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X1, . . . ,Xn, where random weights are cuts of [0, 1] by an increasing sequence of the
order statistics of a random sample from a uniform [0, 1]. We employ the multivariate
Stieltjes transform and Watson (1956) celebrated formula involving the multivariate
B-spline functions for distributional identification of multivariate random weights av-
erages. We show that certain classes of Dirichlet and random scale stable random
vectors are random weightes averages.
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1. INTRODUCTION

An average UX1 + (1−U)X2 of two independent continuous random vari-
ables X1 and X2, U ∼ uniform(0, 1), is the subject of Johnson and Kotz (1990)
expository article on the work of Van Assche (1987). Indeed, Johnson and Kotz
noticed that the random variable uniformly distributed between two random vari-
ables, named by Van Assche, is a random weightes average, RWA in short. Soltani
and Roozegar (2012) consider RWA of a finite number of independent continuous
random variables, where the weights are cuts of (0, 1) by an increasing selection
of the order statistics of a uniform (0,1) random sample. In his work, Van Assche
(1987) noticed that the Stieltjes transform is an appropriate tool for the distri-
butional identification of random weightes averages, as the Fourier transform is
for averages with non-random weights.

In this paper, we consider RWA of a number of independent continuous ran-
dom vectors with values in Rd, the d dimensional Euclidian space. The random
weights are as in Soltani and Roozegar (2012): the cuts of (0, 1) by an increasing
sequence U(k1), U(k2), ..., U(km−1) of the order statistics U(1), ..., U(n−1) from a uni-
form (0, 1) sample U1, ..., Un−1; 1 ≤ k1 < k2 < ... < km−1 < km = n, U(n) = 1.
We employ the multivariate Stieltjes, also called Cauchy-Stieltjes, transform
(MCST in short) for the distributional identification of multivariate randomly
weighted averages, MRWA. In this article, we prove that the MCST of order n,
S[F;n](z), of the distribution F, the distribution of random weights averages of
independent d-dimensional continuous random vectors X1 ∼ F1, ...,Xm ∼ Fm, is
equal to the product of the corresponding MCST of F1, ...,Fm, namely,

(1.1) S[F;n](z) = S[F1; k1](z)S[F2; k2 − k1](z)...S[Fm;n− km−1](z), z ∈ Cd.

Our approach is somewhat new and different from those applied in the references
cited above. Van Assche (1987) applies certain techniques from the differentiation
of Schwartz distributions. Soltani and Roozegar (2012) apply the divided differ-
ences and the theory of knots. In this article, we apply the pioneering formula
of Watson (1956) involving B-splines, discussed in Karlin, Micchelli and Rinott
(1986). This approach is more direct and easily applied. It can be applied to the
univariate RWA as well.

The notion of random weights averages in the literature may be attributed
to the interesting observation of Galton, the founder of regression. He observed
that, on average, a child’s height is more mediocre (average) than his or her
parent’s height. Plausibly, the child’s height is a RWA of his or her parents’
heights. In contrast to the univariate RWA, multivariate RWA can be used for
modeling when a finite number of characteristics are considered simultaneously.

Univariate and multivariate RWA have appeared in certain areas, such
as sampling, density estimation, Bayesian and distributional characterizations,
among others. In theory, general regression and neural networks, multivariate
kernel density estimations and multivariate kernel regressions are all randomly
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weighted averages, see Nadaraya (1964) and Watson (1964). An interesting ex-
ample of averages of multivariate quantities with random weights is the ran-
dom vector of the serial correlation coefficients, introduced by Watson (1956),
r = (r1, r2, . . . , rk), where

(1.2) rj =
λ
(j)
0 W0 + λ

(j)
1 W1 + · · ·+ λ

(j)
m Wm

W0 + · · ·+Wm
, j = 1, 2, . . . , k,

andW0,W1, . . . ,Wm are independent gamma variables of integer order α0, α1, . . . , αm,

and λℓ = (λ
(1)
ℓ , ..., λ

(k)
ℓ ), ℓ = 0, ...,m are k-dimensional knots. In addition, Zeng

(1995) characterizes the multivariate stable distributions through the indepen-
dence of the linear statistic U =

∑n
i=1 YiXi and the vector of random coefficients

Y = (Y1, . . . , Yn)
T ∈ Rn, where X1, . . . ,Xn are independent and identically dis-

tributed random vectors in Rk, and are independent of Y. A special form of U
is a RWA of random vectors.

This article is organized as follow. We give preliminaries and the proof
of (1.1) in Section 2. We proceed on to introduce and study interesting classes
of distributions that are RWA of continuous random vectors. In particular, we
prove that the RWA of independent Dirichlet random vectors is Dirichlet, and
that the RWA of independent and identically symmetric stable random vectors
is randomly scaled stable. We devote Section 3 to this issue.

2. PRELIMINARIES AND MAIN RESULT

Let us denote the RWA of m independent and continuous random vectors
X1, . . . ,Xm in Rd by

(2.1) Sm:n = R1:nX1 +R2:nX2 + · · ·+Rm:nXm, m ≥ 2,

where the random weights Rj:n are assumed to be the m cuts of [0, 1] by an
increasing ordered array U(k1), ...U(km−1) of U(1), ..., U(n−1), the ordered statis-
tics of n− 1 independent and identically uniformly distributed random variables
U1, ..., Un−1 on [0, 1];

Rj:n = U(kj) − U(kj−1), j = 1, 2, · · · ,m, m ≤ n,

where k0 = 0 < k1 < ... < km−1 < km = n are in {1, ..., n} and U(n) = 1.

The conditional density of Sm:n given X1 = x1, . . . ,Xm = xm is denoted by
M(t|x1, . . . ,xm), t ∈ Rd. In the numerical analysis context, this density function
is called “the Multivariate B-spline with knots {x1, . . . ,xm}”, Karlin, Micchelli
and Rinott (1986). The random vectors X1, . . . ,Xm ∈ Rd have a convex hull
with positive volume in Rd. Our derivations very much rely on the fundamental
result by Watson (1956):

(2.2)

∫
Rd

M(t|x1, ...,xm)
dt

(1− < t,x >)
∑m

i=1 ri
=

m∏
i=1

(1− < x,xi > )−ri ,
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for maxi | < x,xi > | < 1, Karlin, Micchelli and Rinott (1986).

The multivariate Cauchy-Stieltjes (or Stieltjes) transform (MCST) of a dis-
tribution H is defined by

(2.3) S[H](z) =

∫
Rd

1

1− < z,x >
H(dx), z ∈ Cd ∩ (suppH)c,

for | < z,x > | < 1, < a,b >=
∑k

i=1 aibi, C is the set of complex numbers and
suppH stands for the support of H, Kerov and Tsilevich (2004) and Cuyt, Golub,
Milanfar and Verdonk (2005). Similarly the MCST of order n of a distribution
H is defined by

(2.4) S[H;n](z) =

∫
Rd

1

[1− < z, t >]n
H(dt), z ∈ Cd ∩ (suppH)c,

for | < z, t > | < 1.

For d = 1, the MST is also called Markov transform, denoted by M1[H](z).
There is a relation between Markov transform and Stieltjes transform of a distri-
bution H:

M1[H](z) =
1

z
S[H](

1

z
),

where

S[H](z) =

∫
R

1

z − x
H(dx),

for z in the set of complex numbers C which does not belong to the support of H,
z ∈ C ∩ (suppH )c. For more on the Stieltjes transform see Debnath and Bhatta
(2007).

The following theorem is our main result in this section.

Theorem 2.1. Let X1, . . . ,Xm be m > 1 independent and continuous
random vectors in Rd. Let Sm:n be the corresponding MRWA given by (2.1).
Then

(2.5) S[FSm:n ;n](z) =
m∏
i=1

S[Fi; ri](z), z ∈ Cd
m∩
i=1

(suppFi)
c,

where ri = ki − ki−1;
∑m

i=1 ri = n.
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Proof: We note that

FSm:n(t) = E (I[Sm:n ≤ t])

= E (E (I[Sm:n ≤ t]|X1, . . . ,Xm))

=

∫
Rmd

E (I[Sm:n ≤ t]|x1, . . . ,xm)

m∏
i=1

Fi(dxi)

=

∫
Rmd

∫
[s<t]

M(s|x1, · · · ,xm)ds
m∏
i=1

Fi(dxi)

=

∫
[s<t]

{∫
Rmd

M(s|x1, · · · ,xm)

m∏
i=1

Fi(dxi)

}
ds,

giving that

dFSm:n(t) =

∫
Rmd

M(t|x1, · · · ,xm)

m∏
i=1

Fi(dxi).

Therefore,

S[FSm:n ;n](z) =

∫
Rd

1

[1− < z, t >]n
dFSm:n(t)(2.6)

=

∫
Rmd

{∫
Rd

1

[1− < z, t >]n
M(t|x1, · · · ,xm)dt

} m∏
i=1

Fi(dxi)

=

∫
Rmd

m∏
i=1

[1− < z,xi >]−ri
m∏
i=1

Fi(dxi)

=
m∏
i=1

∫
Rd

1

[1− < z,xi >]ri
Fi(dxi)

=

m∏
i=1

S[Fi; ri](z),

the third equality in (2.6) follows from (2.2).

3. Some Classes of RWA of Random Vectors

In this section we introduce two important classes of RWA of random vec-
tors, Theorems 3.1 and 3.2.

In Theorem 3.1 below we assume m = n, rj = 1 for j = 1, 2, ...,m.

Theorem 3.1. LetX1,X2, . . . ,Xn be independent random vectors such
that Xi has a Dirichlet distribution with parameters αi = (α1i, α2i, . . . , αdi)

′,
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∑d
j=1 αji = 1, i = 1, 2, . . . , n. Then the MRWA Sn:n given by (2.1) has a Dirichlet

distribution with parameters

n∑
i=1

αi = (

n∑
i=1

α1i,

n∑
i=1

α2i, . . . ,

n∑
i=1

αdi).

Proof: The density and the Stieltjes transform of a Dirichlet distribution
with parameters α = (α1, α2, . . . , αd)

′ are given by
(3.1)

dF (x) = f(x1, x2, . . . , xd) =
Γ(α1 + α2 + · · ·+ αd)

Γ(α1)Γ(α2) · · ·Γ(αd)
xα1
1 xα2

2 · · ·xαd
d , x ∈∆d,

and

S[F ](z) =

∫
∆d

F (dx)

[1− < z,x >]
∑d

i=1 αi

=

d∏
j=1

1

(1− zj)αj
, z = (z1, ..., zd)

respectively, ∆d = {(x1, ..., xd) ∈ Rd, xi > 0, ∀i,
∑d

i=1 xi = 1}, Kerov and Tsile-
vich (2004). Let Xi ∼ Fi, i = 1, 2, . . . , n. Then it follows from Theorem 2.1
that

S[FSn:n ;n](z) =

n∏
i=1

d∏
j=1

1

(1− zj)αji
=

d∏
j=1

1

(1− zj)
∑n

i=1 αji
.

It is plain to show this function is the MCST, of order n, of a Dirichlet distribution
with parameters

∑n
i=1 αi = (

∑n
i=1 α1i,

∑n
i=1 α2i, . . . ,

∑n
i=1 αdi). Indeed for F ′, a

Dirichlet distribution with parameters (b1, b2, . . . , bd), with
∑d

j=1 bj = n, we have

S[F ′;n](z) = C(n; b1, ..., bd)

∫
∆d

xb1−1
1 xb2−1

2 . . . x
bd−1−1
d−1 (1− x1 − . . .− xd−1)

bd−1

[1− < z,x >]n
dx1 . . . dxd−1,

where C(n; b1, ..., bd) =
Γ(n)

Γ(b1)Γ(b2)...Γ(bd)
. Let bj =

∑n
i=1 αji, j = 1, 2, . . . , d. Then

the Euler type integral representation for the Lauricella function gives that

(3.2)
Γ(b1)Γ(b2) · · ·Γ(bk)
Γ(b1 + b2 + · · ·+ bk)

F
(k)
D (a, b1, . . . , bk; b1 + · · ·+ bk; z1, . . . , zk)

=

∫
. . .

∫
∆k

xb1−1
1 xb2−1

2 · · ·xbk−1−1
k−1 (1− x1 − · · · − xk−1)

bk−1

[1− < z,x >]a
dx1 · · · dxk−1,

where
(3.3)

F
(k)
D (a, b1, . . . , bk; c; z1, . . . , zk) =

∑
m1,...,mk≥0

(a)m1+···+mk
(b1)m1 · · · (bk)mk

(c)m1+···+mk

zm1
1

m1!
· · ·

zmk
k

mk!
,
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is the Lauricella function, (a)m = a(a+1) . . . (a+m−1) the Pochhammer symbol
and c =

∑k
j=1 bj ; Exton [1976, 2.1.4, 2.3.5]. Therefore,

S[F ′;n](z) = F
(d)
D (n, b1, . . . , bk;n; z1, . . . , zd),

and

S[F ′;n](z) =
∑

m1,...,md≥0

(b1)m1 · · · (bd)md

zm1
1

m1!
· · ·

zmd
d

md!

=

d∏
j=1

1

(1− zj)bj

=
d∏

j=1

1

(1− zj)
∑n

i=1 αji

=

n∏
i=1

d∏
j=1

1

(1− zj)αji
.

The proof of the theorem is complete.

Theorem 3.2. LetX1, . . . ,Xm be independent and identically distributed
random vectors in Rd having a symmetric multivariate stable distribution of ex-
ponent 0 < α ≤ 2. Let Sm:n be the corresponding MRWA given in (2.1). Then

Sm:n
d
= VαX1, where Vα = (

∑m
j=1R

α
j:n)

1/α.

Proof: It is well known that if X1, ...,Xm are independent, identical and

symmetrically distributed stable random vectors of exponent α, then
∑m

j=1 ajXj
d
=

(
∑m

j=1 a
α
j )

1/αX1 , for any set of univariate positive constants a1, ..., am, see Samorod-
nitsky and Taqqu (1994). Let Sm:n(z) stand for the Stieltjes transform of Sm:n,
then

Sm:n(z) = E

(
1

1− < Sm:n, z >

)
= E

(
E

(
1

1− <
∑m

j=1Rj:nXj , z >
|Rm:1, ..., Rm:n)

)

= E

(
E

(
1

1− < (
∑m

j=1R
α
j:n)

1/αX1, z >
|Rm:1, ..., Rm:n)

)

= E

(
1

1− < (
∑m

j=1R
α
j:n)

1/αX1, z >

)
= S{VαX1}(z),

giving the result, where S{VαX1}(z) stands for the Stieltjes transform of VαX1.
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Remark 3.1. Interestingly, it follows from Theorem 3.2 that the RWA
of independently and identically distributed stable random vectors is not stable
(unless α = 1), but it is a certain randomly scaled stable random vector. Moreover
it follows from the inequality (a + b)p < ap + bp, 0 < p < 1, that for 1 < α ≤
2, Vα < 1. Consequently, the RWA Sn:n exhibits smaller variation than Xs.

Remark 3.2. We note that for α = 1, V1 = 1, and consequently Sn:n
d
=

X1. If h(x) is the density function of a multivariate stable distribution of expo-
nent 1, call it multivariate Cauchy distribution, then it follows from Theorems
2.1, and 3.2 that∫

Rd

1

[1− < z,x >]n
h(x)dx =

[∫
Rd

1

1− < z,x >
h(x)dx

]n
, for every n ≥ 1.

The density function h(x), in the context of stable random vectors with exponent
α = 1, in general does not assume a close formulation. The density function of a
special class of multivariate Cauchy random vectors, called “multivariate Cauchy
of order one” assumes the following formulation, given in Press (1972), namely,

h(x) = K|Σ|−
1
2 [1 + (x− a)TΣ−1(x− a)]−

1+d
2 ,

where K = Γ(1+d
2 )π− 1+d

2 , a ∈ Rd and the d× d matrix Σ is positive definite.

Let us also record the following interesting symmetrical property of MRWA.

Theorem 3.3. Let every Xi be symmetric about ai, for i = 1, ...,m.
Then the MRWAs Dm:n − Sm:n and Sm:n − Dm:n have the same distribution,
where Dm:n =

∑m
j=1Rj:naj . In particular, if every Xi is symmetric about a,

then Sm:n will be symmetric about a.

The proof is straightforward, so it is omitted.

Let us call Dm:n =
∑m

j=1Rj:naj the centroid for MRWA Sm. This is inter-
esting; indeed it follows from this theorem that the centroid is random regresses
of a1, ...,am. According to Galton, see [Hansen (2015), page 40], the projected
height of child on parent is a weighted average of the population mean height
and the parents height with weights (1/3, 2/3). Indeed if we let ER1 = 1/3, then
E[S2|X2] = ER1EX1+ER2X2 = (1/3)µ+(2/3)X2; the right side is the equation
reported in Hansen (2015).

Conclusion. Averages for multivariate random vectors with random weights
where the weights are spacings corresponding to a uniform (0, 1) sample are intro-
duced and studied in this article. Certain techniques for the their distributional
studies are introduced. This study gives rise to new families of multivariate dis-
tributions. The statistics literature is quite rich about the sample mean and its
applications. The topics that are studied for the sample mean, such as strong
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law of large numbers, asymptotic theory and its applications in inference, would
be interesting subjects for further research work on randomly weighted average
of random vectors. For further references, see also Roozegar and Soltani (2014,
2015).
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