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Abstract:

• The purpose of this paper is to introduce a new class of compound criteria and op-
timum designs that provide a specified balance between minimizing the average vari-
ance and high probability of a desired outcome. The proposed criterion called AP-
optimality that combines A-optimality and P-optimality and address this issue for
generalized linear models. An equivalence theorem for this criterion is provided and
two numerical examples are presented for different GLMs to illustrate the achieved
dual properties.
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1. INTRODUCTION

The type of any design is always an option regardless of the type of model
we wish to fit (for example, first order, first order plus some interactions, full
quadratic, cubic, etc.) or the objective specified for the experiment. The design
of experiments for generalized linear models (GLMs) has received considerable
attention in recent years, for example the research by Woods et al. [9]. To some
extent, this has been in response to design issues raised by researchers in exper-
imental sciences, such as new technologies (for example genomics and areas of
modern biology), where the inherent characteristics of data in these fields lead
to the consideration of GLMs for analysis and consequently design. GLMs are
non-linear models and, as such, pose substantial challenges in terms of design,
in particular in the need to have information on the model parameters prior to
designing an experiment to estimate these parameters. Much of the research into
design for GLMs has concentrated on quite small models: one or two variables
and ‘simple’ optimality criteria, such as D-optimality, which is concerned solely
with parameter estimation. However, the paper by Woods et al. [9] investigated
complex models for binary data with several variables over a number of models in
the form of a compound criterion called product design optimality. Historically,
most optimal design criteria have been concerned with parameter estimation,
and more recently some have combined the notions of parameter estimation and
model discrimination (for example, DT-optimality, Atkinson [1]). Examples of
other compound criteria can be found in Waterhouse [8] where criteria are de-
scribed that also yield designs that offer efficient parameter estimation and model
discrimination.

A-optimality criterion corresponds to minimize the variance of the asymp-
totic distribution of the maximum likelihood estimate of that parameter, em-
ployed that criterion of optimality is the one that involves the use of Fisher’s
information matrix. For linear models with one discrete factor and additive gen-
eral regression term the problem of characterizing A-optimal design measures for
inference on treatment effects, the regression parameters and all parameters will
be considered. While, P-optimal design maximizes the average probability of
success of a given design.

The aim of this paper is to derive method for designing experiments from
which minimizing average variance of the parameter estimates can be obtained,
while at the same time maximizing the probability of a particular event that is
of importance to experimenter. This paper is organized as follows; Section 2 is
devoted to represent the optimum design background. In Section 3, a simple
review for A – and P – optimum designs is introduced. In Section 4, the AP-
optimum design is proposed to achieve the dual goals of minimizing the average
variance and maximizing the average of the probability of observing an outcome.
Moreover, the equivalence theorem is derived. Two numerical examples are given
in Section 5 to illustrate the method and the value of the proposed criterion in
meeting the dual aims.
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2. OPTIMUM DESIGN PRELIMINARIES

Consider the generalized linear models GLMs

E (Y ) = µ = g−1(Xβ)

η = g(Xβ)
(2.1)

which is defined by the distribution of the response Y, a matrix of independent
variables (predictors) X , a vector of unknown parameters β and a linear predictor
η and two functions:

1. A link function g (.) that describes how the mean, E (Yi) = µi depends on
the linear predictor g (µi) = Yi.

2. A variance function that describes how the variance, V ar(Yi) depends on
the mean

(2.2) V ar (Yi) = φ(V (µ))

where the dispersion parameter φ is a constant.

In GLMs, the errors or noise εi have relaxed assumptions where it may or
may not have normal distribution. GLMs are commonly used to model binary or
count data. Some common link functions are used such that the identity, logit,
log and probit link to induce the traditional linear regression, logistic regression,
Poisson regression models.

An approximate (continuous) design is represented by the probability mea-
sure ξ over the design space δ. If the design has trials at n distinct points in δ ,
it can be written as

(2.3) ξ =

{
x1 x2 . . . . . . xn
w1 w2 . . . . . . wn

}

A design ξ defines, for i = 1, . . . , n, the vector of support-point xi ∈ χ
related to yi, where χ is a compact experimental domain and the experimental
weights wi corresponding to each xi, where

∑n
i=1wi = 1. The design space can

be then expressed as δ = {ξi ∈ Xn × [0, 1]n :
∑n

i=1wi = 1}. Such designs are
called approximate or continuous designs.
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3. A- and P-OPTIMUM DESIGNS

3.1. A-optimum design

A-optimality criterion introduced by Chernoff [2]; who showed that the
employed criterion of optimality is the one that involves the use of Fisher’s in-
formation matrix. For the case where it is desired to estimate one of the p
parameters in the information matrix, this criterion corresponds to minimize the
variance of the asymptotic distribution of the maximum likelihood estimate of
that parameter.

A-optimality minimizes the average variance of the parameter estimates.
Alternatively, it can be expressed as the following form;

(3.1) ΦA (ξ) = min
xi,i=1,...n

tr(XTX)

For a discussion on an A-optimal designs for binary models, see Sitter
and Wu [6], Zhu and Wong [11]. Yang [10] introduced A-optimal designs for
generalized linear models with two parameters which are logistic, probit and
double exponential models.

The equivalence theorem states that, the derivative function

(3.2) fT (x)M−2(θ, ξ)f(x) ≤ tr[M−1(θ, ξ)], x ∈ χ

where M is the information matrix and the equality holds only if ξ = ξ∗A , x ∈ ξ∗A

A-efficiency of a design ξ is defined as:

(3.3) EffA (ξ) =
tr
[
M−1 (θ, ξ∗A)

]
tr [M−1 (θ, ξ)]

where ξ∗A is A-optimal.

3.2. P-optimum designs

McGree and Eccleston [5] have offered a P-optimality criterion, which is
defined as a criterion that maximizes a function of the probability of observing a
particular outcome. One of the forms of P-optimality which defined is concerned
with the maximization of a weighted sum of the probabilities of success. The
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form of this criterion is

(3.4) ΦP (ξ) =
n∑
i=1

πi (θ, ξi)wi

where, πi (θ, ξi) is the i-th probability of success given by ξi and wi is the exper-
imental effort relating to the i-th support point. In this criterion, design weights
have been included and will play a role in maximizing the probabilities.

Let ξ∗P be the design maximizing (3.4). Under some regularity conditions,
McGree an Eccleston [5] proved an equivalence theorem for P-optimum designs,
in which the derivative function ψP (x, ξ∗P ) ≤ 0, x∈χ, where

(3.5) ψPA
(x, ξ∗P ) =

ΦP (x)− ΦP (ξ∗P )

ΦP

(
ξ∗P
)

is the directional derivative of Φp (ξ). The P - efficiency of a design ξ relative to
the optimum design ξ∗P is

(3.6) EffPA
(ξ) =

∑n
i=1 πi (θ, ξi)wi∑n

i=1 πi

(
θ, ξ∗PA

)
wi

4. AP-OPTIMUM DESIGN

There is a situation when an experimenter may be interested to achieve
multiple objectives. For this aim, we will construct a design that combine A-
optimality with P-optimality. The new criterion will be called AP-optimality.
This criterion offers a method of achieving minimizing the average variance and
a high probability of a desired outcome.

The AP-optimality criterion is given by the following weighted geometric
mean of efficiencies:
(4.1)

{EffA(ξ)}α{EffP (ξ)}1−α =

(
tr[M−1(θ, ξ∗A)]

tr[M−1(θ, ξ)]

)α( ∑n
i=1 πi (θ, ξi)wi∑n
i=1 πi

(
θ, ξ∗P

)
wi

)1−α

where the coefficients 0 ≤ α ≤ 1 .When α = 0, we obtain P -optimality and when
α = 1, we obtain A -optimality. To clarify the structure of the design criterion,
take log in (4.1) yields,

αlog(tr
[
M−1 (θ, ξ∗A)

]
)− αlog(tr

[
M−1 (θ, ξ)

]
)+

(1− α)log

n∑
i=1

πi (θ, ξi)wi − (1− α)log

n∑
i=1

πi (θ, ξ∗P )wi
(4.2)
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The terms involving ξ∗A and ξ∗P are constants when a maximum is found over
ξ. Many bibliographical references presented the concept of this maximization
method such as Dette [4]; Atkinson [1]; Tommasi [7]; and McGree and Eccleston
[5]. So that the criterion to be maximized is

(4.3) ΦAP (ξ) = −αlog(tr
[
M−1 (θ, ξ)

]
) + (1− α)log

n∑
i=1

πi (θ, ξi)wi

The negative sign for the first term on the right hand side of (4.3) arises
because the average variance is minimized. Designs maximizing (4.3) are called
AP-optimum and denoted ξ∗AP .

The equivalence theorem is stated as follows;

Theorem 4.1. For AP -optimal design, ξ∗AP , the following three state-
ments are equivalent.

1. A necessary and sufficient condition for a design ξ∗AP to be AP -optimum is
fulfillment of the inequality ψAP (x, ξ∗AP ) ≤ 1, x ∈ χ , where the derivative
function of (4.3) is given by
(4.4)

ψAP (x, ξ∗AP ) = α

(
fT (x)M−2(θ, ξ∗AP )f(x)

ΦA

(
ξ∗AP

) )
+(1−α)

(
ΦP (x)− ΦP (ξ∗AP )

ΦP

(
ξ∗AP

) )

2. The upper bound of ψAP (x, ξ∗AP ) is achieved at the points of the optimum
design.

3. For any non optimum design ξ, that is a design for which ΦAP (ξ) <
ΦAP (ξ∗AP ), supx∈χ ψAP (x, ξ∗AP ) > 1 .

Proof: Since 0 ≤ α ≤ 1, ψAP is a convex combination of logarithm of
two design criteria. Therefore, the AP-criterion satisfies the conditions of convex
optimum design theory and an equivalence theorem applies. Because of the way
the terms in (4.4) have been scaled, the upper bound of ψAP over x ∈ χ is one,
achieved at the points of the optimum design. Furthermore, ψAP is the linear
combination of the directional derivatives given by A-optimality and P-optimality.
Thus, the theorem has been proved.

5. APPLICATIONS TO GENERALIZED LINEAR MODELS

In this Section, the AP-optimality criterion is applied to two types of gen-
eralized linear models, Logit and probit models, for binary data. The data were
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based on the work given by in Corana et.al. [3]. The A-, P-, and the proposed
compound AP- efficiencies are calculated and the optimal designs are obtained to
illustrate the main objective of the compound criterion that allow both minimiz-
ing the average variance of the parameter estimates plus increasing the probability
of the desired outcome.

Example 5.1. Logit Model

The considering logit model has two main factor effects besides the inter-
action with initial parameter estimates θ = [1,−2, 1,−1]Twith xj ∈ [−1, 1] as
follows;

(5.1) Log

(
π

1− π

)
= 1− 2x1 + x2 − x1x2

AP-optimal designs and their A- and P-efficiencies for α = 0, 0.25, 0.5, 0.75 , 1
are obtained and presented in Table 1.

α x1 x2 wi πi Aeff P eff

0 -1.000 1.000 1.000 0.9933 n/a 1

0.25 1.0000 -1.000 0.0835 0.2689 0.822183 0.8060

0.8020 1.000 0.0999 0.3999

-1.000 -1.000 0.1983 0.7311

-0.3980 1.000 0.6182 0.9596

0.5 1.000 -1.000 0.1570 0.2689 1 0.6644

1.000 1.000 0.1600 0.2889

-1.000 -1.000 0.2802 0.7311

-0.1059 1.000 0.4028 0.9103

0.75 1.000 1.000 0.2121 0.2689 0.741011 0.5826

1.000 -1.000 0.2121 0.2689

-1.000 -1.000 0.2740 0.7311

0.0148 1.000 0.3017 0.8761

1 1.000 -1.000 0.2500 0.2689 0.864115 0.5352

1.000 1.000 0.2500 0.2689

-1.000 -1.000 0.2500 0.7311

0.0680 1.000 0.2500 0.8577

Table 1: AP-optimum design and their A-and P- efficiencies for the Logit
model at different values of α

Table (5.1) shows the designs that maximize the AP-criterion. It can be
noticed that there is little changes in the design points with high variation in
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design weights. That is, the Peff ’s are increased through the given designs as
well as the probability of success is increased. Figure (1) illustrates the A- and
P-efficiencies for α = 0, 0.25, 0.5, 0.75 and 1. The dot-dashed line represents
the A-efficiency of the designs, and the solid line shows their P-efficiencies. The
following A-optimal design has a P-efficiency of 0.6644.

ξ∗A =


1.0000
1.0000
−1.000
−0.1059

−1.000
1.000

−1.000
1.000

0.1570
0.1600
0.2802
0.4028



Figure 1: A- and P-efficiencies of AP-optimal designs for different values
of α.

By using the AP-criterion and choosing α = 0.25, we are able to increase the
P-efficiency to 0.806, while achieving a A-efficiency of 0.822183. The AP-optimal
design is

ξ∗AP =


1.000
0.802
−1.000
−0.398

−1.000
1.000
−1.000

1.000

0.0835
0.0999
0.1983
0.6182


Example 5.2. Probit Model

In the following Example, the AP-optimlaity criterion is applied to the
probit model. The response variable is modelled via three main factor effects
with initial parameters β = [1,−0.5, 1,−1], with xj ∈ [−1, 1] ,

(5.2) Φ−1(π) = 1− 0.5 x1 + x2 − x3

Table (5.2) include the main results of the designs and their A- and P- efficiencies
for α = 0, 0.2, 0.35, 0.5, 0.75, 1. Figure (2) illustrates the A- and P-efficiencies
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for α = 0, 0.2, 0.35, 0.5, 0.75, 1. Using the compound criteria AP-criterion, at
α = 0.5, we can see that the A-efficiency and P-efficiencies have very close high
efficiencies, 0.982127 , 0.983084, respectively.

Figure 2: A- and P-efficiencies of AP-optimal designs for different values
of α.

Hence, the AP-optimal design which satisfy the dual problem is obtained
as:

ξ∗AP =



−1.0000
−05140
−0.4709
−0.4395
−0.0373
0.0372
0.4709
1.0000
1.0000

−1.0000
1.0000

1.0000
−1.0000
−1.0000
1.0000
−1.0000
−1.0000
1.0000

1.0000
−1.0000

1.0000
−1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
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α x1 x2 x3 wi πi Aeff P eff

0 -1.0000 -1.0000 1.0000 0.0708 0.3085 1 0.98427

-0.6296 1.0000 -1.0000 0.1105 0.9988

-0.5423 1.0000 1.0000 0.1600 0.8980

-0.5423 -1.0000 -1.0000 0.1600 0.8980

-0.0186 -1.0000 1.0000 0.0658 0.1611

0.0186 1.0000 1.0000 0.0658 0.8389

0.0186 -1.0000 -1.0000 0.0658 0.8389

0.5423 -1.0000 1.0000 0.1600 0.1020

1.0000 -1.0000 -1.0000 0.0708 0.6915

1.0000 1.0000 1.0000 0.0708 0.6915

0.2 -1.0000 -1.0000 1.0000 0.0608 0.3085 0.964075 1

-0.5368 -1.0000 -1.0000 0.2315 0.8980

-0.5368 1.0000 1.0000 0.2315 0.8980

-0.5244 1.0000 -1.0000 0.1232 0.9987

0.5368 -1.0000 1.0000 0.2315 0.1020

1.0000 -1.0000 -1.0000 0.0608 0.6915

1.0000 1.0000 1.0000 0.0608 0.6915

0.35 -1.0000 -1.0000 1.0000 0.0630 0.3085 0.979698 0.996276

0.5027 1.0000 -1.0000 0.1213 0.9987

-0.4894 -1.0000 -1.0000 0.2299 0.8925

-0.4894 1.0000 1.0000 0.2299 0.8925

0.4894 -1.0000 1.0000 0.2299 0.1075

1.0000 -1.0000 -1.0000 0.0630 0.6915

1.0000 1.0000 1.0000 0.0630 0.6915

0.5 -1.0000 -1.0000 1.0000 0.0618 0.3085 0.982127 0.983084

-0.5140 1.0000 -1.0000 0.1085 0.9987

-0.4709 1.0000 1.0000 0.2144 0.8925

-0.4395 -1.0000 -1.0000 0.2241 0.8888

-0.0373 -1.0000 1.0000 0.0245 0.1635

0.0372 1.0000 1.0000 0.0245 0.8365

0.4709 -1.0000 1.0000 0.2144 0.1075

1.0000 -1.0000 -1.0000 0.0662 0.6915

1.0000 1.0000 1.0000 0.0618 0.6915



12 N. M. Kilany and W. A. Hassanein

0.75 -1.0000 -1.0000 1.0000 0.0504 0.3085 0.778262 0.988816

-1.0000 -1.0000 -1.0000 0.0143 0.9332

-1.0000 1.0000 1.0000 0.0143 0.9332

-1.0000 1.0000 -1.0000 0.1306 0.0089

-0.0101 -1.0000 -1.0000 0.2251 0.8413

-0.0101 1.0000 1.0000 0.2251 0.8413

0.0101 -1.0000 1.0000 0.2251 0.1587

1.0000 -1.0000 1.0000 0.0143 0.0668

1.0000 -1.0000 -1.0000 0.0504 0.6915

1.0000 1.0000 1.0000 0.0504 0.6915

0.9 -1.0000 -1.0000 1.0000 0.0533 0.3085 0.820936 0.983858

-0.9942 1.0000 -1.0000 0.1197 0.9987

-0.8203 -1.0000 -1.0000 0.0212 0.9207

-0.8203 1.0000 1.0000 0.0212 0.9207

-0.0348 -1.0000 -1.0000 0.2189 0.8461

-0.0348 1.0000 1.0000 0.2189 0.8461

0.0348 -1.0000 1.0000 0.2189 0.1539

0.8203 -1.0000 1.0000 0.0212 0.0793

1.0000 1.0000 1.0000 0.0533 0.6915

1.0000 -1.0000 -1.0000 0.0533 0.6915

1 -1.0000 -1.0000 1.0000 0.0550 0.3085 0.899469 0.970774

-0.9344 1.0000 -1.0000 0.0924 0.9989

-0.6464 -1.0000 -1.0000 0.0515 0.9066

-0.6464 1.0000 1.0000 0.0515 0.9066

-0.0612 -1.0000 -1.0000 0.1960 0.8485

-0.0612 1.0000 1.0000 0.1960 0.8485

0.0612 -1.0000 1.0000 0.1960 0.1515

0.6464 -1.0000 1.0000 0.0515 0.0934

1.0000 -1.0000 -1.0000 0.0550 0.6915

1.0000 1.0000 1.0000 0.0550 0.6915

Table 2: AP-optimum design and their A-and P- efficiencies for the Pro-
bit model at different values of α

6. CONCLUSION

The criterion AP-optimum design introduced here provides a new com-
pound criterion that yield minimum of the average variance of the parameter
estimates plus a high probability of observing a particular outcome. The equiv-
alence theorem is stated and proved for AP-optimum design. Two illustrated
examples are presented for logit and probit models. The results indicate the
potentiality of using the proposed AP-optimality criterion.
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