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1. INTRODUCTION

Dynamical systems occur in all branches of science. According to Martin
Rasmussen [29], “the main goal of the study of a dynamical system is to under-
stand the long behaviour of states in a system for which there is a deterministic
rule for how a state evolves”. On the other hand, Christian Pötzsche [28] claims
that “an understanding of the asymptotic behaviour of a dynamical system is
probably one of the most relevant problems in sciences based on mathematical
modeling”.

There are two approaches in the study of such mathematical models. The
autonomous model where the system is governed by a single mapping and the
non-autonomous model where the evolution in time is, in general, governed by a
family of different mappings.

The non-autonomous systems arise naturally in the study of phenomena
that evolve in time and cannot be ruled by the a single mapping by the simple fact
that such phenomena do not repeat. For a general theory of non-autonomous (pe-
riodic) difference equations we refer a recent book by Lúıs [22] where the author
presents the main concepts and results concerning periodic difference equations.

A generalization of discrete non-autonomous systems can be given by stochas-
tic difference equations or random dynamical systems. The study of these systems
are appropriate in the situation where the rules that govern the evolution of the
system have a random nature.

Some works and authors in the field of random dynamical systems are
worth-mention. The book of Arnold [5], where the author explores, separately,
both random differential equations and random difference equations. The work
of Kifer, [17] where the author studies basic connections between compositions of
independent random transformations and corresponding Markov chains together
with some applications. Liu in [21] reviews a selection of basic results in smooth
ergodic theory and in the thermodynamic formalism of dynamical systems gen-
erated by compositions of random maps. An excellent tutorial on the asymptotic
behaviours of random orbits of dynamical systems with random parameters may
be found in the work of Ohno [27]. In 2009, Marie and Rousseau [25] presented
a study of the recurrence behaviour in certain random dynamical systems and
randomly perturbed dynamical systems. Baladi [6] uses transfer operators to con-
struct invariant measures of chaotic dynamical systems. And to end this short
list of references on random dynamical systems, we refer the excellent survey
of Diaconis and Freedman [10] on iterated random functions, where the authors
provide several examples under the unifying idea that the iterates of random
Lipschitz functions converge if the functions are contracting on the average.

One of the well known models that have a discrete evolution is the quadratic
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model given by

(1.1) xn+1 = µnxn(1− xn), x ∈ [0, 1], µn ∈ (0, 4), n = 0, 1, 2, ....

When the sequence of parameters µn is constant, the model given by (1.1) is the
well known logistic equation. The modern theory of discrete dynamical systems
owns a great part of its development to the understanding of the dynamics of
this equation, and may be found in many books on discrete dynamical systems,
as the ones by Alligood, Sauer and Yorke [1, Chapter 1], by Devaney [9, Chapter
1], by Elaydi [11, Chapter 1] and by Zhang [30, Chapter 2], among others.

When the sequence of parameters is not constant, the dynamics of equation
(1.1) is naturally more complex. Both, non-stochastic model, where the elements
of the sequence of parameters are taken with a deterministic rule from the interval
(0, 4), and stochastic model, where the referred elements are taken randomly from
the same interval, are far from being exhaustively studied. Some partial studies
may be found in the literature. Grinfeld et al. [13] studied the bifurcation
in 2−periodic logistic equations. AlSharawi and Angelos [2] showed that when
µn+p = µn, for all n, the p−periodic logistic equation (1.1) has cycles (periodic
solutions) of minimal periods 1, p, 2p, 3p, . . .. The same authors have also
extended Singer’s theorem to periodic difference equations, and used it to show
that the p−periodic logistic equation has at most p stable cycles. Particular
attention was given to the cases p = 2 and p = 3. AlSharawi et al. [3] and
Alves [4] have, independently, presented an extension of Sharkovsky’s theorem
to periodic difference equations, where the main example is the periodic logistic
equation.

In this paper some properties of a generalized logistic model given by

(1.2) xn+1 = µnx
k
n(1− xn),

where xn ∈ [0, 1], k > 1 and µn > 0 for all n = 0, 1, 2 . . ., are studied. Some
particular studies on the stability in both, non-autonomous (periodic) model
(Section 2) and stochastic model (Section 3) are presented. In particular, the
dynamical system defined by equation (1.2) when k = 2 and µn ∈ (0, 27/4] is
deeply studied. The main focus of this study is the comprehension of the model’s
dynamics in the parameter space.

Finally, it should be mentioned that Marotto [26] studied the autonomous
equation (1.2) when k = 2 and µn = µ, for all natural n. When µn = µ, for all n,
the dynamical properties of the autonomous equation (1.2) have been addressed
by several authors, like Levin and May [20], Hernández-Bermejo and Brenig [14],
Briden and Zhang [7], among others.
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2. Non-stochastic model

Let us consider the difference equation given by

(2.1) xn+1 = µnx
kn
n (1− xn) ,

where xn ∈ [0, 1], µn > 0 and kn = 2, 3, 4, . . . for all non negative integer n.

Equation (2.1) may be represented by the map

fn(x) = µnx
kn (1− x) .

In order to insure that xn ∈ I = [0, 1] for all n, we make the following
assumption concerning the parameters

H: µn ≤
(
kn + 1

kn

)kn
(kn + 1), n = 0, 1, 2 . . . .

Assumption H guarantees that all the orbits in (2.1) are bounded. Fur-
thermore, it guarantees that fn maps the interval I into the interval I for all
n = 0, 1, 2 . . ..

2.1. Autonomous equation

Let us first study the dynamics of the particular map f (x) = µxk (1− x),
with x ∈ I, µ > 0 and k = 2, 3, . . .. To find the fixed points of f we determine the
solutions of the equation µxk(1 − x) = x. After eliminating the trivial solution,
x = 0, the positive fixed points are the solutions of

(2.2) µxk−1 (1− x) = 1,

or equivalently

(2.3) ln(µ) = − (k − 1) lnx− ln (1− x) .

Letting g(x) = − (k − 1) lnx− ln (1− x), we see that g(x) > 0 for all x ∈ (0, 1).
Moreover, g is convex in the unit interval since g′(x) > 0, for all x ∈ I, and
attains its minimum at g(cg) where cg = k−1

k is the unique critical point of g in
the unit interval. Let Oµ be the immediate basin of attraction of the origin.

1. If g (cg) > ln(µ), then Eq. (2.3) has no solution. Hence, x∗ = 0 is the unique

fixed point of the map f whenever µ < k
(

k
k−1

)k−1
. Under this scenario

x∗ = 0 is globally asymptotically stable, given that it is the unique fixed
point in I. Notice that at the origin we have f ′(0) = 0 and that Oµ = [0, 1].
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2. If g (cg) = ln(µ), then Eq. (2.3) has a unique solution, x∗ = k−1
k = cg.

Hence, the map f has a unique positive fixed point when µ = k
(

k
k−1

)k−1
.

In this case and using (2.2), we obtain |f ′ (x∗)| = 1 and |f ′′ (x∗)| = −k2 < 0,
that allows us to conclude that x∗ is an unstable fixed point, but semi-
stable from the right. Moreover, its immediate basin of attraction is the
set

[
x∗,max f−1({x∗})

]
where f−1({x∗}) is the pre-image of {x∗}. Notice

that Oµ = I \
[
x∗,max f−1({x∗})

]
.

3. If g (cg) < ln(µ), then Eq. (2.3) has two positive solutions. Hence, the

map f possesses two positive fixed points whenever µ > k
(

k
k−1

)k−1
. The

smaller, denoted as Aµ, is known as a threshold point and the greater,
denoted by Kµ, is known as a carrying capacity. Under this scenario,
the fixed point Aµ is always unstable and the fixed point Kµ is locally
asymptotically stable in the interval

(
Aµ,max f−1({Aµ}

)
if
∣∣k − µKk

µ

∣∣ < 1.
Moreover, Oµ = [0,Aµ) ∪

(
max f−1({Aµ}), 1

]
.

Notice that the sequence ak =

(
k + 1

k

)k
(k + 1) that is used to define

Assumption H is increasing for k = 2, 3, . . .. We now resume the precedent ideas
in the following result, for a general integer k = 2, 3, . . .:

Theorem 2.1. Let f(x) = µxk(1− x), k = 2, 3, . . .. Then the following
yields:

1. If µ < k
(

k
k−1

)k−1
, then x∗ = 0 is a globally asymptotically stable fixed

point of f and its basin of attraction is the unit interval.

2. If µ = k
(

k
k−1

)k−1
, then the map has two fixed points, the origin and a posi-

tive fixed point x∗ = k−1
k . This last one is locally asymptotically stable from

the right and its immediate basin of attraction is the set
[
x∗,max f−1({x∗})

]
.

Moreover, Oµ = I \
[
x∗,max f−1({x∗})

]
.

3. If µ > k
(

k
k−1

)k−1
, then the map has three fixed points, the origin, a thresh-

old fixed point Aµ and a carrying capacity Kµ such that Aµ < Kµ. The
threshold fixed point is always unstable and if |k − µKk

µ| < 1 the carrying
capacity is locally asymptotically stable with a basin of attraction given by
the set

(
Aµ,max f−1({Aµ})

)
. Moreover, Oµ = I \

[
Aµ,max f−1({Aµ})

]
.

Remark 2.1. Before ending this subsection and having in mind the next
section, let us have a particular look in the dynamics of the autonomous equa-
tion when k = 2, i.e., the dynamics of the equation when the map is given by
f(x) = µx2(1 − x). We will be needing these results when studying the corre-
sponding stochastic equation.



A Stochastic Study for a Generalized Logistic Model 7

1. If µ < 4, then the origin is a globally asymptotically stable fixed point
provided that it is the unique fixed point in the unit interval.

2. If µ = 4, then the map possesses two fixed points, the origin and x∗ = 1
2 .

The basin of attraction of the origin is

(2.4) O4 =

[
0,

1

2

)
∪

(
1 +
√

5

4
, 1

]
,

while the basin of attraction of the positive fixed point is
[

1
2 ,

1+
√

5
4

]
. Notice

that x∗ = 1
2 is a fixed point semi-stable from the right.

3. If 4 < µ, then the map has three fixed points, the origin, the threshold point

Aµ = 1
2

(
1−

√
µ−4
µ

)
and the carrying capacity Kµ = 1

2

(
1 +

√
µ−4
µ

)
.

It is a straightforward computation to see that, when µ > 4,

|f ′(Aµ)| = 3 +
µ

2

(
−1 +

√
µ− 4

µ

)
> 1.

Hence, the fixed point Aµ is unstable.

Similarly, we see that

|f ′(Kµ)| =
∣∣∣∣3− µ

2

(
1 +

√
µ− 4

µ

)∣∣∣∣ < 1 iff 4 < µ <
16

3
.

When µ = 16
3 we have f ′(Kµ) = −1. Forward computations show that

the Schwarzian derivative evaluated at the fixed point is negative, i.e.,
Sf(Kµ) < 0. Consequently, from Theorem 2 in [24] it follows that the
fixed point Kµ is asymptotically stable. Thus, the fixed point x∗ = Kµ is
locally asymptotically stable whenever 4 < µ ≤ 16

3 and its basin of attrac-
tion is the set

(
Aµ, max f−1({Aµ})

)
. Moreover,

(2.5) Oµ = [0,Aµ) ∪
(
max f−1({Aµ}), 1

]
.

2.2. Non-autonomous equation

We start this subsection presenting a result related to the non-autonomous
equation (2.1) when k = 2 (although it may be extended for other values of the
parameter k as well). It is not hard to prove the following:

Lemma 2.1. Consider the non-autonomous difference equation given
by

(2.6) xn+1 = µnx
2
n (1− xn) ,
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where xn ∈ [0, 1], µn ∈
(
0, 27

4

]
, for n = 0, 1, 2 . . ., and Oµ the immediate basin of

attraction of the origin. Then

(2.7) 4 ≤ µ1 ≤ µ2 ≤
27

4
⇒ O4 ⊇ Oµ1 ⊇ Oµ2 ⊇ O 27

4
,

where O4 is given by (2.4) and

(2.8) O 27
4

=

[
0,

9−
√

33

18

)
∪
(

max f−1
({

A 27
4

})
, 1
]
,

where max f−1
({

A 27
4

})
≈ 0.971 62.

Let us now turn our attention to the non-autonomous periodic equation
(2.1). We will study the case where the sequence of maps is p−periodic, i.e.,
when fn+p = fn, for all n = 0, 1, 2, . . .. Under this scenario, equation (2.1) is
p−periodic.

The dynamics of the non-autonomous p−periodic equation (2.1) is com-
pletely determined by the following composition operator

Φp = fp−1 ◦ . . . ◦ f1 ◦ f0.

From assumption H it follows that Φp(I) ⊆ I with Φp(0) = 0 and Φp(1) = 0.
Hence, by the Brouwer’s fixed point theorem [16], the composition operator Φp

has a fixed point in the unit interval.

It is clear that x∗ = 0 is a locally asymptotically stable fixed point of Φp

provided that |Φ′p(0)| = 0. Now, if Φp(x) < x, for all x ∈ (0, 1), then x∗ = 0 is
the unique fixed point of the composition operator Φp in the unit interval. In
this case, x∗ = 0 is a globally asymptotically stable fixed point and its basin of
attraction is the entire unit interval. This is the case where local stability implies
global stability in the sense that every orbit of x0 ∈ I converge to the origin.

Notice that, if CΦp is the set of critical points of Φp, i.e., if CΦp contains all
the solutions in the unit interval of the p equations Φi(x) = ci, i = 0, 1, . . . , p− 1,
where ci is the critical point of the map fi, then Φp(x) < x, for all x ∈ (0, 1) if
Φp(cΦp) < cΦp , where cΦp ∈ CΦp .

Now, if |Φp(x)| > x for some x ∈ (0, 1),the composition operator Φp has
more than one fixed point. We know from Coppel’s Theorem [8] that every
orbit converges to a fixed point if and only if the equation Φp ◦ Φp(x) = x has
no solutions with the exception of the fixed points of Φp. It is not possible, in
general, to say much concerning the number of fixed points of Φp since we have
many scenarios. However, if all maps fi have a threshold fixed point Ai and we
let Am = min{A0,A1, . . . ,Ap−1} and AM = max{A0,A1, . . . ,Ap−1}, then one
can show that the minimal positive fixed point of Φp, AΦp , lies between Am and
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AM and is, in fact, an unstable fixed point. Under this scenario, the immediate
basin of attraction of the origin is ∪i≥1Ji where Ji ⊂ I and

Φp(Ji) ⊂ [0,AΦp).

See Figure 1 for an example of this scenario.

Figure 1: Composition of three generalized logistic maps. The composi-
tion map Φ3 is represented by the solid curve and the individual
maps are represented by the dashed curves. The values of pa-
rameters are k = 2, µ0 = 6.5 (f0), µ1 = 5.5 (f1) and µ2 = 6
(f2).

We remark that each fixed point of the composition map Φp, with the
exception of x∗ = 0, generates a periodic orbit in equation (2.1). More precisely,
if x∗ is a non-trivial fixed point of Φp, then

C = {x0 = x∗, x1 = f0(x0), x2 = f1(x1), . . . , xp−1 = fp−2(xp−2)}

is a periodic cycle of equation (2.1), which is locally asymptotically stable if

|Φ′p(x∗)| =

∣∣∣∣∣
p−1∏
i=0

f ′i(xi)

∣∣∣∣∣ < 1.

Notice that, due the periodicity of the maps fi, we have xp = fp−1(xp−1) = x0,
xp+1 = x1, and so on.

From the dynamical point of view, it is interesting to know the region where
the stability of the fixed points occurs. Since we are not able to find explicitly
the fixed points of the composition map Φp for general values of the parameters
ki and µi, i = 0, 1, . . . , p− 1, we will particularize and study the cases where this
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is possible as are the cases when p = 2, 3, 4 and k = 2, i.e., we will study the
dynamics of the system when the sequence of maps is 2−periodic and given by

fn mod(2)(x) = µn mod(2) x
k(1− x), k = 2, 3, 4.

Let us start with the case k = 2. Following the techniques employed in [23],
one can find the region of local stability of the fixed points of the composition
map Φ2 = f1 ◦f0 by calculating the boundary where the absolute value of Φ′2(x∗)
is equal to one. Since the computations are long we will omit them here. The
stability regions are depicted in Figure 2, in the parameter space µ0Oµ1.

O

S

A1
A2

A3

R

0 2 4 6 8 10
0

2

4

6

8

10

Μ0

Μ
1

Figure 2: Region of local stability, in the parameter space µ0Oµ1 where
the fixed points of f1 ◦ f0 are locally asymptotically stable and
the maps are given by fi(x) = µix

2(1− x), i = 0, 2.

If the parameters µ0 and µ1 belong to the region O, then the origin is a fixed
point globally asymptotically stable. Once the parameters cross the dashed curve,
from Region O to Region S, a bifurcation occurs, known as saddle-node bifurca-
tion. The fixed point x∗ = 0 becomes unstable and a new locally stable fixed point
of Φ2 is born. This fixed point is, in fact, a 2−periodic cycle of the 2−periodic
equation (2.1). Now if the parameters µ0 and µ1 cross the dashed curve from
Region S to Region R, a saddle-node bifurcation occurs. The 2−periodic cycle
becomes unstable and a new locally asymptotically stable 2−periodic cycle is
born.

At the solid curve a new type of bifurcation occurs known as a period-
doubling bifurcation. Hence, when the parameters cross the solid curve from
Region S to Region Ai, i = 1, 2, 3, the 2−periodic cycle of equation (2.1)
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becomes unstable and a new locally asymptotically stable 4−periodic cycle is
born.

Following a similar idea as before, we are able to find (numerically) the
regions of local stability of the 4−periodic cycle identified before. We notice that
this scenario of period-doubling bifurcation continues route to chaos.

For a general framework of bifurcation in one-dimensional periodic differ-
ence equations, we refer the work of Elaydi, Lúıs, and Oliveira in [12].

Now, following the same techniques as before, we are able to find the regions
of local stability of fixed points when k = 3 and k = 4. These regions are
represented in Figure 3. As we can observe, they are similar to the case k = 2
and the conclusions follow in the same fashion.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Μ0

Μ
1

0 5 10 15 20
0

5

10

15

20

Μ0

Μ
1

Figure 3: Regions of local stability, in the parameter space, of the
2−periodic equation when k = 3 (left) and k = 4 (right).

3. Stochastic model

In this section, we will consider the stochastic version of the difference
equation (2.1) when kn = 2, for all n, defined by the equation

(3.1) xn+1 = fn (xn) = b (µn, xn) = µnx
2
n (1− xn) ,

with x0 ∈ I = [0, 1], {µn, n ∈ N0} a sequence of independent and identically
distributed random variables with support contained in S =

(
0, 27

4

]
and common

probability density function φ.
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3.1. Stochastic kernel and asymptotic behaviour

Notice that xn, for n ∈ N, defined by (3.1) is an absolutely continuous
random variable (with respect to Lebesgue measure). Let fn be the probability
density function of xn. For each n ∈ N, the random variables µn and xn are
independent and hence their joint probability density function is the product of
the individual probability density functions φfn. Let h be an arbitrary bounded
function defined in I (h ∈ L∞ (I)). We have

(3.2) E [h (xn+1)] =

∫
I
h (x) fn+1 (x) dx,

and, on the other hand,

E [h (xn+1)] = E [h (b (µn, xn))] =

∫
I

∫
S
h (b (u, x))φ (u) fn (x) dudx.

Letting y = b (u, x) = ux2 (1− x) in the inner integral, we obtain
(3.3)

E [h (xn+1)] =

∫
I

[∫ 27
4
x2(1−x)

0
h (y)φ

(
y

x2 (1− x)

)
fn (x)

1

x2 (1− x)
dy

]
dx.

Let γ1 : [0, 1] →
[
0, 2

3

]
be the inverse function of γ :

[
0, 2

3

]
→ [0, 1] and

γ2 : [0, 1]→
[

2
3 , 1
]

the inverse function of γ :
[

2
3 , 1
]
→ [0, 1], i.e.,

γ1 (y) =
1

3

 3

√
2
√
y2 − y − 2y + 1 +

1

3

√
2
√
y2 − y − 2y + 1

+ 1


and

γ2 (y) = −1

6

(
1 + i

√
3
)

3

√
2
√
y2 − y − 2y + 1− 1− i

√
3

6 3

√
2
√
y2 − y − 2y + 1

+
1

3
.

The functions γ, γ1 and γ2 are represented in Figure 4.

Inverting the integration order in (3.3) we obtain

E [h (xn+1)] =

∫
I
h (y)

[∫ γ2(y)

γ1(y)
φ

(
y

x2 (1− x)

)
fn (x)

1

x2 (1− x)
dx

]
dy.(3.4)

Comparing (3.2) and (3.4), since h is arbitrary, it follows that

fn+1 (y) =

∫
I
φ

(
27

4

y

γ (x)

)
fn (x)

27

4

1

γ (x)
I[γ1(y),γ2(y)] (x) dx
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0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Graphs of γ (grey solid line), γ1 (black solid line) and γ2 (dashed
line) in the unit interval.

(where IA (v) = 1 if v ∈ A, IA (v) = 0, otherwise).

It is not difficult to prove that if fn is supported on Sn ⊆ I, then fn+1 is
supported on Sn+1 ⊆ I.

Let f ∈ L1 (I) , i.e., such that
∫
I |f (x)| dx < +∞ and P : L1 (I) → L1 (I)

the operator defined by

(3.5) Pf (u) =

∫
I
L (u, v) f (v) dv,

were L is defined for (u, v) ∈ on I × I by

(3.6) L (u, v) = φ

(
u

v2 (1− v)

)
1

v2 (1− v)
I[γ1(u),γ2(u)] (v) .

Notice that ∫
I
L (u, v) du =

∫ 27
4

0
φ (y) dy = 1,

i.e., L is a stochastic kernel on I × I, since, in addition, L ≥ 0, and also that

Pn+1f (u) =

∫
I
f (v)Ln+1 (u, v) dv

with

Ln+1 (v0, vn+1) =

∫
In

n+1∏
i=1

L (vi−1, vi) dvn...dv2dv1.
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In the sequel will study the asymptotically behaviour of the sequence {Pn, n ∈ N} .
Suppose φ is a bounded probability density function with support [a, b] ⊂

(
0, 27

4

]
and consider the function

hu (v) =
u

v2 (1− v)
,

defined for v ∈ (0, 1) and u ∈ I (cf. Figure 5 for some graphical examples). The
minimum of hu (v) is obtained when v = 2

3 and is given by hu
(

2
3

)
= u27

4 .

v

h
u
(v

)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

u = 1.0

u = 0.6

u = 0.2

Figure 5: Graphs of hu when u = 1 (solid line), u = 0.6 (dotted line) and
u = 0.2 (dashed line).

Notice that (cf. (3.6))

L (u, v) = φ (hu(v))
1

v2 (1− v)
I[γ1(u),γ2(u)] (v) .

There are three possibilities, for a given u:

1. If u is such that hu
(

2
3

)
> b, i.e., if u > 4

27b, then L (u, v) = 0, for all v ∈ I.

2. If u is such that a ≤ hu
(

2
3

)
≤ b, i.e., if 4

27a ≤ u ≤
4
27b, then

(3.7) L (u, v) = φ (hu(v))
1

v2 (1− v)
I[γ1(u),γ2(u)]∩V (u) (v) ≤ 27

4

b

a
M,

where V (u) =
[
minh−1

u ({b}) ,maxh−1
u ({b})

]
and M = sup

u,v∈[0,1]
φ (hu(v)).

3. Finally, for u such that hu
(

2
3

)
< a, L is null if v /∈ {v : a ≤ hu (v) ≤ b} ,

and the same condition (3.7) is obtained.



A Stochastic Study for a Generalized Logistic Model 15

We can then conclude that ∀u, v ∈ I we have

L (u, v) ≤ 27

4

b

a
M.

Since
∫
I
b
a

27
4 Mdx < +∞, we have proven the following result (cf. [18], p. 99 and

Theorem 5.7.3 in p. 118):

Theorem 3.1. The sequence {Pn, n ∈ N}, where P is defined by (3.5),
is asymptotically periodic.

This means that there exists a finite sequence of densities g1, ...gr, a se-
quence of linear functionals λ1, ..., λr, and a permutation ω of the integers 1, ..., r
such that

Pgi = gω(i), gigj = 0 for i 6= j

and

lim
n→∞

∥∥∥∥∥Pnf −
r∑
i=1

λi(f)gωn(i)

∥∥∥∥∥ = 0 forf ∈ L1.

For better understanding the behaviour of the sequence {Pn, n ∈ N}, where
P is defined by (3.5), let the parameters µn, for n ∈ N from the stochastic
difference equation (3.1) be uniform in an interval C ⊆ S = (0, 27/4], i.e., let
φ(x) = 1

|C|IC(x). The asymptotic behaviour of the process depends on the set C.

For example, if C = S, i.e., if φ(x) = 4
27IS(x), then at the instant n the system

can be in one of the following intervals:

E1 =
[
0,A 27

4

)
, E2 =

(
A 27

4
,
1

2

)
, E3 =

[
1

2
,
1 +
√

5

4

]
,

E4 =

(
1 +
√

5

4
,max f−1

({
A 27

4

}))
, E5 =

(
max f−1

({
A 27

4

})
, 1
]
,

where, recall, A 27
4

= 9−
√

33
18 . Consider Pn = [pi,j,n]i,j∈{1,...,5} where

pi,j,n = P (xn+1 ∈ Ej |xn ∈ Ei) . We have

Pn =


1 0 0 0 0

p2,1,n p2,2,n p2,3,n p2,4,n p2,5,n

p3,1,n p3,2,n p3,3,n p3,4,n p3,5,n

p4,1,n p4,2,n p4,3,n p4,4,n p4,5,n

1 0 0 0 0

 .

Since pi,j,n 6= 0 for i ∈ {2, 3, 4} and j ∈ {1, .., 5} , the fixed point zero will
attract all points with probability one. Also, if there exists a natural number n0

such that pi,j,n0 = 0, then pi,j,n = 0, for all n ≥ n0.



16 Rafael Lúıs and Sandra Mendonça

On the other hand, if, e.g., C = (4, 16/3) and x0 ∈ E3, the system will
remain in E3 (Figure 6 represents two samples of the position of the system after
20000 steps). Hence, in this case, there exists a set of positive Lebesgue measure
where the inequality Pnf > 0 holds for n ≥ n0(f), for every probability density
function, f , with support on the positive real numbers set. Using, e.g., Lemma 1
from [19], we can then conclude the following result:

Corollary 3.1. If φ is the uniform distribution based on a non null
subset of (4, 16

3 ), the sequence {Pn, n ∈ N}, where P is defined by (3.5) and
(3.6), is asymptotically stable, i.e., there exists a probability density function f∗

on R+ such that Pf∗ = f∗ and

limx→∞ ‖Pnf − f∗‖ = 0,

for any probability density function f on R+, where ‖.‖ denotes the norm in L1.
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Figure 6: Two samples of size 10000 of the random variable x20000 when
the sequence µn is uniformly distributed in (4, 10/3) and x0 =
0.6.
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[24] Lúıs, R. and Mendonça, S. (2016). A note on the bifurcation point of a random-
ized Fibonacci model, Chaotic Modeling and Simulation (CMSIM), 4, 445–458.

[25] Marie, P. and Rousseau, J. (2011). Recurrence for random dynamical systems,
Discrete Continuous Dynamical Systems - A, 30(1), 1–16.

[26] Marotto, F.R. (1982). The dynamics of a discrete population model with
threshold, Mathematical Biosciences 58(1), 123–128.

[27] Ohno, T. (1983). Asymptotic behaviors of dynamical systems with random pa-
rameters. Publ. Res. Inst. Math. Sci., 19, 83–98.
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