameters and with N

(
µ, σ2

)
standing for a normal RV with mean

value µ and variance σ2,

(2.3)
√
k
(
ξ̂•(k)− ξ

)
d−→

n→∞
N
(
λAb•, σ

2
•
)

if
√
k A(n/k) −→

n→∞
λA , finite.
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Moreover

(2.4) bHp =
1− pξ

1− pξ − ρ
, σ2Hp =

ξ2(1− pξ)2

1− 2pξ
if p < 1/(2ξ),

bPPWM =
(1− ξ)(2− ξ)

(1− ξ − ρ)(2− ξ − ρ)
, σ2

PPWM
=
ξ2(1− ξ)(2− ξ)2

(1− 2ξ)(3− 2ξ)
, if ξ < 1/2,

and

(2.5) bCGp,δ
=

(1− ρ)−δp − δ(1− ρ)−p+1 + δ − 1

δρ
,

σ2
CGp,δ

=
ξ2

δ2

{
2Γ(2δp)

δpΓ2(δp)
+
δ2Γ(2p− 1)

Γ2(p)
− 2Γ((δ + 1)p)

pΓ(p)Γ(δp)
− (δ − 1)2

}
,

if p > 1/2, δ > 0.

For the particular case δ = 1, in (1.11), i.e. for the Lp EVI-estimators in
(1.7), we can state:

Corollary 2.1. Under the validity of the initial first-order conditions
in Theorem 2.1, the class of Lp EVI-estimators, in (1.7), is consistent for the
estimation of ξ, provided that we work in SLp = {(ξ, p) : ξ > 0, p > 0}. Under
the second-order conditions of Theorem 2.1, (2.3) holds, with

(2.6) bLp =
1

(1− ρ)p
and σ2Lp =

ξ2 Γ(2p− 1)

Γ2(p)
if p > 1/2.

More specifically, and for all ρ ≤ 0, one can write the asymptotic distributional
representation

(2.7) Lp(k)
d
= ξ +

σLp Z
(p)
k√
k

+ bLp A(n/k) + oP(A(n/k)),

with (bLp , σ
2
Lp

) given in (2.6), and where Z
(p)
k is an asymptotically standard nor-

mal RV.

Remark 2.1. Note that regarding the Lp EVI-estimators, in (1.7),
Corollary 2.1 is a particular case of Theorem 1 in Caeiro and Gomes (2002b),
but generalizing now consistency for p > 0 and asymptotic normality for p > 1/2
rather than p ≥ 1. Further note that for δ = 1 there is a full agreement between
(2.6) and (2.5), the result provided in Theorem 1 of Caeiro and Gomes (2002b).
A detailed proof of Corollary 2.1 can be found in Penalva et al. (2016).

Remark 2.2. Further note that for the MOp EVI-estimators, denoted
by Hp and defined in (1.9), a distributional representation of the type of the one
in (2.7) holds for p < 1/(2ξ), with

(
bLp , σ

2
Lp

)
replaced by

(
bHp , σ

2
Hp

)
, given in

(2.4).
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For any ξ > 0, the asymptotic variance σ2Lp(ξ), in (2.6), has a minimum

at p = 1. In Figure 1 (left), we present the normalized standard deviation,
σLp(ξ)/ξ, independent of ξ, as a function of p. On another side, the asymptotic
bias ruler, bLp(ρ), also in (2.6), is independent of ξ and always decreasing in p.
Such a performance is shown in Figure 1 (right).

0
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2

3

4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

!Lp (") / "

p
0.0

0.5

1.0
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p

! = "0.1

! = "0.25

! = "0.5

! = "1

Figure 1: Graph of σLp
(ξ)/ξ, as a function of p > 1/2 (left) and of the

asymptotic bias ruler bLp
(ρ), for ρ = −0.1,−0.25,−0.5 and −1,

as a function of p ≥ 0

The aforementioned results claim for an asymptotic study, at optimal (k, p),
of the class of EVI-estimators in (1.7), a topic to be dealt with in Section 3.

3. ASYMPTOTIC COMPARISON AT OPTIMAL LEVELS

We next proceed to the comparison of the aforementioned non-RB EVI-
estimators, generally denoted by ξ̂•(k), at their optimal levels. This is again done
in a way similar to the one used in several articles, among which we refer Dekkers
and de Haan (1993), de Haan and Peng (1998), Gomes and Martins (2001), Gomes
et al. (2005, 2007, 2013, 2015), Gomes and Neves (2008), Gomes and Henriques-
Rodrigues (2010, 2016), and Brilhante et al. (2013), among others. Let us assume
that for any intermediate sequence of integers k = kn, (2.3) holds. We write
Bias∞

(
ξ̂•(k)

)
:= b• A(n/k) and Var∞

(
ξ̂•(k)

)
:= σ2•/k. The so-called asymptotic

mean square error (AMSE) is then given by AMSE
(
ξ̂•(k)

)
:= σ2•/k+b2• A

2(n/k).
Regular variation theory enabled Dekkers and de Haan (1993) to show that,
whenever b• 6= 0, there exists a function ϕ(n) = ϕ(n, ξ, ρ), such that

(3.1) lim
n→∞

ϕ(n) AMSE
(
ξ̂•0
)

=
(
σ2•
)− 2ρ

1−2ρ
(
b2•
) 1

1−2ρ =: LMSE
(
ξ̂•0

)
,
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where ξ̂•0 := ξ̂•(k0|•(n)) and k0|•(n) := arg min
k

MSE
(
ξ̂•(k)

)
. Moreover, if we

slightly restrict the second-order condition in (2.1), assuming (2.2), we can write

k0|•(n) = arg min
k

MSE
(
ξ̂•(k)

)
=

(
σ2• n

−2ρ

b2•ξ
2β2(−2ρ)

)1/(1−2ρ)
(1 + o(1)).

We consider the following:

Definition 3.1. Given two biased estimators ξ̂(1)(k) and ξ̂(2)(k), for
which (2.3) holds, with constants (σ1, b1) and (σ2, b2), b1, b2 6= 0, respectively,
both computed at their optimal levels, the asymptotic root efficiency (AREFF)

of ξ̂
(1)
0 relatively to ξ̂

(2)
0 is

(3.2) AREFF1|2 ≡ AREFF
ξ̂
(1)
0 |ξ̂

(2)
0

:=

√
LMSE

(
ξ̂
(2)
0

)
/LMSE

(
ξ̂
(1)
0

)
=
((σ2

σ1

)−2ρ∣∣∣b2
b1

∣∣∣) 1
1−2ρ

,

with LMSE defined in (3.1).

Remark 3.1. Note that the AREFF-indicator, in (3.2), has been con-
ceived so that the highest the AREFF indicator is, the better is the estimator
identified with the superscript (1).

The non-RB Lp, Hp, and PPWM EVI-estimators, respectively given in
(1.7), (1.9) and (1.10), will be crucially included in the asymptotic comparison
in Section 3.1.

3.1. Asymptotic comparison of EVI-estimators at optimal levels

Let us now turn back to the Lp EVI-estimators in (1.7), at optimal k-levels
in the sense of minimum RMSE. We have

LMSE(L0|p) =
(
ξ2Γ(2p− 1)/Γ2(p)

)− 2ρ
1−2ρ

(
(1− ρ)−2p

) 1
1−2ρ

and

(3.3) AREFFL(p) ≡ AREFFL0|p|L0|1

=

((
Γ(p)/

√
Γ(2p− 1)

)−2ρ
(1− ρ)p−1

) 1
1−2ρ

.
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Remark 3.2. In Gomes et al. (2000) was shown that the AREFF of the

optimal L2(k) comparatively to the optimal L1(k) is given by [2ρ(1− ρ)]1/(1−2ρ),
in agreement with (3.3). As noticed in the aforementioned article, AREFFL(2) >
1 ⇐⇒ −1 < ρ < 0.

To measure the performance of H0|p, with Hp the MOp EVI-estimator in
(1.9), Brilhante et al. (2013) computed a similar AREFF-indicator, given by

(3.4) AREFFH(p) ≡ AREFFH0|p|H0|0

=

((√
1− 2pξ

1− pξ

)−2ρ ∣∣∣∣ 1− pξ − ρ
(1− ρ)(1− pξ)

∣∣∣∣
) 1

1−2ρ

,

reparameterized in (ρ, a = pξ < 1/2), and denoted by AREFF∗a|0. In Figure 2,

we picture AREFFL(p) in (3.3) (top) and AREFF∗a|0 (bottom).

The gain in efficiency is not terribly high, but, at optimal levels, there is a
wide region of the (p, ρ)-plane where the new class of Lp EVI-estimators performs
better than the Hill EVI-estimators, with efficiencies slightly higher than the ones
associated with the comparison of Hp and the Hill, in the (a, ρ)-plane. This result
together with the fact that as far as we know, the EVI-estimators in (1.9) com-
puted at the optimal (k, p) in the sense of maximal AREFFH(p), with AREFFH(p)
given in (3.4), i.e. computed at p

M|H ≡ p
M|H(ρ) := arg maxp AREFFH(p), explic-

itly given by

(3.5) p
M|H = ϕρ/ξ, with ϕρ := 1− ρ/2−

√
ρ2 − 4ρ+ 2

/
2,

bpM|H 6= 0, is, as expected, a non-RB EVI-estimator which is able to beat the Hill

EVI-estimator in the whole (ξ, ρ)-plane, immediately leads us to think on what
happens for the optimal value of p associated with the Lp EVI-estimation. Con-
trarily to the explicit expression for p

M|H , in (3.5), the value of p
M|L = p

M|L(ρ) :=
arg maxp AREFFL(p), with AREFFL(p) given in (3.3), is an implicit function of
ρ, easy to evaluate numerically. Some of those values are presented in Table 1.

Table 1: Values of p
M|L = p

M|L (ρ) := argmaxp AREFFL(p) for a few values of |ρ|
|ρ| 0+ 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2 +∞
p
M|L 1 1.98 1.86 1.75 1.67 1.61 1.56 1.52 1.45 1.40 1.32 1.27 1
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1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-0.10 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

-0.20 1.00 1.01 1.01 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03

-0.30 1.00 1.01 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.03

-0.40 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02

-0.50 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.02

-0.60 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.01 1.01

-0.70 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 1.00

-0.80 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99

-0.90 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99 0.98

-1.00 1.00 1.01 1.02 1.02 1.03 1.03 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.01 1.01 1.01 1.00 0.99 0.99 0.98 0.98 0.97

-1.10 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.96

-1.20 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.96

-1.30 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.95

-1.40 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94

-1.50 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.98 0.98 0.97 0.96 0.96 0.95 0.94 0.93

-1.60 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92

-1.70 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.99 0.98 0.97 0.97 0.96 0.95 0.94 0.93 0.93 0.92

-1.80 1.00 1.01 1.02 1.02 1.03 1.03 1.03 1.03 1.02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.98 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.92 0.91

-1.90 1.00 1.01 1.02 1.02 1.02 1.03 1.03 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.99 0.98 0.97 0.96 0.96 0.95 0.94 0.93 0.92 0.91 0.91

-2.00 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.98 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.92 0.91 0.90

p
!

AREFFL (p) > 1.025

AREFFL (p) = 1 1 < AREFFL (p) ! 1.025AREFFL (p) < 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.49

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

-0.10 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.00 0.99 0.98 0.96 0.91 0.87

-0.20 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.98 0.95 0.91 0.84 0.77

-0.30 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 0.99 0.98 0.96 0.93 0.88 0.79 0.70

-0.40 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.97 0.94 0.90 0.85 0.74 0.65

-0.50 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 0.99 0.98 0.95 0.93 0.88 0.82 0.71 0.61

-0.60 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.98 0.97 0.94 0.91 0.87 0.80 0.68 0.57

-0.70 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.98 0.96 0.93 0.90 0.85 0.78 0.65 0.54

-0.80 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 1.00 0.98 0.97 0.95 0.92 0.89 0.83 0.76 0.63 0.52

-0.90 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 0.99 0.98 0.96 0.94 0.91 0.87 0.82 0.74 0.62 0.50

-1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.00 1.00 0.99 0.97 0.96 0.93 0.90 0.87 0.81 0.73 0.60 0.48

-1.10 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.01 1.00 0.99 0.98 0.97 0.95 0.93 0.90 0.86 0.80 0.72 0.59 0.47

-1.20 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.01 1.01 1.01 1.01 1.00 0.99 0.98 0.96 0.95 0.92 0.89 0.85 0.79 0.71 0.57 0.46

-1.30 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.88 0.84 0.78 0.70 0.56 0.45

-1.40 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 0.99 0.98 0.97 0.96 0.94 0.91 0.88 0.83 0.78 0.69 0.55 0.44

-1.50 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.87 0.83 0.77 0.68 0.55 0.43

-1.60 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.90 0.87 0.82 0.76 0.68 0.54 0.42

-1.70 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 0.99 0.99 0.98 0.96 0.95 0.92 0.90 0.86 0.82 0.76 0.67 0.53 0.41

-1.80 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.89 0.86 0.81 0.75 0.66 0.52 0.41

-1.90 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.89 0.85 0.81 0.75 0.66 0.52 0.40

-2.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.89 0.85 0.80 0.74 0.65 0.51 0.40

a
!

AREFFa|0
*

= 1 1 < AREFFa|0
*

! 1.025AREFFa|0
*

< 1

Figure 2: AREFFL(p), in (3.3) (top) and AREFF∗a|0 (bottom)
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In Figure 3, we picture the indicator AREFFL(p), as a function of p for a
few values of ρ.
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! = "2

! = "0.1

! = "0.2

! = 0

AREFFL (p)

! = "0.5

! = "1.5

! = "1

Figure 3: AREFFL(p), as a function of p, for |ρ| = 0, 0.1, 0.2, 0.5(0.5)2

Indeed, just as AREFFH(p
M|H) > 1, for any ρ < 0 and ξ > 0, also

AREFFL(p
M|L) > 1, for any ρ < 0 and ξ > 0. Moreover,

AREFFL(p
M|L) > AREFFH(p

M|H),

as illustrated in Figure 4.

2.15
2.16
2.17

1.00

1.01

1.02

1.03

1.04

1.05

0 0.5 1 1.5 2

AREFFL (pM|L )

AREFFH(pM|H )

| ! |

Figure 4: AREFFL(p
M|L) and AREFFH(p

M|H) as a function of |ρ| =
0(0.1)2

Just as done in Gomes and Henriques-Rodrigues (2016), and due to the
competitive behaviour of the PPWM EVI-estimators, we still compare the Lp
with the PPWM EVI-estimators, in (1.10), again at optimal levels. Whereas the
gain in efficiency of the PPWM comparatively to the optimal Hp EVI-estimator
happens in a wide region of the (ξ, ρ)-plane, L∗ := Lp

M|L
beats the optimal PPWM
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EVI-estimator (now denoted P, for sake of simplicity) in a wider region of the
(ξ, ρ)-plane, as can be seen in Figure 5 (bottom). Indeed, in Figure 5 (top),
we reproduce the Figure in Gomes and Henriques-Rodrigues (2017), related to
the comparative behaviour between H∗ := Hp

M|H
and the optimal PPWM EVI-

estimator.
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0.00 H H H H H H H H H H H H H H H H H H H H H
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-0.07 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.09 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.11 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.13 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.15 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.17 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.19 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.21 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.23 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.25 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.27 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.29 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.31 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.33 L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*
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-0.39 L* L* P P P L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.41 L* L* P P P L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.43 L* P P P P L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

-0.45 L* P P P P L* L* L* L* L* L* L* L* L* L* L* L* L* L* L* L*

Figure 5: Best EVI-estimator asymptotically and at optimal levels for
a choice between H∗ and PPWM (top) and between L∗ and
PPWM (bottom)
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So far, asymptotically and for a heavy right-tail, the class of Lehmer’s EVI-
estimators, in (1.7), seems indeed to be the most competitive class of non-RB
EVI-estimators in the literature. Note however that further classes of generalized
means, among which we mention the ones studied in Paulauskas and Vaičiulis
(2017), may possibly provide even more astonishing results.

4. An asymptotic comparison with other EVI-estimators at optimal
levels

As mentioned above, the optimal MOp EVI-estimator (H∗), associated with
a value p

M|H 6= 0, can beat the optimal Hill EVI-estimator in the whole (ξ, ρ)-
plane. But it is now beaten by the optimal Lehmer EVI-estimator (L∗), also in
the whole (ξ, ρ), an atypical behaviour among other classical EVI-estimators. We
thus consider now sensible to compare H∗ and L∗ with the most common EVI-
estimators in the literature, non generally RB, but possibly RB in some regions
of the (ξ, ρ)-plane.

We shall take into account the moment (M) EVI-estimators, studied in

Dekkers et al. (1989), based on
(
M

(1)
k,n,M

(2)
k,n

)
, with M

(p)
k,n defined in (1.6). They

are consistent for all ξ ∈ R, being given by

(4.1) ξ̂M(k) ≡ M(k) := M
(1)
k,n + 1

2

{
1−

(
M

(2)
k,n/

(
M

(1)
k,n

)2 − 1
)−1}

.

We additionally consider the generalized Hill (GH) EVI-estimators (Beirlant et
al., 1996), based on the Hill estimators in (1.3) and with the functional form

(4.2) ξ̂GH(k) ≡ GH(k) := ξ̂H(k) +
1

k

k∑
i=1

{
ln ξ̂H(i)− ln ξ̂H(k)

}
,

further studied in Beirlant et al. (2005). Just as in de Haan and Ferreira (2006),
we also consider, for ξ < 1, the generalized Pareto (GP) PWM (GPPWM) EVI-
estimators, based on the sample of exceedances over the high random level Xn−k:n
and defined by

(4.3) ξ̂GPPWM(k) ≡ GPPWM(k) := 1− 2â?1(k)

â?0(k)− 2â?1(k)
,

with k = 1, . . . , n− 1, and

â?s(k) :=
1

k

k∑
i=1

(
i− 1

k − 1

)s
(Xn−i+1:n −Xn−k:n), s = 0, 1.

Finally, with Uik, 1 ≤ i ≤ k, given in (1.8), and the notation

L
(j)
k,n :=

1

k

k∑
i=1

(
1− U−1ik

)j
, j ≥ 1,
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we further consider the mixed moment (MM) EVI-estimators (Fraga Alves et al.,
2009), defined by

(4.4) ξ̂MM(k) ≡ MM(k) :=
ϕ̂k,n − 1

1 + 2 min (ϕ̂k,n − 1, 0)
,

with ϕ̂k,n :=
M

(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 .

The estimators in (4.3) are consistent only for 0 < ξ < 1. The estimators in (4.1),
(4.2) and (4.4) are consistent for any ξ ∈ R, but will be here considered only for
ξ > 0.

Remark 4.1. Note that the MM EVI-estimators, in (4.4), are, for a
wide class of models with ξ > 0, very close to the implicit ML EVI-estimators,
based on the excesses Wik := Xn−i+1:n−Xn−k:n, 1 ≤ i ≤ k < n (see Fraga Alves
et al., 2009, for details on the topic). A comprehensive study of the asymptotic
properties of the aforementioned ML EVI-estimators has been undertaken in
Drees et al. (2004).

Remark 4.2. Further note that all the aforementioned EVI-estimators
in this section are scale invariant. The GPPWM and the ML EVI-estimators are
also location invariant, and can be regarded as classes of PORT EVI-estimators.
We can further consider PORT-M, GH and MM EVI-estimators.

Under the validity of the second-order condition in (2.1), and for interme-
diate k = kn, (2.3) holds, with

bM = bGH =
ξ − ξρ+ ρ

ξ(1− ρ)2
, σ2

M
= σ2

GH
= 1 + ξ2,

bMM = bML =
(1 + ξ)(ξ + ρ)

ξ(1− ρ)(1 + ξ − ρ)
, σ2

MM
= σ2

ML
= (1 + ξ)2,

and for ξ < 1/2,

bGPPWM =
(ξ + ρ) bPPWM

ξ
and σ2

GPPWM
=

(1− ξ + 2ξ2)(1− ξ)(2− ξ)2

(1− 2ξ)(3− 2ξ)
.

As happened before with the optimal MOp EVI-estimator, the optimal
Lehmer EVI-estimator can be beaten by the optimal M (and GH) EVI-estimator
in a region close to ξ = −ρ/(1− ρ), where bM = bGH = 0. The optimal MM EVI-
estimator in (4.4), asymptotically equivalent to the optimal ML-estimator, unless
ξ+ ρ = 0 and (ξ, ρ) 6= (0, 0), outperforms the M EVI-estimator at optimal levels,
in a region around ξ+ ρ = 0, and can even outperform the optimal Lehmer EVI-
estimator. The GPPWM EVI-estimator, in (4.3), is RB for ξ + ρ = 0, and can
beat the MM EVI-estimator in a short region of the (ξ, ρ)-plane, as can be seen
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in Figure 6, where we exhibit the comparative behaviour of all ‘classical’ EVI-
estimators under consideration, including both the L∗ and the H∗ classes (Figure
6, bottom), after including only the H∗ class (Figure 6, top), as done in Brilhante
et al. (2013). The GPPWM and PPWM EVI-estimators are respectively denoted
by GP and P. The PPWM, despite of non-RB, can beat even the optimal Lehmer
for a few values of ξ around 0.1, as detected before (see also Figure 5, bottom).
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Figure 6: Comparative overall behaviour of the EVI-estimators under
study, considering only the optimal Hp, denoted H∗ (top) and
including both H∗ and the optimal Lp, denoted L∗ (bottom)
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Remark 4.3. As already mentioned in Brilhante et al. (2013), note that
in the region ξ + ρ 6= 0 and ξ 6= −ρ/(1 − ρ), where a further study under the
third-order framework is needed, all RB EVI-estimators, like the corrected-Hill
EVI-estimators in Caeiro et al. (2005), overpass at optimal levels all classical and
non-RB EVI-estimators available in the literature. They were thus not included
in Figure 6, so that we can see the comparative behaviour of the non-RB EVI-
estimators. A similar comment applies to the optimal CGp,δ EVI-estimators, in
(1.11).

Remark 4.4. As expected, none of the estimators can always dominate
the alternatives, but the Lp EVI-estimators have a quite interesting performance,
being unexpectedly able to beat the MOp ≡ Hp EVI-estimators at optimal levels
in the whole (ξ, ρ)-plane.

Remark 4.5. For a final adaptive EVI-estimation, i.e. for the choice of
(k, p) in (1.7), a double-bootstrap algorithm, of the type of Algorithm 4.1 in
Brilhante et al. (2013), now based on the asymptotic behaviour in (2.7), can be
used. Such an algorithm relies on the minimization of a bootstrap estimate of the
AMSE. Also, the slight modification of the semi-parametric bootstrap method in
Caers et al. (1999), provided in the Algorithm 4.3 of Caeiro and Gomes (2015) is
expected to provide an adequate estimation of the bootstrap MSE. Alternatively,
one can use any of the available methods based on sample-path stability (see also
Caeiro and Gomes, 2015, among others).
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