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Abstract:

• The traditional Behrens-Fisher (B-F) problem is to test the equality of the means µ1

and µ2 of two normal populations using two independent samples, when the quotient of
the population variances is unknown. Welch [42] developed a frequentist approximate
solution using a fractional number of degrees of freedom t-distribution. We make a
a comprehensive review of the existing procedures, propose new procedures, evaluate
these for size and power, and make recommendation for the B-F and its analogous
problems for non-normal populations. On the other hand, we investigate and answer
a question: does the same size fit all all, i.e. is the t-test with Welch’s degree of
freedom correction robust enough for the B-F problem analogs, and what sample size
is appropriate to use a normal approximation to the Welch statistic.
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1. INTRODUCTION

The traditional Behrens-Fisher (B-F) [5, 20] problem is to test the equal-
ity of the means µ1 and µ2 of two independent normal populations where the
variances σ2

1 and σ2
2 are unknown and unspecified. The problem arises when

the ratio of the population variances is unknown as well. In the case of known
Importance of this problem is well understood and its application is widespread
[1, 12, 14, 15, 16].

Ever since the solution of this problem by [42], many papers have been writ-
ten. See, for example, [7], [19], and [29]. These and similar other papers [9, 38]
have attempted improvement, in terms of level and power, over the Welch proce-
dure. More recently, non-parametric [14, 16, 21] and Bayesian [24, 45] procedures
have also been developed.

However, independent samples from two two-parameter populations (other
than the normal) arise in many situations. The problem then is to test the equal-
ity of two location (or some analogous) parameters when the dispersion (or some
analogous) parameters are unknown and possibly different. These problems are
analogous to the traditional Behrens-Fisher problem. Prior to 2014 not much have
been written on the solution of the Behrens-Fisher analogous problems. Some
(to our knowledge) problems analogous to the B-F problem that have been dealt
with recently are (i) testing equality of two negative binomial means in presence
of unequal dispersion parameters [30]; (ii) testing equality of scale parameters of
two Weibull distributions in the presence of unequal shape parameters [2], and
(iii) testing equality of two beta binomial proportions in the presence of unequal
dispersion parameters [3].

When the sample sizes are small the two sample t-test (T1) with Welch’s
[42] degree of freedom and for large sample sizes (N = n1 +n2 > 30) the standard
normal statistic (TN ) (see, Section 2) are recommended by standard text books
[23]. Many evidences have been shown in favour of the preference of the Welch T1

over other procedures. See, for example, [7, 12, 29] for the standard BF problem.
More recently [38] developed a jackknife based procedure and [9] developed a
computationally intensive procedure for the BF problem. However, no systematic
study has been conducted so far to determine the overall sample size required
under which the normal approximation of the statistic TN works.

The primary purpose of this paper is to make a comprehensive review of
the existing procedures, evaluate these for size and power, and make recommen-
dations for the standard BF and its analogous problems in some sense. For the
standard BF and some of its analogous problems we also investigate performance
of a new Monte-Carlo approach, the bootstrap and the rank counterparts. A
recent study [30] suggests that the Welch T1 does well in some non-normal situ-
ations, such as for samples from two negative binomial populations. Along with
some other procedures performances of the Welch T1 and the new Monte-Carlo
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approach are investigated for samples from normal, two discrete models (count
data and data in the form of proportions) and a survival model for a wide range
of parameter spaces to reflect comparison of the means for variances which are
same to very different.

The secondary purpose is to investigate and answer a question: does the
same size fit all or in other words is the t-test with Welch’s [42] degree of freedom
correction robust enough for the BF problem analogs and what sample sizes are
appropriate for the normal approximation of the statistic TN .

Review, possible new procedures, simulations, and recommendations for
the standard BF problem are given in Section 2. The BF analogues correspond-
ing to the negative binomial, the beta binomial, and the Weibull are dealt with
in Sections 3, 4 and 5 respectively. The concluding section (Section 6) provides
some guide lines as to which procedure(s) to be used in each case. Some recom-
mendations for possible future study are also provided in this section.

2. The Behrens-Fisher Problem: Two Normal Populations

2.1. Welch’s t-Statistic

The well-known Behrens-Fisher (B-H) problem is to test the equality of the
means µ1 and µ2 of two independent normal populations where the variances σ2

1

and σ2
2 are unknown and possibly unequal.

Let Yi1, . . ., Yini be a random sample from a population, i = 1, 2. Now, let
yi1, . . ., yini be a corresponding sample realization with mean ȳi =

∑ni
j=1 yij/ni

and variance s2
i =

∑ni
j=1(yij − ȳi)2/(ni − 1). If the samples come from normal

populations with means µ1 and µ2 and unknown and possibly unequal variances
σ2

1 and σ2
2, then

TN =
ȳ1 − ȳ2√
s21
n1

+
s22
n2

,

is asymptotically normally distributed with mean 0 and variance 1 when both n1

and n2 are sufficiently large. This is stated in many undergraduate text books in
Mathematical Statistics [23].

However, when the sample sizes n1 and n2 are smaller the distribution of
TN , henceforth denoted by T1, is approximately distributed as Student’s t with
degrees of freedom

f =

(
s21
n1

+
s22
n2

)2(
s41

n2
1(n1−1)

+
s42

n2
2(n2−1)

)
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[42]. It is shown by [19] and [42] using simulations that the statistic

Z =
ȳ1 − ȳ2√

(n1−1)s21
(n2

1−3n1)
+

(n2−1)s22
(n2

2−3n2)

might be preferable to the statistic T1 because the former would maintain nominal
level better than the later. However, [19] does not provide a degree of freedom
for the above Z to be used as an approximation to the t-distribution. To this end
[7] derive degrees of freedom and compare performance of T1 with a few other
statistics, such as the Wald, likelihood ratio and score statistics and the statistic
Z, in terms of level and power and find that T1 is still the best. However, there
is an error in the degrees of freedom formula which later was corrected by [29].
After carrying out further simulations [29] finds that in addition to all the reasons
given by [7] to prefer T1 over Z, the former shows better power performance than
the latter. See, [29] for further details.

To the best of our knowledge, to-date, the statistic T1 is the best and is
referred as the statistic to use in recent text books [23]. In this paper we attempt
to do a comprehensive review of all available methods and develop a new Monte
Carlo procedure.

2.2. The Likelihood, Score and Wald Tests [7]

The likelihood ratio statistic (LR), score statistic and Wald statistic, de-
noted by L, S and W, derived by Best and Rayner (1987) are

L = n1log[(n1 − 1)s2
10/((n1 − 1)s2

1)] + n2log[(n2 − 1)s2
20/((n2 − 1)s2

2)],

S = (ȳ1 − ȳ2)2/((n1 − 1)s2
10/n

2
1 + (n2 − 1)s2

20/n
2
2),

and
W = (ȳ1 − ȳ2)2/((n1 − 1)s2

1/n
2
1 + (n2 − 1)s2

2/n
2
2),

where s2
i0 =

∑ni
j=1(yij−µ0)2/(ni−1) and µ0 is the solution to the cubic equation

− (n1 + n2)µ3
0 + [(n1 + 2n2)ȳ1 + (n2 + 2n1)ȳ2]µ2

0

− [n1(n2 − 1)s2
2/n2 + n2(n1 − 1)s2

1/n1 + 2(n1 + n2)ȳ1ȳ2 + n2ȳ1
2 + n1ȳ

2
2]µ0

+ [n1ȳ1{(n2 − 1)s2
2/n2 + ȳ2

2}+ n2ȳ2{(n1 − 1)s2
1/n1 + ȳ1

2}] = 0

[31] give a brief description on the construction mechanism as well as the advan-
tages of the C(α) or score tests over the LR and the Wald tests (see, [29] for
details).
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2.3. A Monte Carlo Procedure developed Using T1

By examining the T1-statistic, it is clear that the denominator is a con-
vex combination of χ2

(n1−1)/(n1 − 1) and χ2
(n2−1)/(n2 − 1), and the combina-

tion proportion depends on the ratio of the two underlying population variances
and the sample sizes. The t-distribution approximation becomes exact when
τ = σ2

2n1/σ
2
1n2 = 1, and we expect the Monte Carlo method works better when

τ is very different from 1. Theoretically, the p-value cannot be calculated under
the null unless τ is specified. Under the null, the T1 statistic follows an exact t
distribution with degree of freedom being n1 − 1, n2 − 1 and (n1 + n2 − 2) when
τ takes 0, ∞ and 1. The new statistic, henceforth denoted by T , is

T =

ȳ1−ȳ2√
σ2
1/n1+σ2

2/n2√
s21/n1+s22/n2

σ2
1/n1+σ2

2/n2

=
N√
K
.

Here N ∼ N(0, 1). We now study the distribution of K.

K =
s2

1/n1 + s2
2/n2

σ2
1/n1 + σ2

2/n2

∼

χ2
n1−1

n1 − 1

σ2
1

n1
+
χ2

(n2−1)

n2 − 1

σ2
2

n2

σ2
1/n1 + σ2

2/n2

∼ λκ1 + (1− λ)κ2,

where λ is a proportion parameter,(σ2
1/n1)/(σ2

1/n1+σ2
2/n2), κ1 ∼ χ2

n1−1/(n1−1),
and κ2 ∼ χ2

n2−1/(n2 − 1).

In order to simulate the Monte Carlo numbers from K, we will need to
provide a value for λ. Clearly, we can estimate λ by

λ̂ =
s2

1/n1

s2
1/n1 + s2

2/n2
.

We therefore obtained an approximate distribution for K,

K̃ ∼ λ̂κ1 + (1− λ̂)κ2,

whose distribution can be easily obtained. The final distribution, using Monte

Carlo procedure, can be approximated by Z/
√
K̃ which is obtained by a random

number from N(0, 1) and two independent random numbers from χ2
(n1−1) and

χ2
(n2−1). Because κ1 and κ2 are independently simulated from λ̂, we have E(K̃) =

1 and var(K̃) = 2λ̂2/(n1 − 1) + 2(1− λ̂)2/(n2 − 1).

If the variance ratio σ2
2/σ

2
1 is known, the distribution of K above is known as

a mixture of two χ2 distributions and T (§2.3) becomes pivotal but it is generally
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not an exact t distribution. However, if the variance ratio is given, one can use
the pooled variance estimator and form a t−statistic with n1 + n2 − 2 degrees of
freedom.

If t−distribution is used to approximate T , i.e., K̃ is approximated by a
chi-square distribution, the ”best” degree of freedom by matching the variance
(K̃) to χ2

(d)/d is

d = 2/var(K̃) =
(n1 − 1)(n2 − 1)

(n2 − 1)λ̂2 + (n1 − 1)(1− λ̂)2
,

which is exactly the same as Welch’s formula!

After developing this procedure we found that [18] also developed the same
statistic. Similar idea has also been explored by [4] and [42]. However, they
used an exact distribution which is complex to use and showed that the Welch
approximation is remarkably accurate, even for small n1 and n2, provided that n1

and n2 are equal or nearly equal. Singh, Saxena, and Srivastava [38] developed a
procedure similar to the one given above and [9] developed another Monte Carlo
based procedure “Computational Approach Test” (CAT). Using a simulation
study [9] find that the procedure developed by [38] is not as good as it has been
claimed [9]. On the other hand the CAT procedure is quite computationally
involved. For small sample sizes the CAT is quite conservative. In contrast our
method, which is also Monte Carlo, is very easy to use and its performance is
much better that that of CAT. This issue will be dealt with in a separate paper.

2.4. A Bootstrap Procedure [13]

A bootstrap test for the Behrens-Fisher problem is developed by [13].
Among the re-sampling methods, the two sample bootstrap test is the one that
neither assumes equal variances nor does it require any distributional assump-
tions and offer a possible solution to the Behrens-Fisher problem [13]. All we
need is a suitable test statistic and a null distribution under the hypothesis of
equal population means. Manly (1997) recommends to use TN as a test statistic,
where,

TN =
ȳ1 − ȳ2√
s21
n1

+
s22
n2

,

is asymptotically normally distributed with mean 0 and variance 1 when both
n1 and n2 are sufficiently large. The null distribution is approximated by the
distribution of B values of TN evaluated at each of the B bootstrap samples.
The detailed algorithm proceeds as follows:

1. Calculate TN using the observed two sample data.
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2. Obtain a bootstrap samples of size ni; say y∗ij , from the adjusted yij , that

is, from yadjij = yij − ȳi + ȳ, where ȳ is the overall mean.

3. Calculate

T ∗N =
ȳ∗1 − ȳ∗2√

s2∗
1 /n1 + s2∗

2 /n2

.

4. Repeat step 2 and 3 B times (B = 999); thereby obtaining 999 bootstrap
values of TN∗.

5. For a two sided test, a difference between the means is significant if the
observed value of |TN | > 100(1− α/2)th values of T ∗N .

2.5. A Non-Parametric Procedure [21]

To address the Behrens-Fisher problem, the Mann-Whitney-Wilcoxon test
[27, 43] is modified in [21]. Define P1i, the number of y2 observations less than
y1i, for i = 1, . . . , n1. Similarly, define P2j , the number of y1 observations less
than y2j , for j = 1, . . . , n2. The P1i and P2j are called the placements of y1

and y2, respectively [21]. Let P̄1 denotes the mean of y1 placements and P̄2

the mean of y2 placements. Also compute the quantities V1 =
∑n1

i=1(P1i − P̄1)2

and V2 =
∑n2

j=1(P2j − P̄2)2, then the Fligner-Policello statistic (modified Mann-
Whitney-Wilcoxon statistic) is given by

Û =

∑n1
i=1 P2i −

∑n2
j=1 P1j

2(V1 + V2 + P̄1P̄2)1/2
.

For a two-sided test the null hypothesis of equal medians is rejected if |Û | ≥ uα/2.
The critical value uα/2 can be calculated exactly or estimated using Monte Carlo
simulation for large n1 and n2. The procedure is also available in contributed R
package NSM3.

2.6. Simulations

We have conducted a simulation study to compare the performance, in
terms of level and power, of 10 statistics, namely, the statistic TN , the Welch
Statistic T1, the new procedure T , the likelihood ratio statistic L, the Wald
Test W, the score statistic S, the Fenstad statistic Z, the bootstap procedure
BT, the Wilcoxon two sample non parametric procedure WC and the recent
non-parametric procedure FP by [21]. To perform WC we used R function
wilcox.test().

To compare the statistics in terms of size, we considered µ1 = µ2 = 1, a
range of values of V R = σ2

1/σ
2
2 = 1/25, 2/24, 3/23, . . . , 24/2, 25/1, and a nominal
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level α = .05. Note that this choice of variance ratios ensures comparison of the
means for variances which are same to very different.

For sample sizes we considered equal and unequal n1 and n2. So, for ex-
ample, n1 was fixed at 5, 10, 15, 20, 25, 30. Then, for each fixed n1, empirical
levels were obtained for n2 = 5, 10, 15, 20, 25, 30. These results are all given as
graphs in Figures 1-6 in Appendix A1 in supplementary material. The graphs
are in terms of size against ρ = log(σ2

1/σ
2
2). All simulation results are based on

10,000 samples.

We now discuss the size results of the 10 statistics:

i. The statistics TN and T1: The statistic TN is liberal, highly liberal for
smaller n1 and n2. Even for n1 = n2 = 30, for which basic text books
recommend its use, it is liberal, empirical level ranging, on average, from
0.0504 (when V R ≈ 1) to 0.0618 (as V R is further and further away from
1). We then wanted to see what happens for larger n1 and n2. For this
we extended the simulation study for (n1, n2)= (35,35), (40,40), (50,50),
(60,60), (70,70), (80,80). Results are presented as graphs in Figure 7 in
Appendix A1 in supplementary material. For n1 = n2 = 35, it holds level
when −1 < ρ < 1. Otherwise, empirical level improves as the sample size
increases. However, even at n1 = n2 = 80, this statistic is somewhat liberal,
specially near ρ = ±3.

For a close comparison between TN and T1 empirical level results for n1 =
n2 = 35, 40, 50, 60, 70, 80 are given as graphs in Figure 1. It shows that even
at n1 = n2 = 80 empirical levels of TN are slightly larger than those of T1;
TN is still slightly liberal.

ii. The statistics T1 and T : For all situations studied, even for n1 = n2 = 5,
these two statistics hold level very closely having almost identical empiri-
cal levels. For a more close comparison between these two statistics some
graphs containing empirical levels are given in Figure 2. From these graphs
we conclude that T performs better than T1 only

(a) for n1 = n2 and the variance ratio is moderate (−.05 < ρ < .05) and

(b) for n1 6= n2 and sample size of the sample with larger variance is larger.

In all other situations, T1, in general, performs better than or same as T .

iii. The non-parametric procedures WC and FP: The Wilcoxon test WC, in
general, shows extreme behaviour. It is either conservative or liberal de-
pending on the value of ρ or whether n1 < n2 or n1 > n2 . The improved
non-parametric procedure that is most recently introduced and is available
in the R package, is substantially better than WC. The extreme behaviour
moderates a lot compared to WC. However, in general, it also does not
hold level. Only for n1 = n2 empirical level performance of this procedure
is very close to that of T1 and T (slightly better than that of T1 and T when
n1 = n2 = 5 and ρ is not too far from zero).
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iv. The bootstrap procedure BT: Only in some instances, for example, for
n1 = 5, n2 = 25 and n1 = 5, n2 = 30 and ρ ≤ 0, level performance of
this statistics is similar to those of T1 and T . However, this is a computer
intensive procedure.

v. The Fenstad Statistic Z: This statistic is conservative for smaller sample
sizes and liberal for larger sample sizes. Its best performance is for n1 =
n2 = 20, even then it is conservative.

vi The Statistics S, LR and W : The statistics LR and W are in general
liberal and the statistic S is conservative. In a lot of situations, for example,
for larger sample sizes the statistic S holds nominal level reasonably well
(empirical size being very close to those of T1 and T ). Otherwise it is
conservative.

For power comparison we considered all combinations of the sample sizes
n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. The variance ratios consid-
ered were V R = 1/16, 1/4, 1, 4, 16. As in the study of performance in terms of
size, the power study was done for the nominal level α = 0.05. We use µ1 = 1
and µ2 = µ1 + τ . The shift parameter τ is calculated as τ = δ

√
σ2

1/n1 + σ2
2/n2

(see, [7]), where δ = 1, 2, 3. Departure from equality of means for fixed but un-
equal variance is measured by τ . The power results are given in Tables 1 to 36
in Appendix A2 in supplementary material.

We now discuss the power results.

i. The statistic TN : It shows highest power which is not surprising as it is
also highly liberal. It is interesting to note that, even though TN is more
liberal than T1 and T for n1 = n2 = 30, it is only slightly more powerful.
For large and equal sample sizes (n1 = n2 = 80) in which its empirical
level is close to the nominal level power of this statistic is similar to that
of T1. A Power graph of TN , T1 and T for n1 = n2 = 80 and δ = 2 against
V R = 1/16, 1/4, 1, 4, 16 is given in Figure 3(a). The statistics T1 and T
show almost indistinguishable power, where as TN shows slightly larger
power. This is in line with the finding that TN is slightly liberal.

ii. The statistics T1 and T : Both these statistics show similar power. Power
increases as δ increases. See, for instance, power graphs of both these
statistics for n1 = n2 = 15, δ = 1 and δ = 2 against V R = 1/16, 1/4, 1, 4, 16
in Figures 3(b, c).

iii. As expected, power of all the other statistics L, W and Z or the procedures
BT, WC and FP is more or less than that of T1 and T depending on whether
they are liberal or conservative.

We now examine a situation n1 = n2 = 5, ρ = 1/1.69 from n1 = n2

in which empirical level performance of the procedure FP is very close to
that of T1 and T . The power graph is given in Figure 3(d) (power against
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δ = 0, 1, 2, 3). It shows that power of all three procedures increase as δ
increases (as expected). However, as δ increases, power of FP does not
increase as fast as the power of T1 and T. In general, for smaller and equal
sample sizes, level performances of the statistics T1, T , BT , and FP are
similar and hold level reasonably close to the nominal. However, in these
situations power of the procedure FP is similar or somewhat smaller in
comparison to that of the other three statistics or procedures.

iv. The Statistic S: In all those situations in which (for larger sample sizes
and for ρ < 0) this statistic holds nominal level reasonably well (empirical
size being very close to those of T1 and T ) the power of this statistic is also
close to those of T1 and T . Otherwise it is less powerful as expected.

2.7. An Example

This is a set of data from [?, ]p.83]Lehman1975Nonparametrics. The data
which refer to driving times from a person’s home to work, measured for two
different routes, are 6.5, 6.8, 7.1, 7.3, 10.2 (n1 = 5, x̄1 = 7.58, s2

1 = 2.237) and
5.5, 5.8, 5.9, 6.0, 6.0, 6.0, 6.3, 6.3, 6.4, 6.5, 6.5 (n2 = 11, x̄2 = 6.136, s2

2 = 0.073).
The means are different with very different variances. By examining the overall
findings of the simulation results above, we see that the only statistic that is
appropriate here is the statistic T1 as n1 = 5, n2 = 11, s2

1 = 2.237, s2
2 = 0.073

are contrary to the situation in which the statistic T or the procedure FP is
appropriate.

For these data the p-values of the statistics TN , T1, T , L, W, S, Z, BT,
WC, FP are 0.0321, 0.0968, 0.0961, 0.0500, 0.0167, 0.1009, 0.0327, 0.3395, 0.0030,
0.0000 respectively.

Now, the value of T1 = 2.1426 with p-value=.0968 indicates that means of
the two groups are not different at 10% level of significance.

However, note that (from Figure 1(b) of the supplementary material) both
T and T1 hold level for n1 = 5, n2 = 10 and ρ > 3 and their p-values (.0968 and
.0961) are also very similar. The same is more or less true for S whose empirical
level is below 0.05 but not too much (again from Figure 1(b) of the supplementary
material). The p-value of 0.10 for S is also not too different from those of T and
T1. The overall conclusion using the p-values coincide with the findings in Figure
1(b) of the supplementary material. But, since n1 = 5, n2 = 11 and ρ̂ > 3 for
these data the conclusion is that the the hypothesis of equality of the means can
be accepted at 10% level of significance. However, at 5% level of significance
there is evidence that the two means are different.
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Figure 1:
Plots of graphs showing empirical levels of the statistics TN and
T1 for large sample sizes.
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Figure 2:
Plots of graphs showing empirical levels of the statistics T1 and
T under certain conditions explained in the text.

3. Two negative binomial populations

3.1. The Negative Binomial Formulation

The most convenient form of the negative binomial distribution, henceforth
denoted by NB(µ, c) is

(3.1) f(y|µ, c) = Pr(Y = y|µ, c) =
Γ(y + c−1)

y!Γ(c−1)

(
cµ

1 + cµ

)y ( 1

1 + cµ

)c−1

,
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Figure 3:
Plots of graphs showing empirical power (a) of the statistics TN ,
T1, and T for (n1, n2) = (80, 80) and δ = 2; (b) of the statistics
T1 and T for (n1, n2) = (15, 15) and δ = 1; (c) of the statistics
T1 and T for (n1, n2) = (15, 15) and δ = 2; (d) of the statistics
T1, T , and FP for (n1, n2) = (5, 5) and V R = 1/1.69; (e) of the
statistics T1 and T for (n1, n2) = (5, 5) and V R = 1/4; (f) of
the statistics T1 and T for (n1, n2) = (5, 15) and V R = 25/1.

for y = 0, 1, . . . , µ > 0 [32, 33]. See, [30] for further details.

Now, let yi1, . . ., yini be a sample realization from NB(µi, ci), i = 1, 2.
Our problem is to test H0 : µ1 = µ2, where c1 and c2 are unspecified. To test
this hypothesis [30] develop a likelihood ratio test L, a likelihood ratio test based
on the bias corrected maximum likelihood estimates of the nuisance parameters
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L(bc), a score test T 2
NB (henceforth denoted by S), a score test based on the

bias corrected maximum likelihood estimates of the nuisance parameters S(bc), a
C(α) test based on the method of moments estimates of the nuisance parameters.
[30] show that this later statistic, if Welch’s [42] degree of freedom correction is
applied, becomes identical to Welch’s t-statistic T1.

[30] investigated by simulations, for level and power, the statistics L, L(bc),
S, S(bc), T1, and the statistic TN (pretending that negative binomial data can be
treated as normal N(µ, σ2) data). Their simulation study showed no advantage of
the bias corrected statistics L(bc) and S(bc) over their uncorrected counterparts.
So, here and in subsequent sections any statistic based on bias corrected estimates
of the nuisance parameters will not be discussed. The remaining four statistics
and the new statistic T developed in Section 2 for normal data are given below.

3.2. The likelihood Ratio Test

The likelihood ratio test is fully described and all necessary results are
developed in [30]. So, to save space we omit this from presentation in this paper
and refer the reader to that paper.

3.3. The Score Test

The score test statistic (for derivation see, [30]) is

S =
2∑
i=1

ni(ȳi − µ̃0)2

µ̃0(1 + µ̃0c̃i0)
,

which has an asymptotic χ2(1) as n→∞, where n = n1 + n2.

3.4. The Other Three Statistics TN , T1 and T

These three statistics are given in Section 2.1 for data that come from
normal distribution. Here the same statistics are used for negative binomial data
as if these are normally distributed data.

Apart from the statistic T , which is newly introduced in Section 2.3, [30]
show by simulations that for moderate to large sample sizes, in general, the
statistic T1 shows best overall performance in terms of size and power and it is
easy to calculate. For large sample sizes, for example, for n1 = n2 = 50, all four
statistics, L, S, T1, TN do well in terms of level and their power performances
are also similar.
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3.5. Simulations

We have conducted a simulation study to compare the 5 statistics TN , T1,
T , L, and S, the bootstrap procedure BT and the two non-parametric procedures
WC and FP . The three statistics TN , T1, and T and the three procedures BT ,
WC, and the FP are applied here exactly the same way as in the case of normally
distributed data in Sections 2.4 and 2.5 respectively.

To compare the statistics in terms of size, we considered all combinations
of the sample sizes n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30, µ1 =
µ2 = 2, c1 = .10, .25, .40, .55, .70, .85, 1, c2 = .10, .25, .40, .55, .70, .85, 1, and a
nominal level α = .05. These results are all given as graphs in Figures 1-6 in
Appendix B1 in Supplementary Material. The graphs are in terms of size against
ρ = log(c1/c2). All simulation results are based on 10,000 samples. A discussion
of the size results is given in what follows.

i. For n1 = n2 = 5, 10, the L statistic holds level most effectively (though
somewhat conservative for n1 = n2 = 5 and somewhat liberal for n1 =
n2 = 10), This finding is in line with Paul and Alam (2014). In these situ-
ations another statistic that is competing with L having very similar level
is TN .

ii. For the smaller of n1 and n2 equal to 5 and the other equal to 10 to 30, the
L statistic performs best, although consistently somewhat conservative. In
these situations, for all other statistics no consistent pattern emerges. For
example, TN is mainly very highly liberal, only in a very few situations its
empirical level is close to the nominal level. For the smaller of n1 and n2

equal to 10 and the other equal to 10 to 30, the L statistic performs best,
although consistently somewhat liberal. In these situations the other statis-
tics are either liberal or conservative. For unequal sample sizes, smaller of
n1 and n2 less than 20 and the other up to 30 the L statistic seems to
perform best.

iii. For the smaller of n1 and n2 equal to or greater than 20 and the other
also equal to or greater than 20, overall, the best performing procedures
are through the use of the statistic T1 or T or the score test statistc S. At
n1 = n2 = 30 empirical level of all these 3 procedures are very close to the
nominal level.

For power comparison we consider all combinations of the sample sizes
n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. We use µ1 = 1, c1 = .1,
c2 = .10, .25, .40, .55, .70, .85, 1, and µ2 = µ1 + δ, for δ = 1.0, 1.5, 2.0. As in the
study of performance in terms of size, the power study was done for the nominal
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level α = 0.05. All simulation results are based on 10,000 samples. A discussion
of the power results is given in what follows.

We first concentrate on the L statistic which seems to be doing better in
terms of size for the smaller of n1 and n2 less than 20 and the other up to 30.
The power results are given in Tables 1 to 27 in Appendix B2 in supplementary
material. In general, the L statistic shows highest power. Only in some situations
the statistic TN or T1 or T show higher power, but in these situations these later
statistics are also liberal.

Now we discuss power performance of the statistics T1, T and S which
perform best in terms of size starting at n1 = 20 and n2 = 20. Here we compare
these only with the L statistic as it is, in general, liberal or conservative but not
too much. The power results are given in Tables 28 to 36 in Appendix B2 in
supplementary material. The L statistic, in general, is somewhat more powerful
than the other three statistics, but it is also slightly liberal in comparison to the
other three statistics. The other 3 statistic show similar power. For example, for
n1 = n2 = 20 and c2 = .7 empirical level of L is close to 0.06 and those of the
other three are close 0.05 (see, graph for n1 = n2 = 20 in Figure 4). The powers
for L, T1, T and S, δ = 2, are 0.694, 0.554, 0.555 and 0.572 respectively (see,
Table 22).

In general, power decreases as the value of c2 goes further away from c1 =
.10 and increases as the sample size increases.
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Figure 4:
Plots of graphs showing empirical levels of all the statistics for
(n1, n2) = (20, 20).
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Table 1:
Frequency of patients by number of lesions on each patients
angiogram [6].

Number of
lesions (yij) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 µ̂ ĉ

Cholestyramine 5 4 6 5 7 7 6 6 7 2 2 1 0 0 1 4.932 0.250
Placebo 2 4 6 4 6 9 7 5 2 4 4 2 0 2 0 5.509 0.185

3.6. An Example

[36] presents a set of data, originally given by [6], to see the effectiveness of
a treatment (Cholestyramin), in comparison to a placebo, in reducing the number
of vascular lesions. The data are given in Table 1, which refer to the observed
number of vascular lesions on each patient’s angiogram in the treatment group
as well as in the control group (placebo).

The maximum likelihood estimates of µ and c based on a negative binomial
model for the two groups are given in this table as well. The µ̂’s and the ĉ’s both
differ. We now apply the statistics T1, T and T 2

NB to test the equality of the two
means. The values of T1, T and S with p-value in the parenthesis are -0.379(.705),
-0.379(.704), and 0.146(.702) respectively. Based of the p-values which are very
close the difference is not significant.

We now show how to apply the bootstrap critical value method using the
likelihood ratio statistic L for small sample sizes. For this we take a sample of
size n1 = 15 with replacement from the treatment group and a sample of size
n1 = 10 with replacement from the control group which are given below
Treatment group: 8 8 10 5 2 0 0 7 3 1 1 3 8 6 0
Placebo group: 1 1 2 9 13 4 6 9 10 6
Suppose these are the observed data for the two groups. For these data the value
of L is 1.26 and the bootstrap 95% critical value is 5.16 which indicates that the
difference between the two means is not significant.

The bootstrap critical value is obtained as: from the sampled data of n1 =
15 and n2 = 10 above we take 10000 pairs of samples (one sample of size 15
from the treatment group and one sample of size 10 from the control group)
with replacement. For each pair of samples we obtain the value of L. Then
the bootstrap critical value is the 9500th value of the ordered (from smallest) L
values.
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4. Two beta-binomial populations

4.1. The Beta-Binomial Formulation

For modelling data in the form of proportions with extra-dispersion the
most popular model is the extended beta-binomial distribution of [34]. Let y|p ∼
binomial(m, p), where p is a beta random variable with mean π and variance
π(1 − π)φ, where φ is an extra dispersion parameter. Then the unconditional
distribution of y is the extended beta-binomial distribution of [34] for which the
pmf is given in what follows.

(4.1) Pr(y|π, φ) =

(
m

y

)y−1∏
r=0

[π(1− φ) + rφ]
m−y−1∏
r=0

[(1− π)(1− φ) + rφ]

m−1∏
r=0

[(1− φ) + rφ]

with mean mπ and variance mπ(1 − π)(1 + (m− 1)φ), where 0 ≤ π ≤ 1, and
φ ≥ max [−π/(m− 1),−(1− π)/(m− 1)].

Denote this probability mass function by BB(m,π, φ). Now, let yi1/mi1, . .
., yini/mini be a sample realization from BB(mij , πi, φi), i = 1, 2, j = 1, . . . ,mini .
Our purpose is to test H0 : π1 = π2 with φ1 and φ2 being unspecified. [3]
develop eight tests, namely, a likelihood ratio test, a C(α) (score) test based
on the maximum likelihood estimates of nuisance parameters, a C(α) test based
on the [?] method of moments estimates of the nuisance parameters, a C (α)
test based on the quasi-likelihood and the method of moments estimates of the
nuisance parameters by [8], a C(α) test based on the quasi-likelihood and the
method of moments estimates of the nuisance parameters by [39], a C(α) test
based on extended quasi-likelihood estimates of the nuisance parameters, and
two non-parametric tests by [35]. See, [3] for further details.

By doing an extensive simulation study [3] show that none of the statistics,
except the C(α) statistic CBB, does well in terms of level and power. The statistic
CBB holds nominal level most effectively (close to the nominal level) and it is at
least as powerful as any other statistic which is not liberal. It has the simplest
formula, is based on estimates of the nuisance parameters only under the null
hypothesis and is easiest to calculate. Also, it is robust in the sense that no
distributional assumption is required to develop this statistic.

In this paper we compare the performance CBB with the statistics TN , T1

and T , the bootstrap procedure BT and the two non-parametric procedures WC
and FP . These are described below for the application to data in the form of
proportions.
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4.2. The Statistic CBB

The statistic CBB is (detailed derivation is given in [3] CBB = C2/(A −
A2/B), which is distributed as chi-squared, asymptotically, as n → ∞ (n =
n1 + n2), with 1 degree of freedom, where

C =

n1∑
j=1

[
1

1 + (m1j − 1)φ1

{
y1j

π
− m1j − y1j

1− π

}]
,

A =

n1∑
j=1

[
1

1 + (m1j − 1)φ1

{
m1j

π(1− π)

}]
and

B =
2∑
i=1

ni∑
j=1

[
1

1 + (mij − 1)φi

{
mij

π(1− π)

}]
.

The parameters π, φ1 and φ2 in C, A and B are replaced by the maximum
extended quasi-likelihood estimates π̂, φ̂1 and φ̂2 obtained by solving

2∑
i=1

ni∑
j=1

[
1

1 + (mij − 1)φi

{
yij
π
− mij − yij

1− π

}]
= 0,

n1∑
j=1

[
m1j − 1

{1 + (m1j − 1)φ1}2
{
y1j log

(z1j

π

)
+ (m1j − y1j) log

(
1− z1j

1− π

)

−1 + (m1j − 1)φ1

2

}]
= 0

and
n2∑
j=1

[
m2j − 1

{1 + (m2j − 1)φ2}2
{
y2j log

(z2j

π

)
+ (m2j − y2j) log

(
1− z2j

1− π

)

−1 + (m2j − 1)φ2

2

}]
= 0

simultaneously.

4.3. The Bootstrap Procedure

The bootstrap procedure is developed here for data in the form of propor-
tions (e.g. x/n) as follows:

1. Calculate the continuous data in the form of proportions for the two samples
as pij = yij/mij , i = 1, 2, j = 1, . . ., mini . Let p̄i =

∑ni
j=1 pij/ni and
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s2
iP =

∑ni
j=1(pij − p̄i)2/(ni − 1). Then, define a statistic TP , analogous to

TN , as

TP =
p̄1 − p̄2√
s21P
n1

+
s22P
n2

.

2. Obtain a bootstrap sample of size ni; say p∗ij , from the adjusted pij , that

is, from padjij = pij − p̄i + p̄, where p̄ is the overall mean of pij .

3. Calculate

T ∗P =
p̄∗1 − p̄∗2√

s2∗
1P /n1 + s2∗

2P /n2

.

4. Repeat step 2 and 3 B times (B = 999); thereby obtaining 999 bootstrap
values of TP ∗.

5. For a two sided test, a difference between the means is significant if the
observed value of |TP | > (100(1− α/2)th values of T ∗P .

4.4. The Other Three Statistics TN , T1, and T and The three Proce-
dures BT , WC, and FP

Calculation of the three statistics TN , T1, and T and the three procedures
BT , WC, and FP proceed by considering the pij , as yij in Section 2.

4.5. Simulations

We have conducted a simulation study to compare, in terms of level and
power, the statistics CBB, TN , T1 and T , the bootstrap procedure BT and the
two non-parametric procedures WC and FP .

To generate data yij from BB(mij , πi, φi), we take random samples with re-
placement of n1 = 5, 10, 15, 20, 25, 30 litters with the litter sizes m1j , j = 1, . . . , 27
of the control group (Group 1) and n2 = 5, 10, 15, 20, 25, 30 litters with the litter
sizes m2j , j = 1, . . . , 21 of the medium group (Group 2) of Paul (1982). The m1j ,
j = 1, . . . , 27 of group 1 were 12, 7, 6, 6, 7, 8, 10, 7, 8, 6, 11, 7, 8, 9, 2, 7, 9, 7,
11, 10, 4, 8, 10, 12, 8, 7, 8 and m2j of group 2 were 4, 4, 9, 8, 9, 7, 8, 9, 6, 4,
6, 7, 3, 13, 6, 8, 11, 7, 6, 10, 6. Note that our simulation study is much more
extensive in comparison to [3]. Where as [3] consider fixed sample sizes (n1 = 27
and n1 = 21), we consider random samples of different sizes given above. The
different combinations of parameter values are also much more extensive in our
study.
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For empirical levels we considered π1 = π2 = π = 0.05, 0.10, 0.20, 0.40, 0.50
and (φ1, φ2) = (0.05, 0.50), (0.10, 0.40), (0.15, 0.30), (0.20, 0.20), (0.30, 0.15),
(0.40, 0.10), (0.50, 0.05).

For power comparison the values of π1 and π2 considered were according to
the formula π2 = π1 + δ with π1 = 0.05, 0.10, 0.20, 0.40 and δ = 0.05, 0.10, 0.20.
That is, for each value of π1 power has been simulated for three increments
0.05, 0.10, 0.20. The same combination of values (φ1, φ2) were chosen as in the
study of level performance.

All simulation results are based on 10,000 good samples. The definition of
good samples here is “those samples for which the estimating equations converged
within the permitted range ∩j (−1/(nij − 1)) < φi < 1, i = 1, 2. For more details
see [3].

The empirical level results are summarized in Figures 1-36 in Appendix C1
and empirical power results are summarized in Tables 1-36 in Appendix C2 in
Supplementary Material. The Level results are graphed against log(φ1/φ2) and
power tables are in terms of VR = (φ1/φ2).

We now discuss the size results of the 7 statistics:

(i) The statistics TN : In general, the statistic TN does not show any consistent
behaviour, although shows mostly highly liberal behaviour.

(ii) The statistics T1 and T : In general, level performance of these two statistics
are similar. These two statistics hold level reasonably well when n1, n2

and π are all large, for example, for n1 ≥ 20 and n2 ≥ 20 and π (≥ .2).
See Figures 22, 23, 24, 28, 29, 30, 34, 35 and 36 in Appendix C1 of the
supplementary material. For some other situations, for example for n1 =
n2 = 10, 15 and π ≥ .20, performance of these two statistics are also the best
and hold nominal level reasonably well. See Figures 8 and 15 in Appendix
C1 of the supplementary material.

(iii) The statistic CBB, recommended by Alam and Paul (2017): In some small
sample size situations this statistic holds level reasonably well. See, for
example, the situations in which one of the sample size is large and π is
not too large (π = .20) (graphs (c) in figures 8-13, 15-18, 21-24, 28-36 in
Appendic C of the supplementary material). For small π (in case of some of
π=.05, .10, and .20) CBB performs best ( see Figures 8(a,b,c), 9(c), 10(c),
11(c), 14(c), 15(c), 16(c), 17(c), 21(c) in Appendix C1 of the supplementary
material).

For large sample sizes (n1 ≥ 20 and n2 ≥ 20) level performance of CBB is
close to those of T1 and T for π = .2. However, as π increases from .2 it
shows conservative behaviour (see Figures 22, 23, 24, 28, 29, 30, 34, 35 and
36 in Appendix C1 of the supplementary material).

(iv) Performance of all other statistics are erratic at the best.
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Next we discuss power performance.

(i) Since level performance of the statistic TN , the bootstrap procedure BT
and the two non-parametric procedures WC and FP are, in general, not
satisfactory, we do not discuss their power performances, although power
results are given in the supplementary material.

(ii) Power of T1 and T are similar in all situations studied. Note from the level
results that for large sample sizes ( n1 ≥ 20 and n2 ≥ 20) level performance
of CBB is close to those of T1 and T for π = .2 and as π increases from .2 it
shows conservative behaviour. In all these situations power of CBB is the
best. That means, CBB shows higher power even in situations where it is
conservative but T1 and T hold level. So, in these situations, unless CBB
can be adjusted to hold level we can not recommend its use. Power of CBB,
in most small sample sizes and small π (< .2) situations in which it holds
level, in general, is larger or similar to those of T1 and T .

4.6. Two Examples

Example 1. Here, for illustrative purposes, we use data from an experi-
ment, given in [40], to identify in utero damage in laboratory rodents after exposer
to boric acid. The study design involved four doses of boric acid. The compound
was administered to pregnant female mice during the first 17 days of gestation,
after which the dams were sacrificed and their litters examined. Table 2 lists
the number of dead embryos and total number of implants at each of the four
exposure doses: d1 = 0 (control), d2 = 0.1, d3 = 0.2, and d4 = 0.4 (as percent
boric acid in feed).

The maximum likelihood estimates of the parameters (π, φ) for the four
dose groups are also given in Table 2. It shows that the estimates of the π̂’s are
different and also the estimates of the φ̂’s are different. Now, suppose we want to
compare π of the control group (d1 = 0) with that of the dose group 4 (d4 = .4).
That is, we want to test H0 : π1 = π4.

Now, the maximum likelihood estimate of π1 is 0.069. If we assume that
0.069 is the true value of π1 and H0 : π1 = π4 is true, then, under the null
hypothesis, the value of the common π is 0.069. Further, the sample sizes in the
two groups are 27 and 26 which are between (25,25) and (30,30). Now, looking
at Figures 29, 30, 35 and 36 in Appendix C1 of the supplementary material we
see that none of the statistics hold nominal level for π = 0.069 and sample sizes
n1 = 27 and n2 = 26. So, we apply a Monte Carlo Procedure (MCP) similar to
the parametric bootstrap. For this we consider

t =
ȳ1 − ȳ2√
s21
n1

+
s22
n2
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Table 2:
Per-litter data from Teratological study of boric acid (Stalon, et
al. (2000). (i) Number of dead embryos. (ii) Total number of
implants. Doses d1 = 0 (control), d2 = 0.1, d3 = 0.2, d4 = 0.4.

Dose Group π̂ φ̂

d1 = 0

(i) 0 0 1 1 1 2 0 0 1 2 0 0 3

.0692 .0219
1 0 0 2 3 0 2 0 0 2 1 1 0 0
(ii) 15 3 9 12 13 13 16 11 11 8 14 13 14
13 8 13 14 14 11 12 15 15 14 11 16 12 14

d2 = 0.1

(i) 0 1 1 0 2 0 0 3 0 2 3 1 1

.0968 .0058
0 0 0 1 0 2 2 2 3 1 0 1 1 1
(ii) 6 14 12 10 14 12 14 14 10 12 13 11 11
11 13 10 12 11 10 12 15 12 12 12 12 13 15

d3 = 0.2

(i) 1 0 0 0 0 0 4 0 0 1 2 0 1

.0521 .0245
1 0 0 1 0 1 0 0 1 2 1 0 0 1
(ii) 12 12 11 13 12 14 15 14 12 6 13 10 14
12 10 9 12 13 14 13 14 13 12 14 13 12 7

d4 = 0.4

(i) 12 1 0 2 2 4 0 1 0 1 3 0 1

.2234 .2497
0 3 2 3 3 1 1 8 0 2 8 4 2
(ii) 12 12 13 8 12 13 13 13 12 9 9 11 14
10 12 21 10 11 11 11 14 15 13 11 12 12

Note that if we apply a t-test with Welch’s degree of freedom, it becomes the
procedure T1. We now do the test by obtaining approximate critical values, for a
two sided test, of the exact distribution of t which are calculated as what is given
below.

Keep mij fixed as given in the two groups, j = 1, . . . , 27 for i = 1 and j =
1, . . . , 26 for i = 2. Now, generate random numbers from BB(m1j , 0.069, 0.0218)
for j = 1, . . . , 27 and random numbers from BB(m2j , 0.069, 0.2496) for j =
1, . . . , 26. This gives one sample for which calculate the value of t. Repeat this
procedure and generate 100,000 samples and thereby 100,000 values of t. Order
these 100,000 values from the smallest to the largest. The 2500th and the 97500th

values are the 2.5% and the 97.5% critical values.

Now, the value of t from the data in the dose groups d1 = 0 and d4 = .4
is -2.8182. If -2.8182 does not fall between the 2.5% and the 97.5% critical
values reject the null hypothesis of equality of the two proportions at 5% level of
significance.

Following the procedure described above, the 2.5% and the 97.5% critical
values obtained are -1.673003 and 2.637581 respectively. Since T1 = −2.8182 falls
in the rejection region the null hypothesis H0 : π1 = π4 is rejected.

To check whether this procedure works we did some further simulations. For
empirical level we again obtained 100,000 values of t as above with π = 0.069. We
then calculated the proportion of t values that fall outside (-1.673003, 2.637581).
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Table 3:
Power Table of T1 and MCP, π = 0.069 + δ, δ =
0, 02, .04, . . . , .14.

δ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T1 0.068 0.054 0.119 0.248 0.424 0.604 0.756 0.866
MCP 0.052 0.100 0.227 0.406 0.599 0.757 0.868 0.938

Table 4:
Data from an in vivo cytogenetic assay [44].

Dose Group No. of aberrant cells in 50 cells per animal π̂ φ̂

Negative control 0 4 0 0 4 0 1 1 0 0 0.0199 0.0447
Low Dose 1 0 3 0 1 0 3 0 0 1 0.0180 0.0125
Medium Dose 6 5 0 3 7 1 1 0 0 0 0.0454 0.0690
High Dose 3 2 1 6 4 0 0 0 0 5 0.0417 0.0476

When this proportion is multiplied by 100 we obtain the empirical level. For
power we do exactly the same as above but now take π = 0.069 + δ, where
δ = 0.02, .04, . . . , .14. The power results are given in Table 3.

To compare the performance of the above Monte Carlo method with that of
T1 we extended the simulation study by obtaining the proportion of the 100,000
samples for which |t| > the critical value of T1 with Welch’s degree of freedom.
Results are also given in Table 3, which show that the new Monte Carlo procedure
holds level almost exactly, the Welch T1-test is somewhat liberal and yet the new
procedure shows higher power compared to T1.

Example 2. A data set from [44] of an in vivo cytogenetic assay is given
Table 4. In this example, the sample sizes n1 = n2 = 10 are small in which the
extended quasi-likelihood based score test CBB does well (see Figure 8(a,b,c) in
Appendix C1 of the supplementary materia). For illustrative purpose, we test the
equality of proportions in the first two groups. For this the value of CBB = 0.0171
with p-value=0.8660 showing strong support for the null hypothesis of the two
proportions.

5. Two Weibull populations

5.1. The Weibull Formulation

Data in the form of survival times arise in many fields of studies such as
engineering, manufacturing, aeronautics and bio-medical sciences. See [28] for
a recent review. The two parameter Weibull random variable Y with shape
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parameter β and scale parameter α has the probability density function

(5.1) f(y;α, β) =
β

α

( y
α

)(β−1)
exp

[
−
( y
α

)β]
; y ≥ 0; β, α > 0.

The mean and variance of Y are µ = αΓ(1 + 1/β) and σ2 = α2[Γ(1 + 2/β) −
{Γ(1 + 1/β)}2] respectively.

In some practical data analytic problems lifetimes or survival times data
arise in the form of two samples following two independent Weibull populations
with different shape and scale parameters. Let y11, . . . , y1n1 and y21, . . . , y2n2 be
samples from two independent Weibull populations with parameters (α1, β1) and
(α2, β2) respectively. In such a situation it may be of interest to test the equality
of the scale parameters with the shape parameters being unspecified. That is to
test the null hypothesis H0 : α1 = α2, where β1 and β2 are unspecified.

For this problem [2] develop four test statistics, namely, a likelihood ratio
statistic, a score statistic, and two C(α) statistics; one of which is based on the
method of moments estimates of the nuisance parameters by [11] and the other
is based on the method of moments estimates of the nuisance parameters by [41].
However, through a simulation study they show that the two statistics based on
the method of moments estimates of the nuisance parameters perform best.

However, the actual analog of the Behrens-Fisher problem is to test H0 :
µ1 = µ2 with σ2

1 and σ2
2 being unspecified. To deal with this problem we develop

a score test in Section 5.2. In Section 5.3 we conduct a simulation study to
compare this statistic for level and power with the statistics TN , T1 and T , and
the procedures BT , WC and the FP .

5.2. The Score Test

A score test statistic (derivation is given in Appendix E of the supplemen-
tary material) for testing H0 : µ1 = µ2, where σ2

1 and σ2
2 are unknown and

unspecified is given by Sw = S2/I, where

S =
1

Γ(1 + β−1
1 )

−n1β1

µ
+
β1{Γ(1 + β−1

1 )}β1
µβ1+1

n1∑
j=1

yβ11j


+

1

Γ(1 + β−1
2 )

n2β2

µ
− β2{Γ(1 + β−1

2 )}β2
µβ2+1

n2∑
j=1

yβ22j
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and

I =
1

Γ(1 + β−1
1 )

n1β1

µ2
− β1(β1 + 1){Γ(1 + β−1

1 )}β1
µβ1+2

n1∑
j=1

E(yβ11j )

−
1

Γ(1 + β−1
2 )

n2β2

µ2
− β2(β2 + 1){Γ(1 + β−1

2 )}β2
µβ2+2

n2∑
j=1

E(yβ22j )

 .

In S and I the quantity, such as E(yβi) is calculated as E(yβi) =
∫∞

0 yβi f(y, µ, βi)dy.
Of course, the parameters µ, β1 and β2 in S and I are to be replaced by their
maximum likelihood estimates µ̂, β̂1 and β̂2 which are obtained by maximizing
the log-likelihood function

l =
2∑
i=1

[
1

Γ(1 + β−1
i )

{
nilog

(
βiΓ(1 + β−1

i )

µ

)
+ (βi − 1)

{
ni∑
j=1

log(yij)−

nilog

(
µ

Γ(1 + β−1
i )

)}}]
−

2∑
i=1

{
Γ(1 + β−1

i )
}βi−1

µβi

ni∑
j=1

yβiij

with respect to the parameters µ, β1 and β2. The distribution of Sw is asymp-
totically distributed as chi-square with one degrees of freedom.

5.3. Simulations

We have conducted a simulation study to compare the statistic Sw, in
terms of level and power, with the three statistics TN , T1 and T , and the three
procedures BT , WC, and FP . These statistics are applied here exactly the same
way as in the case of normally distributed data studied in Sections 2.4 and 2.5.
As in the two previous sections we use the Weibull data as if the data come from
two normal populations.

To compare the statistics in terms of size and power, we considered the
sample sizes n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. We generate
data from the Weibull (α1, β1) and Weibull (α2, β2) populations. For size com-
parison, in order to comply with equal means condition, we fix the values of α1,
β1, and β2; and evaluate the expression {α1Γ(1 + 1/β1)}/{α2Γ(1 + 1/β2)} = 1 to
obtain the value of α2. For power comparison, we again fix the values of α1, β1,
and β2; but evaluate the expression {α1Γ(1+1/β1)}/{α2Γ(1+1/β2)} = 1/(1+δ)
with δ = .1, .2, .3, to obtain the value of α2. Both the size and power are calcu-
lated for all combinations of β1 = 1, 2, 3, 4, 5 and β2 = 2, 3, 4 while fixing α1 = 1
and determining α2 from the expressions given above.

The size results are all given as graphs in Figures 1-36 and the power
results are all given in Tables 1-36 in Appendix D2 in supplementary material.
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The graphs are in terms of size against ρ = log(σ2
1/σ

2
2). All simulation results

are based on 10,000 samples.

We now discuss the size results, of the 7 statistics, given in Figures 1-36 in
Appendix D1 in the supplementary material:

(i) The statistic TN : The statistic TN is liberal, highly liberal for smaller n1 and
n2. Even for n1 = n2 = 30 it is liberal, empirical level ranging, on average,
from 0.0525 (when V R ≈ 1) to 0.0781 (as V R is further and further away
from 1).

(ii) The statistics T1 and T : Overall, these two statistics perform best, even for
smaller sample sizes, holding empirical levels closer to the nominal. Only
exceptions are when the sample size differences are large as well as when
the differences between the variances are large, also when n2 > n1 as well
as σ2

2 > σ2
1. In these situations both of these statistics can be quite liberal,

although T1 is slightly better than T . See, for example, Figures 4, 5, 11,
12, 25 of Appendix D1 of the the supplementary material.

(iii) Behaviour of the remaining four statistics or procedures are inconsistent,
sometimes very liberal and sometimes very conservative. The exceptions
are for

(a) FP for n1 = n2 which does as well as T1 and T in some cases (see, for
example, Figure 1),

(b) BT , irrespective of sample sizes, which does as well or better than T1

and T (see, for example, Figure 5).

Next we discuss power performance using the power results given Tables
1-36 in Appendix D2 in the supplementary material.
Since the procedures TN , WC, and Sw have highly inconsistent behaviour in
terms of level, we omit these from power discussion. Power of T1 and T are
similar. However, T shows some edge over T1. In general, these show higher
power than FP and BT . Even in the situations in which FP and BT have slight
advantage in terms level, T1 and T maintain higher power.

5.4. An Example

[17] give data on survival times (in weeks) for two groups of patients who
died of acute myelogenous leukemia. Patients were classified into the two groups
according to the presence or absence of a morphologic characteristic of white cells.
Patients termed AG positive were identified by the presence of Auer rods and/or
significant granulature of the leukemic cells in the bone marrow at diagnosis. For
the AG negative patients these factors were absent. The survival times for 17
patients in the AG positive group were: 65, 156, 100, 134, 16, 108, 121, 4, 39,
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143, 56, 26, 22, 1, 1, 5, 65 and those for 16 patients in the AG negative group
were: 56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

We now test the equality of the mean survival times in the two groups. As
the performance of the five statistics or procedures TN , WC, BT , FP , and CW
are far less than satisfactory we do not consider them any further. The values of
T1 and T with corresponding p-values in the parenthesis are 3.1124 (0.0054) and
3.1124 (0.0047) respectively leading the conclusion that the two means are not
the same.

6. Discussion

We do a comprehensive review of the standard Behrens Fisher (BF) prob-
lem and some of its analogs. Among the B-F analogous problems we deal with
the two parameters negative binomial, the Beta-binomial, and the two parameter
Weibull. In each case a number of procedures are either reviewed or developed
and extensive simulation studies are conducted to study the properties of the
procedures in terms of size and power. Some new results and findings are shown
and examples of application are given in all cases.

If the variance ratio is known, the mixing parameter λ in K is then known,
so the distribution of T (§2.3) becomes pivotal, which is not an exact t-distribution.
In fact, if the variance ratio is given, one should use the pooled variance estima-
tor which can lead to a t-statistic. For other distributions other than the normal
cases, it is the same story but in an asymptotical sense. The tests based on
t-distributions or chi-square distributions or any other derived from “normal dis-
tributions all become asymptotical approximations. Therefore, if there is some
reason to specify the variance ratio σ2/σ1, the traditional two independent sam-
ples Student t-test or Welch test are usable but both are approximations.

A review paper can possibly be never complete given that a vast literature
is available. Here also we do not make such a claim. For example, we do not
consider the Bayesian methods [24, 45] to the solve Behrens Fisher problem.

For the standard Behrens Fisher problem we studied 10 procedures TN , T1,
T , L, W , S, Z, BT , WC and FP including a new procedure T . Based on the
finding through extensive simulation study we recommend that the statistic TN
be used only when the two means are visibly different or if the sample sizes are
large, such as, min(n1, n2) ≥ 80 (only at this sample size level the Central Limit
Theorem reasonably takes hold); otherwise use T1 except for

(i) (a) n1 = n2 and the variance ratio is not extreme (close to 1/25 or 25/1
limits).

(b) for n1 6= n2 and sample size of the sample with larger variance is larger,
in which case use T .
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(ii) for smaller and equal sample sizes use the procedure FP .

For the negative binomial BF Problem we studied five statistics TN , T1,
T , LRNB, and T 2

NB and the bootstrap procedure BT and two non-parametric
procedures WC and FP . Note that six of these TN , T1, T , BT , WC and FP are
the same as those used for the standard BF problem. We recommend that for the
smaller of n1 and n2 less than 20 and the other up to 30 the LR statistic, although
somewhat liberal or conservative, be used. In these situations, in general, it is
most powerful. However, for some extra effort, it would be advisable to use the
bootstrap p-value based on this statistic. For the sample sizes stating at n1 = 20
and n2 = 20 (n1 equal to or not equal to n2) the statistics T1, T and S all hold
level reasonably well and at n1 = n2 = 30 empirical level of all these 3 procedures
are very close to the nominal level. In these situations these statistics are also,
in general, most powerful and therefore recommended. The practitioner can use
any one of them.

For the beta-binomial BF problem we have studied seven statistics or pro-
cedures CBB, TN , T1, T , BT , WC, and FP . For larger sample sizes (n1 or n2

≥ 20) and for large π (≥ .2) the statistics T1 and T are the best and therefore
recommended. For small sample sizes and small π (< .2) we recommend to use
the statistic CBB. In all other situations we recommend a procedure similar to
the parametric bootstrap given in example 1 in Section 4.5.

The results of the statistics T1 and T are interesting. Even though here
we are not dealing with normal data, the level properties, for large sample sizes
and large π (n1, n2 ≥ 20, and ≥ .2), show to be similar to those for normally
distributed data. The reason, in our opinion, is that the transformation of the
discrete (binomial) data yij to continuous (proportions) data pij = nij/yij does
the trick in this situation.

For the Weibull BF problem also we have studied seven statistics Sw, TN ,
T1, T , BT , WC and FP . Based on extensive simulation studies we recommend
that the statistic T1 or T be used for larger sample sizes (n1 and n2 both larger
than 25), otherwise use the bootstrap p-value or the approximate critical value
of the exact distribution of the statistic based on T1 or T .

The interesting overall finding is that the statistic T1 or T can be used for
all the cases studied here for sample sizes larger than 25 except for the beta-
binomial samples in which the additional requirement is that π be large (≥ .2)
. For smaller sample sizes, specific recommendations given above, on a case by
case basis, should be followed. The statistic TN should never be used in the BF
or BF analogous problems unless the two sample sizes are very large.

It will be interesting to find through further studies whether these rec-
ommendations are applicable in other BF analogous problems, such as, testing
equality of means of two gamma, extreme value and log-normal or other similar
survival populations having possibly different variances. In some large sample
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size situations or in sparse (beta-binomial with π ≤ .1) situations for data in the
form of proportions we recommended using a parametric bootstrap type proce-
dure. Further research in this area should focus on improvements in performance,
specially in terms of levels, of some of the statistics, such as the statistic CBB.

For testing the equality of the scale parameters with the shape parameters
being unspecified of two Weibull populations [2] develop four test statistics of
which they recommend the statistics based on two different method of moments
estimates of the nuisance parameters. It will be of interest to develop these later
two statistics for testing H0 : µ1 = µ2 with σ2

1 and σ2
2 being unspecified and

compare with the statistics recommended in this paper.
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