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Abstract:

• In this paper, we introduce a truncated general-G class of distributions. This class
can be viewed as a weighted family of distributions with a general weight function,
and also it generalizes the beta generator family proposed by Eugene et al. (2002).
Some features of the class are stated with a comprehensive study to the truncated
Burr-G (TB-G) family as one of the important sub-class of the introduced class. The
study includes the mixture representation in terms of baseline distribution, moments,
moment generating function, stochastic ordering, stress-strength parameter, entropies,
estimation by the maximum likelihood. The applicability of some new sub-models of
the TB-G family is shown using two practical data sets.

Key-Words:

• Family of distributions; Burr distribution; Quantile function; Simulation; Estimation;
Goodness-of-fit statistics.

AMS Subject Classification:

• 60E05, 62E15

1. INTRODUCTION

Over the last two decades, several extensions of the well-known lifetime dis-
tributions have been developed for modeling many types of practical data sets.
This development is followed by many approaches for generating new families
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of (probability) distributions which increase chances of modeling data of vari-
ous random nature. Among those families, we can mention: The beta generator
(beta-G) by Eugene et al. (2002), the gamma-G (type 1) by Zografos and Balakr-
ishnan (2009), the Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011),
the gamma-G (type 2) by Ristic and Balakrishnan (2012), the log-gamma-G by
Amini et al. (2014), beta weighted modified Weibull distribution using the beta
generator by Saboor et al. (2016), the generalized transmuted family of distribu-
tions by Alizadeh et al. (2017), the odd-Burr generalized family of distributions
by Alizadeh et al. (2017), the odd Burr-III family of distributions by Jamal et
al. (2017), the extended odd family of probability distributions by Bakouch et
al. (2018) and mid-truncated Burr XII distribution and its applications in order
statistics by Saran et al. (2019).
In practical life problems, truncation arises in many fields, such as industry, bi-
ology, hydrology, reliability theory and medicine. An example of truncation is
the progression of a disease which is not an increasing function, but will sta-
bilize after time point. This point is called the truncation for the support of
the variable of the interest which may be time, length, height etc. Therefore,
many researchers are attracted to analyze such truncated data using truncated
versions of the standard statistical distributions. For instance, the truncated
Weibull distribution has been applied to analyze the tree diameter and height
distributions in forestry, fire size and high-cycle fatigue strength prediction (see
Zhang and Xie, 2011). In Zaninetti and Ferraro (2008), the truncated Pareto
distribution is compared to the Pareto distribution using astrophysics data and
they concluded, generally, that the truncated Pareto distribution performs better
than the Pareto. Burroughs and Tebbens (2002) showed the suitability of trun-
cated power law distributions for data sets of earthquake magnitudes and forest
fire areas. Additional applications of the former distributions in hydrology and
atmospheric science are given by Aban et al. (2006).

Motivated by the importance of general families of distributions and trun-
cation, we introduce a more flexible class of distributions with the cumulative
distribution function (cdf)

(1.1) F (x) =

G(x,ξ)∫

0

rT (t) dt =

G(x,ξ)∫

0

r (t)
R(1)

dt =
R [G(x, ξ)]

R(1)
,

where rT (t) is the probability density function (pdf) of a random variable (rv)
with support [0, 1], hence it can be any truncated rv T on this support with a
cdf, R(.) and G(x, ξ) is the cdf of a real-valued rv X with pdf g(x, ξ), ξ denoting
the related parameter vector. Table 1 gives a list of some truncated distribution
in the interval [0,1]. The associated pdf of (1) is

(1.2) f(x) =
r [G(x, ξ)] g(x, ξ)

R(1)
, x ∈ R,
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Table 1: List of some truncated distribution in the interval [0,1].
S.r Distribution r(t) rT (t)
1. Uniform F (x) = x

θ F (x) = x

2. Exponential F (x) = 1− e−θ x F (x) = 1−e−θ x

1−e−θ

3. Weibull F (x) = 1− e−a xb
F (x) = 1−e−a xb

1−e−a

4. Gamma F (x) =
γ(a, x

b )
Γ(a) F (x) =

γ(a, x
b )

γ(a, 1
b )

5. Lomax F (x) = 1− (
1 + x

a

)−b
F (x) =

1−(1+x
a)−b

1−(1+ 1
a)−b

6. log-logistic F (x) = 1− (
1 + xc

a

)−1
F (x) =

1−
�
1+xc

a

�−1

1−(1+ 1
a)−1

7. Burr XII F (x) = 1− (1 + xc)−k F (x) = 1−(1+xc)−k

1−2−k

8. Burr III F (x) = (1 + x−c)−k
F (x) = (1+x−c)−k

2−k

9. Frechet F (x) = exp
[
− (

a
x

)b
]

F (x) =
exp
h
−( a

x)b
i

exp[−ab]
10. Power function F (x) =

(
x
θ

)k
F (x) = xk

11. Log normal F (x) = Φ
(

ln x−µ
σ

)
F (x) =

Φ( ln x−µ
σ )

Φ(−µ
σ )

and the survival function based on (1) is given as

(1.3) h(x) =
r [G(x, ξ)] g(x, ξ)
R(1)−R [G(x, ξ)]

.

Further, the associated quantile function based on (1) having the form

(1.4) Qx(u) = G−1
{
R−1 [R(1)× u]

}
,

where u ∼uniform [0, 1].

Some additional motivations of the class defined by (2) are as follows.
The class (2) can be interpreted as weighted family of distributions, for g(x, ξ),
with the general weight function w(X) = r(G(x, ξ)) and normalizing constant
R(1) = E{w(X)}. Also, the introduced class generalizes the beta generator fam-
ily (Eugene et al., 2002) as beta distribution is a sub-model of rT (t) .

As it can be seen from (2), we have a truncated general-G class of distri-
butions and the only sub-model we aware of is the truncated Weibull G family
proposed by Najarzadegan et al. (2017) as a powerful alternative to beta-G fam-
ily of distributions. Because of having two composite general functions R(.) and
G(.), we can not investigate more analytic properties and therefore we aim to
study extensively the truncated Burr-G (TB-G) family of distributions by con-
sidering R(.) as the cdf of Burr distribution and G(.) is a general cdf. The reason
of using Burr is due to its ability of analyzing hydrologic, environmental, survival
and reliability data. Another aim is to provide an empirical evidence on the great
flexibility of sub-models of the TB-G family to fit practical data from different
domains and this is investigated in the application section.
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Rest of the paper is outlined as follows. Section 2 concerns with some
general mathematical properties of the TB-G family, including mixture represen-
tation in terms of baseline distribution, moments, incomplete moments, moment
generating function, stochastic ordering of the random variables following such
family, stress-strength parameter and entropies (Shannon and Rényi). Also, some
new special models of the generated family are considered. In Section 3, estima-
tion of the parameters of the family is implemented through maximum likelihood
method with application to two practical data sets. Section 4 gives a simulation
study for a sub-model of the family.

2. The truncated Burr-G family: Some properties and sub-models

This section gives some general mathematical properties of the TB-G fam-
ily, including moments, incomplete moments, moment generating function, stochas-
tic ordering, stress-strength parameter and entropies. Further, some new sub-
models of the family are obtained.

2.1. The truncated Burr-G family

In this section, we introduce the TB-G family of distributions and give its
mixture representation in terms of baseline distribution.

Recall that the Burr distribution has the cdf

(2.1) R(x) = 1− (1 + xc)−k, x > 0,

using (1.1), the cdf of the TB-G family is expressed as

(2.2) F (x) =
1− [1 + Gc(x, ξ)]−k

1− 2−k
,

where c, k are the shape parameters of the family and G(x, ξ) is a baseline cdf,
which depends on a parameter vector ξ. Hereafter, for simplicity, we ignore
mention of ξ in the functions of interest, e.g., we set G(x) = G(x, ξ), g(x) =
g(x, ξ).
The pdf corresponding to (2.2) is given by

(2.3) f(x) =
c k g(x) Gc−1(x) [1 + Gc(x)]−k−1

1− 2−k
, x ∈ R.

The survival function and hazard rate are, respectively, given by

(2.4) F̄ (x) =
[1 + Gc(x)]−k − 2−k

1− 2−k
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and

(2.5) τ(x) =
c k g(x) Gc−1(x) [1 + Gc(x)]−k−1

[1 + Gc(x)]−k − 2−k
.

Also, the quantile function of the TB-G family has the form

(2.6) Qx(u) = G−1

[{[
1− (1− 2−k)u

]− 1
k − 1

} 1
c

]
.

Further, the shapes of the density and hazard rate functions of the TB-G family
can be described analytically using their critical points as follows. The critical
points of the TB-G density are the roots of the equation:

g′(x)
g(x)

+ (c− 1)
g(x)
G(x)

− c (k + 1)
g(x) Gc−1(x)
1−Gc(x)

= 0,

while the critical points of the hazard rate are the roots of the equation:

g′(x)
g(x)

+(c−1)
g(x)
G(x)

−c (k+1)
g(x) Gc−1(x)
1−Gc(x)

+k c
g(x) Gc−1(x) [1 + Gc(x)]−k−1

[1 + Gc(x)]−k − 2−k
= 0.

Note that the equation above may have more than one root.

Now, we close this subsection by obtaining the mixture representation of
the TB-G in terms of baseline distribution as follows.
Consider the series expansion, for |z| < 1,

(2.7) (1− z)−b =
∞∑

i=0

(
b + i− 1

i

)
zi,

the cdf in equation (2.2) can be written as

(2.8) F (x) =
1

1− 2−k

[
1−

∞∑

i=0

(
k + i− 1

i

)
(−1)i Gi c(x)

]
.

Also, it can be rewritten in the form

(2.9) F (x) =
∞∑

l=0

bl Hl(x),

where bl = 1
1−2−k

∞∑
i=1

∞∑
j=l

(
k+i−1

i

) (
c i
j

) (
j
l

)
(−1)i+j+l+1 and Hl(x) = Gl(x) is the

exp-G distribution function with power parameter l.
Similarly, simple derivation of the previous equation gives the pdf

(2.10) f(x) =
∞∑

l=0

bl hl−1(x),
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where hl−1(x) = l × g(x) Gl−1(x) is the exp-G density function with power
parameter l − 1.
Thus, some mathematical properties of the proposed family can be derived from
(2.10) and those of exp-G properties. For example, the ordinary and incomplete
moments and moment generating function (mgf) of X can be obtained from those
exp-G quantities, see the next subsection.

2.2. Moments and moment generating function.

In this subsection, we will discuss the rth moments, mth incomplete mo-
ments and moment generating function of the TB-G family.
The moments of the TB-G family of distributions can be obtained by using the
infinite mixture representation

(2.11) E(Xr) =
∞∑

l=0

bl

∞∫

−∞
xr hl−1(x)dx

where bl and hq−1(x) are defined in (14).
The sth incomplete moment of the TB-G family can be obtained as

(2.12) T ′s(x) =
∞∑

l=0

bl

x∫

−∞
xs hl−1(x)dx.

The moment generating function of the TB-G family of distributions is

MX(t) =
∞∑

l=0

bl

∞∫

−∞
et x hl−1(x)dx.

Bonferroni and Lorenz curves, defined for a given probability, π by B(π) =
T ′1(q)/(πµ́1) and L(π) = T ′1(q)/µ́1, respectively, where µ́1 = E(X), T ′1(x) =
∞∑
l=0

bl

x∫
−∞

xhl−1(x)dx and q = Q(π) is the quantile function of X at π. These

curves for the Truncated Burr log logistic (TBLL) distribution, see definition
of TBLL in the next subsection, as functions of π are plotted for some param-
eter values in Figure 1. These curves are very useful in economics, reliability,
demography, insurance and medicine. The skewness and kurtosis measures can
be calculated from the ordinary moments using well-known relationships form
equation (2.11). Plots of skewness and kurtosis of the TBLL distribution for θ =
1.5 are displayed in Figure 2. Based on these plots, we conclude that, if c and k
increase, the skewness and kurtosis decrease.
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Figure 1: Plots of B(π) and L(π) versus π for the TB-LL distribution
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Figure 2: Plots for skewness and kurtosis of the TB-LL distribution.

2.3. Stochastic ordering and reliability parameter

Comparative behavior of random variables can be measured by stochastic
ordering concept (Shaked and Shanthikumar, 1994) that is summarized in the
next proposition.

Proposition 1: Let X1 ∼ TB − G(c , k1, ξ) and X2 ∼ TB − G(c , k2, ξ),
then the likelihood ratio f(x)

g(x) is.

f(x)
g(x)

=
k1

k2
[1 + Gc(x)]k2−k1

1− 2−k2

1− 2−k1
.

Taking derivative with respect to x, we have

d

d x

f(x)
g(x)

=
k1

k2

1− 2−k2

1− 2−k1
[1 + Gc(x)]k2−k1−1 (k2 − k1) c g(x) Gc−1(x),

then d
d x

f(x)
g(x) < 0 for k2 < k1. So, the likelihood ratio exists and this implies that
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the random variable X1 is a likelihood ratio order than X2, that is X1 ≤lr X2.
Other stochastic ordering behaviors follow using X1 ≤lr X2, such as hazard rate
order (X1 ≤hr X2), mean residual life order (X1 ≤mrl X2) and stochastically
greater (X1 ≤st X2).

The stress strength model is a common approach used in various applica-
tions of engineering and physics. Let X1 and X2 be two independent random
variables with TB − G(c , k1, ξ) and TB − G(c, k2, ξ) distributions. Then the
stress strength model is given by

R =

∞∫

−∞
f1(x) F2(x) dx.

Now, by using the mixture representation given in (2.10) and (2.9), we have

R =
∞∑

l=0

∞∑

m=0

bl bm

∞∫

−∞
hl−1(x) Hm(x) dx

where hl−1(x) and Hm(x) are already defined by equations (2.9) and (2.10).

2.4. Entropies

The entropy of a random variable X with density function f(x) is a measure
of variation of the uncertainty of physical systems. Two popular entropy measures
are due to Shannon entropy and Rényi entropy. A large value of the entropy may
indicate the greater uncertainty in the data; conversely, a small entropy means
less uncertainty. The Rényi entropy is defined by

(2.13) Iδ =
1

1− δ
log




∞∫

−∞
f δ(x) dx


 , δ > 0 and δ 6= 1.

Let f(x) follow the TB-G family, then we have

f δ(x) =
(c k)δ gδ(x) Gδ(c−1)(x) [1 + Gc(x, ξ)]−δ(k+1)

(1− 2−k)δ
.

After some algebra, we get

f δ(x) =
(

c k

1− 2−k

)δ ∞∑

j=0

(
δ(k + 1) + j − 1

j

)
(−1)j gδ(x) Gc(j+δ)−δ(x).

Rewriting the above expression as

f δ(x) =
∞∑

j=0

wj(δ) g(x; δ, c(j + δ)),
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where wj(δ) =
(

c k
1−2−k

)δ (
δ(k+1)+j−1

j

)
(−1)j and g(x; δ, c(j+δ)) = gδ(x)Gc(j+δ)−δ(x).

Now equation (2.13) becomes

Iδ =
1

1− δ
log



∞∑

j=0

wj(δ)

∞∫

−∞
g(x; δ, c(j + δ)) dx


 .

The above expression depends only for any choice of baseline distribution.
On the other side, the Shannon entropy of the TB-G family can be obtained using
its definition as

(2.14) η = −E [log f(X)] .

Using the pdf of the TB-G family, we have
(2.15)
−E [log f(X)] = log[1−2−k]−log(c k)−E [log g(X)]−(c−1)E [log G(X)]+(k+1)E [log{1 + Gc(X)}] .
Making use of the expansions, for |x| < 1,

log(1 + x) =
∞∑

i=1

(−1)i+1

i
xi

log x =
∞∑

i=1

(−1)i+1

i
(x− 1)i,

we obtain

E [log{1 + Gc(X)}] =
∞∑

i=1

(−1)i+1

i
E

[
Gc i(X)

]

E [log G(X)] =
∞∑

i=1

(−1)i+1

i

i∑

j=0

(
i

j

)
(−1)j E(Gi−j(X)).

Hence, equation (2.15) becomes

−E [log f(X)] = log[1− 2−k]− log(c k)−E [log g(X)]− (c− 1)
∞∑

i=1

(−1)i+1

i

i∑

j=0

(
i

j

)
(−1)j E(Gi−j(X))

+ (k + 1)
∞∑

i=1

(−1)i+1

i
E

[
Gc i(X)

]
.

The expression above depends only on an arbitrary choice of the baseline distri-
bution.

2.5. Some sub-models

In this subsection, we present four sub-models of the TB-G family by se-
lecting some baseline distributions and the plots of their density and hazard rate
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functions. The plots indicate various shapes for both functions which proves the
flexibility of the family. This flexibility is also confirmed by comparing those
sub-models with other competing distributions for some practical data in Section
3.
Truncated Burr Uniform (TBU) distribution
Consider the uniform distribution on (0, θ) as the baseline distribution with the
pdf and cdf, g(x, θ) = 1

θ and G(x, θ) = x
θ , respectively. Then the pdf and cdf of

the TBU distribution are given by

f(x; c, k, θ) =
c k

θ

(
x
θ

)c−1

1− 2−k

[
1 +

(x

θ

)c]−k−1

and

F (x; c, k, θ) =
1− [

1 +
(

x
θ

)c]−k

1− 2−k
, 0 < x < θ.
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Figure 3: Plots for density and hrf of the TBU

Figure 3 gives the plots of density and hrf of the TBU distribution.
Truncated Burr Weibull (TBW) distribution
Let the Weibull distribution be the baseline one with the associated pdf and cdf,
g(x, a, b) = a b xb−1 e−a xb

and G(x, a, b) = 1 − e−a xb
, respectively. Then the pdf

and cdf of the TBW distribution are given by

f(x; c, k, a, b) =
c, k a b xb−1 e−a xb

1− 2−k

[
1− e−a xb

]c−1

[
1 +

{
1− e−a xb

}c]k+1
,

and

F (x; c, k, a, b) =
1−

[
1 +

{
1− e−a xb

}c]−k

1− 2−k
, 0 < x < ∞.



Short version of article’s title 11

(a) (b)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

pd
f

c = 0.3  k = 0.5  a = 0.5  b = 0.5
c = 1.5  k = 3  a = 2  b = 2
c = 2  k = 1  a = 2  b = 1
c = 3.5  k = 3  a = 2  b = 2.5
c = 2.5  k = 2  a = 3  b = 4

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

hr
f

c = 0.3  k = 0.5  a = 0.5  b = 0.5
c = 0.3  k = 0.1  a = 2.5  b = 2
c = 2  k = 1  a = 2  b = 0.8
c = 5  k = 3  a = 3.5  b = 2.5
c = 1.5  k = 0.5  a = 5  b = 0.7

Figure 4: Plots for density and hrf of the TBW

Figure 4 displays the plots of density and hrf of the TBW distribution.
Truncated Burr Logistic (TBL) distribution
Consider the Logistic as the baseline distribution with associated pdf and cdf,
g(x, θ) =

{
1− e−θ x

}−1
G(x, θ) = θ e−θ x

{
1− e−θ x

}−2
, respectively. Then the

pdf and cdf of the TBL distribution are given by

f(x; c, k, θ) =
c k θ e−θ x

[1− 2−k] {1− e−θ x}2

[
1− e−θ x

]1−c
[
1 +

[
1− e−θ x

]−c
]−k−1

,

and

F (x; c, k, θ) =
1−

[
1 +

{[
1− e−θ x

]−c
}−k

]

1− 2−k
, 0 < x < ∞.

In Figure 5 we give the plots of density and hrf of the TBL distribution.
Truncated Burr log logistic (TBLL) distribution
Let log logistic be the baseline distribution with the associated pdf and cdf,
g(x, θ) = θ xθ

(1+xθ)2 and G(x, θ) = xθ

1+xθ , respectively. Then the pdf and cdf of the

TBLL distribution are given by

f(x; c, k, θ) =
c k θ xθ

[1− 2−k] (1 + xθ)2

[
xθ

1 + xθ

]c−1 [
1 +

{
xθ

1 + xθ

}c]−k−1

,

and

F (x; c, k, θ) =
1−

[
1 +

{
xθ

1+xθ

}c]−k

1− 2−k
.
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Figure 5: Plots for density and hrf of the TBL
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Figure 6: Plots for density and hrf of the TBLL

Figure 6 portrays the plots of density and hrf of the TBLL distribution.

3. Estimation of parameters with applications

In this section, we give the maximum likelihood estimators (MLEs) of the
unknown parameters of the TB-G family for complete samples. Using those esti-
mators we check the capability of some sub-models of this family for fitting some
practical data sets. Let x1, x2, ..., xn be the observed values of a random sample
of size n from the TB-G family given in equation (7). The log-likelihood function
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for the vector parameter Θ = [c, k, ξ]T can be expressed as
(3.1)

`(Θ) = −n log(1−2−k)+n log(c k)+
n∑

i=1

log g(xi)+(c−1)
n∑

i=1

log G(xi)−(k+1)
n∑

i=1

log{1+Gc(xi)}.

The components of score vector U = (Uk, Uc, Uξ)
T are given by

Uk = −n
2−k log 2
1− 2−k

+
n

k
−

n∑

i=1

log{1 + Gc(xi)}.

Uc =
n

c
+

n∑

i=1

log G(xi)− (k + 1)
n∑

i=1

[
c g(xi) Gc−1(xi)

1 + Gc(xi)

]
.

Uξ =
n∑

i=1

[
gξ(xi)
g(xi)

]
+ (c− 1)

n∑

i=1

[
Gξ(xi)
G(xi)

]
− (k + 1)

n∑

i=1

[
c Gξ(xi) Gc−1(xi)

1 + Gc(xi)

]
.

The equations above are non-linear and hence can not be solved analytically, but
can be solved numerically using software like R language. The rest of this section
provides two applications of four sub-models of the TB-G family, namely, the
TBW, TBLL, TBU and TBL distributions given in subsection 2.5. Truncated
Weibull-BXII (TW-BXII) and Truncated Weibull-Weibull (TW-W) introduced
by Najarzadegan et al. (2017) are used as competitive models for those sub-
models. For comparison purposes, we consider two practical data sets, one is
taken from El-deeb (2015) and another from Hinkley (1977). Description of both
data sets is as follows.
Data set 1 This data set is given by El-deeb (2015) and consists of failure
times of (67) truncated Aircraft windshield. The windshield on an aircraft is a
complex piece of equipment, comprised basically of several layers of material, all
laminated under high temperature and pressure. Failures of these items are not
structural failures. Instead, they typically involve damage or delimitation of the
nonstructural outer ply or failure of the heating system. These failures do not
result in damage to the aircraft, but do result in replacement of the windshield.
The values of this data set are: 1.866, 2.385, 3.443, 1.876, 2.481, 3.467, 1.899,
2.610, 3.478, 1.911, 2.625, 3.578, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699,
1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 3.000,
1.281, 2.085, 2.890, 1.303, 2.089, 2.902, 1.432, 2.097, 2.934, 1.480, 2.135, 2.962,
1.505, 2.154, 2.964, 1.506, 2.190, 3.000, 1.568, 2.194, 3.103, 1.615, 2.223, 3.114,
1.619, 2.224, 3.117, 1.652, 2.229, 3.166, 1.652, 2.300, 3.344, 1.757, 2.324, 3.376.
Data set 2 This data set is given by Hinkley (1977) and consists of thirty
successive values of March precipitation (in inches) in Minneapolis/St Paul. In
meteorology, precipitation is most commonly rainfall, but also includes hail, snow
and other forms of liquid and frozen water falling to the ground and it is measured
by inches in some time period. The data values are 0.77, 1.74, 0.81, 1.2, 1.95,
1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.

For each distribution, the MLEs are computed using Quasi-Newton code
for Bound Constrained Optimization (L-BFGS-B) and the log-likelihood func-
tion is evaluated. Consequently, the goodness-of-fit measures: Anderson-Darling
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Table 2: MLEs and their standard errors (in parentheses) for data set 1
Distribution c k θ a b

TBW 0.4564 86.9870 - 9.1067 7.9149
(1.9144) (45.4333) - (2.1784) (3.2404)

TBLL 13.6258 193.8078 0.7890 - -
(2.3252) (34.7291) (0.2350) - -

TBU 3.5954 498.2935 14.9104 - -
(0.3412) (15.2232) (12.1123) - -

TBL 23.3433 0.0024 1.6699 - -
(7.0993) (0.0018) (0.1944) - -

TW-BXII 1.2904 11.4013 32.4704 37.8343 3.4896
(0.3253) (13.4118) (35.6313) (40.8586) (2.4676)

TB-W 2.8676 0.8444 - 31.2399 6.7846
(2.7877) (0.6816) - (2.1419) (8.0910)

Table 3: The Value, AIC, BIC, A*, W*, KS, P-Value values for data set
1

Dist ` AIC BIC A* W* KS P-Value
TBW 75.1080 158.2162 167.0942 0.5552 0.0951 0.0992 0.5147
TBLL 74.8708 155.7418 162.4003 0.4637 0.0740 0.0808 0.7379
TBU 75.0909 156.1819 162.8404 0.5564 0.0954 0.0997 0.5080
TBL 76.2189 158.4378 165.0963 0.5855 0.0859 0.0927 0.6016

TW-BXII 75.0635 160.1271 171.2246 0.5051 0.0841 0.0893 0.6487
TW-W 75.0454 158.0909 166.9690 0.4889 0.0798 0.0835 0.7299

(A∗), Cramer-von Mises (W ∗), Akaike information criterion (AIC) and Bayesian
information criterion (BIC) are computed. Lower values of those measures in-
dicate better fit. The value for the Kolmogorov Smirnov (KS) statistic and its
p-value are also provided. The required computations are carried out using the
R software.

The obtained results are presented in Tables 2-5. As we can see from Tables
2 and 4 , the four sub-models of the TB-G family are strong competitor to the
compared models. Moreover, among all compared models, the TBLL distribution
has the smallest values of the AIC, BIC, A∗, W ∗, and KS, and the largest value of
p-value. Thus, we can conclude that the TBLL distribution is the best fit among
those models. Figures 7 and 8 display the plots of the fitted pdfs and cdfs of the
compared distributions for visual comparison with the histogram and empirical
cdf for both data sets. Those figures show the best fit of TBLL distribution.
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Table 4: MLEs and their standard errors (in parentheses) for data set 2
Distribution c k θ a b

TBW 0.3446 30.8825 - 11.9180 5.3663
(2.8251) (17.3728) - (10.6096) (4.4130)

TBLL 8.6122 123.2974 0.4892 - -
(6.0513) (12.2964) (0.4066) - -

TBU 1.8150 259.5434 40.3962 - -
(0.2482) (12.1122) (33.2333) - -

TBL 7.7107 0.5621 1.3198 - -
(2.1529) (3.0901) (0.3681) - -

TW-BXII 1.0579 86.6647 60.8969 0.0024 3.0599
(1.1048) (71.9193) (69.5585) (4.5165) (6.3469)

TB-W 9.7190 6.2763 - 19.3190 0.2883
(12.7756) (9.6175) - (46.5365) (0.4437)

Table 5: The Value, AIC, BIC, A*, W*, KS, P-Value values for data set
2

Dist ` AIC BIC A* W* KS P-Value
TBW 38.5661 85.1322 90.7370 0.1571 0.0203 0.0648 0.9996
TBLL 38.0934 82.1868 86.3904 0.1019 0.0137 0.0576 1
TBU 38.6334 83.2668 87.4701 0.1680 0.0217 0.0683 0.9990
TBL 38.9520 83.9040 88.1076 0.1466 0.0185 0.0692 0.9988

TW-BXII 38.0919 86.1839 93.1899 0.1037 0.0141 0.0605 0.9999
TW-W 38.6431 85.2862 90.8910 0.1690 0.0219 0.0688 0.9989
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Figure 7: Estimated pdfs and cdfs for data set 1

4. Simulation study

In this section, the performance of the MLEs of the TBLL distribution
parameters is discussed by means of Monte-Carlo simulation study. The following
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Figure 8: Estimated pdfs and cdfs for data set 2

measures are used to evaluate the simulation results: Estimated bias, Root mean
square error (RMSE) and coverage probability (CP). The simulation experiment
was repeated N = 1, 000 times each with sample sizes n = 20, 50, 100, 200, 300
and 500, where the samples are generated from the TBLL distribution, with
θ = 4.5, c = 2.8, k = 0.8, by using the inverse transform method. The MLEs
of the parameters of TBLL distribution are obtained for each generated sample,
(θ̂, ĉ, k̂). The formulas for biases, RMSEs and CPs are given as follows:

Estimated bias of MLE Θ̂ of the parameter Θ = (θ, c, k) is

1
N

N∑

i=1

(Θ̂−Θ).

Root mean squared error (RMSE) of the MLE Θ̂ of the parameter Θ = (θ, c, k)
is

√√√√ 1
N

N∑

i=1

(Θ̂−Θ)2.

Coverage probability (CP) of 95% confidence intervals of the parameter Θ =
(θ, c, k) is the percentage of intervals that contain the true value of parameter Θ
From Figures 9-11 we conclude that the estimated biases are positive for all pa-
rameters. The estimated biases decrease as the sample size n increases. Further,
the estimated RMSEs are so closed to zero for large sample sizes. This result re-
veals the consistency property of the MLEs. The CP approaches to the nominal
value (0.95) when the sample size increases.
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Figure 9: Estimated CPs for the selected parameters.
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Figure 10: Estimated CPs for the selected parameters.
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Figure 11: Estimated CPs for the selected parameters.
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