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Abstract:

• This paper considers an extension for the skew-elliptical Birnbaum-Saunders model by
considering the power-normal model. Some properties of this family are studied and it
is shown, in particular, that the range of asymmetry and kurtosis surpasses that of the
ordinary skew-normal and power-normal models. Estimation is dealt with by using
the maximum likelihood approach. Observed and expected information matrices are
derived and it is shown to be nonsingular at the vicinity of symmetry. The applications
illustrate the better performance of the new distribution when compared with other
recently proposed alternative models.
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1. INTRODUCTION

Vilca-Labra and Leiva-Sánchez ([30]) extended the ordinary Birnbaum-
Saunders (BS) distribution by considering the generalized Birnbaum-Saunders
skew-elliptical distribution which is based on replacing the normal distribution
by the elliptical family of distributions of which the normal distribution is a spe-
cial case. Such general family of distributions is very successful in dealing with
data sets with high degrees of asymmetry and kurtosis.

In this paper, we consider an extension of the generalized BS (GBS) model
proposed in Dı́az-Garćıa and Leiva-Sánchez ([9]) to the case of elliptical distribu-
tions. A comprehensive review of the GBS model can be found in Sanhueza et
al. ([29]). Another important feature of this distribution is related to robustness
with respect to parameter estimation which was studied in Barros et al. ([4]).
The generalized Birnbaum-Saunders skew-elliptical distribution represents an im-
portant extension of the ordinary BS distribution to the case of symmetrical and
asymmetrical distributions, which can be appropriate for applications in life data
and material fatigue data.

The family of elliptical distributions has proved to be an important alter-
native to the normal distribution. The distributions in this family are symmetric
and include distributions with greater and smaller kurtosis than the normal dis-
tribution. The normal distribution is an important member of the family. The
elliptical family of distributions has been studied by many authors including Fang
and Zang ([12]), Fang et al. ([13]), Gupta and Varga ([11]), Arellano-Valle and
Bolfarine ([2]), among others.

A random variable X is distributed according to the elliptical distribution
with location parameter ξ and scale parameter η if its pdf can be written as

f(x) =
c

η
g

((
x− ξ
η

)2
)
,(1.1)

for some nonnegative function g(u), u > 0, such that
∫∞

0 u−
1
2 g(u)du = 1/c, where

c is a normalizing constant. The function g(·) is known as the density generator
function. If X is elliptically distributed with location-scale parameters ξ and η
and generator function g, denoted X ∼ EC(ξ, η; g). If ξ = 0 and η = 1, then X has
spherical distribution, denoted as X ∼ EC(0, 1; g). Properties of this family can
be studied in Kelker ([15]), Cambanis et al. ([5]), Fang et al. ([13]), Arellano-Valle
and Bolfarine ([2]) and Gupta and Varga ([11]) among others. Particular cases
of the X ∼ EC(0, 1; g) distribution are the Pearson type VII distribution, the
type Kotz distribution, the Student-t (tν) distribution, the Cauchy distribution
and the normal distribution, among others.

Dı́az-Garćıa and Leiva-Sánchez ([9]) present the GBS distribution, by as-
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suming that

Z =
1

γ

(√
T

β
−
√
β

T

)
∼ EC(0, 1; g).

where γ > 0 is the shape parameter and β > 0 is the scale parameter and the
distribution median. Then, from

T =
β

4

[
γZ +

√
γ2Z2 + 4

]2
,

the GBS distribution follows, which we denote by T ∼ GBS(γ, β; g). The pdf for
the random variable T is given by

fGBS(t) = cg

(
1

γ2

[
t

β
+
β

t
− 2

])
t−3/2(t+ β)

2γβ1/2
, t > 0,(1.2)

where c is a normalizing constant and g is the generator function. Moreover,
letting

at(γ, β) = at =
1

γ

(√
t

β
−
√
β

t

)
,(1.3)

it follows that

At(γ, β) =
d

dt
at(γ, β) =

t−3/2(t+ β)

2γβ1/2
,

so that (1.2) can be written as

fGBS(t) = f(at(γ, β))At(γ, β),

where f is given in (1.1).

An extension of the elliptical model to the asymmetric case was given in
Vilca-Labra and Leiva-Sánchez ([30]), where it is defined the standard elliptical
asymmetric or skew-elliptical (SE) model as

fY (y;λ) = 2f(y)F (λy); y, λ ∈ R,

where f is given in (1.1), F is its respective cumulative distribution function (cdf)
and λ is an asymmetry parameter. We use the notation Y ∼ SE(0, 1; g, λ). The
cumulative distribution function for this model is given by

(1.4) FY (y) = 2

∫ y

−∞
f(t)F (λt)dt.

A particular case of model (1.4) is the skew-normal (SN) distribution (see
Azzalini, ([3])) with f = φ and F = Φ with pdf and cdf given, respectively, by

(1.5) φSN (y) = 2φ(y)Φ(λy), y ∈ R,
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ΦSN (y) = Φ(y)− 2T (y;λ), y ∈ R,

where φ(·) and Φ(·) are the pdf and cdf of N(0, 1) (the standard normal distri-
bution), respectively and T (·; ·) is Owen’s ([25]) function.

Extensions of the BS model to elliptical distributions were studied in Vilca-
Labra and Leiva-Sánchez ([30]), namely, skew-elliptical Birnbaum-Saunders (SEBS)
distribution. Model construction is based on the condition that

Z =
1

γ

(√
T

β
−
√
β

T

)
∼ SE(0, 1; g, λ).

We use the notation SEBS(γ, β; g, λ). The case of model SEBS based on
SN distribution, we denote SNBS(γ, β, λ). Additional references on the BS dis-
tribution can be found in the recent book by Leiva ([20]).

An alternative asymmetric distribution is studied in Durrans ([10]), by
introducing the fractional order statistical model, with pdf given by

(1.6) ϕH(z;α) = αh(z){H(z)}α−1, z ∈ R,

where H is an absolutely continuous cumulative distribution function with pdf h
and α > 0 is a parameter that controls the distributional shape. The case H = Φ
is called the power-normal (PN) distribution, with pdf given by

ϕΦ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R,

denoted Z ∼ PN(α). This model is an alternative to adjust data with asymmetry
and kurtosis above (or below) the expected for the normal distribution.

In this paper we extend the SEBS model considered in Vilca-Labra and
Leiva-Snchez ([30]), using the fractionary order statistical model of Durrans ([10]).
This generalization leads to a more flexible model in what concerns asymmetry
and kurtosis, that the SEBS model, given that those models are special cases
(hence also the ordinary BS model). It than can used for fitting fatigue data as
well as life data.

The paper is organized as follows. Section 2 is devoted to study extensions
of the GBS elliptical model by using the fractionary order statistical model in
Durrans ([10]). Some properties of this family are studied and it is shown, in
particular, that the range of asymmetry and kurtosis surpasses that of the ordi-
nary skew-normal and power-normal models. Maximum likelihood estimation for
the model proposed is implemented in Section 3. Observed and expected infor-
mation matrices are derived and it is shown to be nonsingular at the vicinity of
symmetry. Results of three real data application is presented in Section 4. The
main conclusion is that the model proposed offers a viable alternative to others
considered in the literature.



6 Mart́ınez-Flórez, G. et al.

2. Power skew-elliptical Birnbaum-Saunders distributions

We start by extending the model (1.6) assuming that the pdf h it is as
follows

h(y;λ) = 2f(y)F (λy); y, λ ∈ R,(2.1)

where f is given in (1.1), F is its respective cumulative distribution function and
λ is an asymmetry parameter. We call it the power skew-elliptical(PSE) model
with pdf given by

(2.2) ϕPSE(z;λ, α) = αh(z;λ){H(z;λ)}α−1, z ∈ R.

We use the notation Z ∼ PSE(0, 1; g, λ, α).

Moments of the random variable Z have no closed form, but under a vari-
able change the r-th moment of the random variable Z can be written as

E(Zr) = α

∫ 1

0
[H−1(z;λ)]rzα−1dx,

where H−1 is the inverse of the function H.

If the pdf h follows model (1.5), then, we have the power skew-normal (PSN)
model with parameters λ and α introduced in Mart́ınez-Flórez et al. ([23]). This
model we denote by PSN(λ, α).

Special cases of model PSN occur with α = 1, so that the skew-normal
model φSN (x), follows. On the other hand, with λ = 0 the model with pdf ϕΦ(x),
that is, Durrans generalized normal model follows. The ordinary standard normal
model is also a special case which follows by taking α = 1 and λ = 0, that is,
ϕPSN (x; 0, 1) = φ(x). Notice from Figure 1 (a) and (b) below that α and λ affect
both, distribution asymmetry and kurtosis and hence the model proposed seems
more flexible than the models by Azzalini ([3]) and Durrans ([10]).

For some values of λ and α ∈ [0.1, 100], asymmetry and kurtosis coefficients
namely

√
β1 and β2, for Z ∼ PSN(λ, α), are in the intervals [-1.4676,0.9953) and

[1.4672,5.4386] respectively, see Mart́ınez-Flórez et al. ([23]). Such intervals
contain the corresponding intervals for the skew-normal distribution, given by
(-0.9953,0.9953) and [3,3.8692) respectively, and for the PN model, given by [-
0.6115,0.9007] and [1.7170,4.3556], respectively, see Pewsey et al. ([26]). This
illustrates the fact that the exponentiated skew-normal family contains models
with greater (and smaller) asymmetry than both skew-normal (Azzalini, ([3]))
and the power-normal (generalized normal) model (Durrans, ([10])). It then
encompasses a family of distributions with more of both, platykurtic and lep-
tokurtic, distributions. This illustrates the fact that the PSE model can be more
flexible, respective to asymmetry and kurtosis, than the models characterized by
density functions fY and ϕH .
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Figure 1: PSN model. (a) α = 1.5 and λ =-0.75 (dotted dashed line), 0
(dotted line), 1 (dashed line) and 1.75 (solid line), (b) λ = 0.70
and α = 0.50 (dotted-dashed line), 1.0 (dotted line), 2.0 (dashed
line) and 5.0 (solid line).

We consider now an extension of the BS model to the case of exponentiated
skew elliptical distributions. Assuming that

Z =
1

γ

(√
T

β
−
√
β

T

)
∼ PSE(0, 1; g, λ, α),

it follow that Z is distributed according to model (2.2). Therefore, trough a
simple variable change, it can be shown that the random variable

T =
β

4

[
γZ +

√
γ2Z2 + 4

]2
,(2.3)

is distributed according to the power skew-elliptical Birnbaum-Saunders (PSEBS)
distribution, denoted by T ∼ PSEBS(γ, β; g, λ, α).

The pdf for random variable (2.3) is given by
(2.4)
ϕPSEBS(t; γ, β, λ, α) = αh(at(γ, β);λ){H(at(γ, β);λ)}α−1At(γ, β), t ∈ R+.

This model provides then a generalization for the model introduced by
Dı́az-Garćıa and Leiva-Sánchez ([9]) and Vilca-Labra and Leiva-Sánchez ([30]).
Notice that for α = 1, the SEBS model (Vilca-Labra and Leiva-Sánchez ([30]))
is obtained and for λ = 0 and α = 1 we obtain the GBS model (Dı́az-Garćıa
and Leiva-Sánchez ([9])). The case λ = 0 constitutes an extension for the BS
model since it contains the ordinary BS model. This model has been studied
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in Mart́ınez-Flórez et al. ([22]), supposing that Z ∼ PN(α) and is called the
power normal Birnbaum-Saunders (PNBS) model, denoted PNBS(γ, β, α) for
the case of the normal distribution. Some properties and moments of the PSEBS
distribution represented by the random variable T in (2.3) are presented next.
Properties are similar to the ones derived for the SEBS distribution by Vilca-
Labra and Leiva-Sánchez ([30]), for T with Z ∼ SE(0, 1; g, λ).

Theorem 2.1. Let T ∼ PSEBS(γ, β; g, λ, α). Then,
1. bT ∼ PSEBS(γ, bβ; g, λ, α), b > 0 and
2. T−1 ∼ PSEBS(γ, β−1; g,−λ, α).

Proof: 1. Let T ∼ PSEBS(γ, β; g, λ, α) and Y = bT for b > 0 so that
T = Y

b , where the Jacobian is J = 1
b . Moreover, since at(γ, β) = ay/b(γ, β) =

ay(γ, bβ) and |J | ddtat(γ, β) = |J | ddtay/b(γ, β) = d
dyay(γ, bβ) = Ay(γ, bβ), so that,

from the above transformations we have

fY (y) = αh(ay/b(γ, β);λ)
{
H(ay/b(γ, β);λ)

}α−1 d

dt
ay/b(γ, β)|J |

= αh(ay(γ, bβ);λ) {H(ay(γ, bβ);λ)}α−1Ay(γ, bβ),

so that Y = bT ∼ PSEBS(γ, bβ; g, λ, α).

2. Let T ∼ PSEBS(γ, β; g, λ, α) and Y = T−1 then T = Y −1 the jacobian of
the transformation is J = Y −2. Moreover, at(γ, β) = ay−1(γ, β) = −ay(γ, β−1)

and |J | ddtat(γ, β) = |J | ddtay−1(γ, β) = d
dyay(γ, β

−1) = Ay(γ, β
−1).

Then, h(at(γ, β);λ) = h(ay−1(γ, β);λ) = h(ay(γ, β);−λ) and

H(at(γ, β);λ) = H(−ay(γ, β−1);λ)

=

∫ −ay(γ,β−1)

−∞
2cg(x2)F (λx)dx

=

∫ y

0
2cg(ax(γ, β−1)2)F (−λax(γ, β−1))

d

dx
ax(γ, β−1)dx

=

∫ ay(γ,β−1)

−∞
h(x;−λ)dx

= H(ay(γ, β
−1);−λ).

Using the above transformations, we have that

fY (y) = αh(ay−1(γ, β);λ)
{
H(ay−1(γ, β);λ)

}α−1 d

dt
ay−1(γ, β)|J |

= αh(ay(γ, β
−1);−λ)

{
H(ay(γ, β

−1);−λ)
}α−1

Ay(γ, β
−1)

then we conclude that Y = T−1 ∼ PSEBS(γ, β−1; g,−λ, α).
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Theorem 2.2. Let T ∼ PSEBS(γ, β; g, λ, α), HT its cumulative distri-
bution function and H the distribution function of Z ∼ PSE(0, 1; g, λ, α). Then,

HT (t, γ, β; g, λ, α) = {H(at(γ, β);λ)}α.

Proof: Let ax(λ, β), as defined above, so that

HT (t, γ, β; gλ, α) =

∫ t

0
αh(ax(γ, β);λ) {H(ax(γ, β);λ)}α−1Ax(γ, β)dx

=

∫ t

0
αh(ax(γ, β);λ) {H(ax(γ, β);λ)}α−1 d

dx
ax(γ, β)dx

=

∫ at(γ,β)

−∞
αh(x;λ) {H(x;λ)}α−1 dx

= FZ(at(γ, β);λ, α).

Furthermore,

FZ(at(γ, β);λ, α) =

∫ at(γ,β)

−∞
αh(x;λ) {H(x;λ)}α−1 dx

=

∫ at(γ,β)

−∞

d

dx
{H(x;λ)}α dx

= {H(at(γ, β);λ)}α,

concluding the proof.

Theorem 2.3. The p-th percentile of the PSEBS(γ, β; g, λ, α), tp =
H−1(p, γ, β; gλ, α), is given by:

tp = β

λ
2
zp +

√(
λ

2
zp

)2

+ 1

2

,

where zp is the p-th percentile of the distribution of PSE(0, 1; g, λ, α), given by
zp = H−1(p1/α;λ).

Proof: For p ∈ (0, 1) as in Theorem 2.2, it follows that p = {H(at(γ, β);λ)}α
so that aT (γ, β) = Zp = H−1(p1/α;λ) ∼ PSE(0, 1 : g, λ, α) where H−1 is the in-
verse of H. Therefore, result follows from (2.3).

Theorem 2.4. The survivor function, cumulative risk function, risk and
inverted risk functions for model PSEBS are given, respectively, by:

S(t) = 1− {H(at(γ, β);λ)}α, M(t) = − log[S(t)],
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r(t) = αrSEBS(t)
{H(at(γ, β);λ)}α−1 − {H(at(γ, β);λ)}α

1− {H(at(γ, β);λ)}α
andR(t) = αRSEBS(t),

where rSEBS(t) and RSEBS(t) denote the risk and inverted risk for the skew-
elliptical BS model.

Proof: Result follows directly from the definitions of survival function
risk and inverse risk using the result in Theorem 2.2.

From Theorem 2.4 we can conclude that the inverse risk rate is proportional to the
risk rate for the SEBS distribution. Hence, the intervals where R(t) is decreasing
or increasing, are the same as the intervals where RSEBS(t) is decreasing or
increasing.

The following two Theorem discuss the existence and the r-th moment of
a random variable T ∼ PSEBS(γ, β; g, λ, α).

Theorem 2.5. Let T ∼ PSEBS(γ, β; g, λ, α) and Z ∼ PSE(0, 1; g, λ, α).
Hence, E(T r) exists if and only if,

E

[(
γZ

2

)k+l ((γZ
2

)
+ 1

) k−l
2

]
(2.5)

exists k = 1, 2, . . . , r with l = 0, 1, . . . , k.

Proof: Taking Z ∼ PSE(0, 1; g, λ, α) it follows that

E
{[

T

β

]n}
= E


[
γ

2
Z +

√(γ
2
Z
)2

+ 1

]2

n

= E

{[
1 +

{
γ2

2
Z2 + γZ

√(γ
2
Z
)2

+ 1

}]n}
.

Therefore, using the binomial expansion, we have

E
{[

T

β

]n}
=

n∑
k=0

(
n

k

)
E


[
γ2

2
Z2 + γZ

√(γ
2
Z
)2

+ 1

]k
and doing another binomial expansion, we obtain

E
{[

T

β

]n}
=

n∑
k=0

(
n

k

) k∑
l=0

(
k

l

)
2kE

{[(γ
2
Z
)k+l

[(γ
2
Z
)2

+ 1

] k−l
2

]}
,

so that E
{[

T
β

]n}
exists if, and only if, E

{[(γ
2Z
)k+l

[(γ
2Z
)2

+ 1
] k−l

2

]}
exists,

for k = 0, 1, . . . , n and l = 0, 1, . . . , k.
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Theorem 2.6. Let T ∼ PSEBS(γ, β; g, λ, α) and Z ∼ PSE(0, 1; g, λ, α).
If E[Zr] exists for r = 1, 2, . . . , then

µr = E(T r) = βr
∑

[0≤k≤r/2]

(
r

2k

)(
1

2

)2k 2k∑
j=0

(
2k

j

)
E[(γZ)4k−j(γ2Z2 + 4)j/2]

+ βr
∑

[0≤k<r/2]

(
r

2k + 1

)(
1

2

)2k+1 2k+1∑
j=0

(
2k + 1

j

)
E[(γZ)4k+2−j(γ2Z2 + 4)j/2]

where [·] corresponds to the sum of the integer part of the subscripts.

Corollary 2.1. For r = 1, 2 we have that

E(T ) =
β

2
[2 + γ2ν2 + γκ1] and E(T 2) =

β2

2
[2 + 4γ2ν2 + γ4ν4 + 2γκ1 + γ3κ3],

where νk = E[Zk] and κk = E
[
Zk
(
γ2Z2 + 4

)1/2]
. Then, the variance is given by

V ar(T ) = E(T 2)− E2(T ) =
γ2β2

4
[4ν2 − κ2

1 + 2γκ3 − 2γν2κ1 − γ2ν2
2 + 2γ2ν4].

The central moments, µ́r = E(T − E(T ))r, for r = 2, 3, 4 can be obtained
using µ́2 = µ2−µ2

1, µ́3 = µ3− 3µ2µ1 + 2µ3
1 and µ́4 = µ4− 4µ3µ1 + 6µ2µ

2
1− 3µ4

1.
Hence, variation coefficient, asymmetry and kurtosis can be obtained by using:

CV =

√
σ2
T

µ1
,

√
β1 =

µ́3

[µ́2]3/2
and β2 =

µ́4

[µ́2]2
.

2.1. Power skew-normal Birnbaum-Saunders distribution

The power skew-normal Birnbaum-Saunders distribution is obtained by
taking H = ΦSN (and h = φSN ) in (2.4) and is denoted by PSNBS. It follows
then that the density function is given by

ϕPSNBS(t; γ, β;φ, λ, α) = αφSN (at(γ, β)){ΦSN (at(γ, β))}α−1At(γ, β),

with at given in (1.3). Notice that the ordinary BS is a special case which follows
by taking F = Φ, λ = 0 and α = 1. If α = 1, the asymmetric BS model studied
in Vilca-Labra and Leiva-Sánchez ([30]) is derived and for λ = 0, we obtain the
power-normal BS model studied in Mart́ınez-Flórez et al. ([22]). Moreover, some
properties of the BS distribution holds for the PSNBS distribution.
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Figure 2: Plots for density function ϕT (t; γ, β, λ, α). (a) (γ, β, λ, α) =
(0.75,1,-1,1.75) (dashed and dotted lines), (γ, β, λ, α) =
(0.75,1,-0.25,1.75) (dotted line), (γ, β, λ, α) = (0.75,1,0.25,1.75)
(dashed line) and (γ, β, λ, α) = (0.75,1,1,1.75) (solid line).
(b)(γ, β, λ, α) = (1.25,1,-1,1.75) (dashed and dotted lines),
(γ, β, λ, α) = (1.25,1,-0.25,1.75) (dotted line), (γ, β, λ, α) =
(1.25,1,0.25,1.75) (dashed line) and (γ, β, λ, α) = (1.25,1,1,1.75)
(solid line).

The cumulative distribution function for this model is given by

HPSNBS(t, γ, β;λ, α) = {Φ(at(γ, β))− 2T (at(γ, β);λ)}α , t > 0,

Figures 2 and 3 depicts the behavior of the PSNBS distribution for those
values of α and λ.

From Theorem 2.4, the survivor function, risk and inverted risk functions
for model PSNBS are given, respectively, by

(2.6) S(t) = 1− {ΦSN (at(γ, β))}α, M(t) = − log[S(t)],

r(t) = αrSNBS(t)
{ΦSN (at(γ, β))}α−1 − {ΦSN (at(γ, β))}α

1− {ΦSN (at(γ, β))}α
andR(t) = αRSNBS(t),

where rSNBS(t) and RSNBS(t) respectively denote the risk and inverted risk of
the skew-normal Birnbaum-Saunders.

The following Theorem shows that for t→∞ the limit of the risk function
of the PSNBS model coincides with the limit to infinity for the risk function of
the SNBS model, result found by Leiva et al. ([18]).
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Figure 3: Plots for density function ϕT (t; γ, β, λ, α). a)
(γ, β, λ, α) = (0.75,1,1,0.75) (dashed and dot-
ted lines), (γ, β, λ, α) =(0.75,1,1,1.5) (dotted line),
(γ, β, λ, α) =(0.75,1,1,2.25) (dashed line) and
(γ, β, λ, α) =(0.75,1,1,3) (solid line). b)(γ, β, λ, α) =
(1.25,1,1,0.75) (dashed and dotted lines), (γ, β, λ, α) =
(1.25,1,1,1.5) (dotted line), (γ, β, λ, α) = (1.25,1,1,2.25)
(dashed line) and (γ, β, λ, α) = (1.25,1,1,3) (solid line).

Theorem 2.7.

lim
t→∞

r(t) = (1 + λ2)(2γ2β)−1.

Proof: Rewritting the risk function in the form

r(t) = αrSNBS(t){ΦSN (at(γ, β))}α−1 1− ΦSN (at(γ, β))

1− {ΦSN (at(γ, β))}α
,

and using L’Hôpital rule, we obtain

lim
t→∞

1− ΦSN (at(γ, β))

1− {ΦSN (at(γ, β))}α
= lim

t→∞

−φSN (at(γ, β))At(γ, β)

−α{ΦSN (at(γ, β))}α−1φSN (at(γ, β))At(γ, β)
=

1

α
,

where At(γ, β) = d
dtat(γ, β).

Therefore,

lim
t→∞

r(t) = α lim
t→∞

rSNBS(t)
1

α
= lim

t→∞
rSNBS(t) = (1 + λ2)(2γ2β)−1

where
lim
t→∞

rSNBS(t) = (1 + λ2)(2γ2β)−1,

as shown in Leiva et al. ([18]).
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Figures 4 and 5 reveals the fact that the risk function is a non decreasing (and
unimodal) function of t, but an increasing function of parameter α. Moreover,
r(t) is a non decreasing function for parameter γ.
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Figure 4: Function r(t), for (a) γ = 0.25, β = 1.0, λ = 2 and α = 0.75
(dashed and dotted line), α =1 (dotted line), α =2 (dashed line)
and α =5 (solid line). (b)γ = 0.5, β = 1.0, λ = 2 and α = 0.75
(dashed and dotted line), α =1 (dotted line), α =2 (dashed line)
and α =5 (solid line).
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Figure 5: Function r(t), for (a) γ = 0.25, β = 1.0, α = 1.75 and λ =-
1.5 (dashed and dotted lines), λ =-0.75 (dotted line), λ =0.75
(dashed line) and λ =1.5 (solid line). (b)γ = 0.5, β = 1.0,
α = 1.75 and λ = -1.5 (dashed and dotted lines), λ =-0.75
(dotted line), λ =0.75 (dashed line) and λ =1.5 (solid line).
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2.2. Inference for the PSNBS model

We present in this section the score functions and the observed and expected
information matrices for the parameter θ = (γ, β, λ, α). Given a random sample
of size n, t = (t1, . . . , tn)′, from the distribution PSNBS(γ, β, λ, α), the log-
likelihood function for θ = (γ, β, λ, α)′ can be written as

`(θ; t) = n

[
log(α)− log(γ)− 1

2
log(β)

]
+

n∑
i=1

log(ti + β)− 3

2

n∑
i=1

log(ti)

− 1

2γ2

n∑
i=1

[
ti
β

+
β

ti
− 2

]
+

n∑
i=1

log(Φ(λati)) + (α− 1)
n∑
i=1

log(ΦSN (ati)).(2.7)

The maximum likelihood (ML) estimators are obtained by maximizing the log-
likelihood function given in (2.7). The score function, defined as the derivative of
the likelihood function with respect to model parameters is denoted by U(θ) =
(U(γ), U(β), U(λ), U(α))′ so that the score equations follow by equating the scores
to zero, leading to the following equations

U(γ) = −1

γ

n∑
i=1

[
1− a2

ti + ati [λwi + (α− 1)w1i]
]

= 0,

U(β) = − n

2β
+

n∑
i=1

1

β + ti
− 1

2γ2

n∑
i=1

[
1

ti
− ti
β2

]
− 1

2γβ
3
2

n∑
i=1

ti + β

t
1
2
i

[λwi + (α− 1)w1i] = 0,

U(λ) =

n∑
i=1

ati
φ(λati)

Φ(λati)
−
√

2

π

(α− 1)

1 + λ2

n∑
i=1

w2i = 0, U(α) =
n

α
+

n∑
i=1

ui = 0,

where ui = log{ΦSN (ati)},

wi =
φ(λati)

Φ(λati)
, w1i =

φSN (ati)

ΦSN (ati)
,

and

w2i =
φ
(√

1 + λ2ati

)
ΦSN (ati)

, i = 1, . . . , n.

Numerical approaches are required for solving the above system of equa-
tions.

The elements of the observed information matrix are the negative of the sec-
ond partial derivatives of the likelihood function with respect to the model param-
eters evaluated at the ML estimators. We use the notation jγγ , jβγ , jλγ , jαγ , . . .
, jαλ, jαα so that, after extensive algebraic manipulations,
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jγγ = − n

γ2
+

3

γ2

n∑
i=1

a2
ti +

λ

γ2

n∑
i=1

a2
tiwi

[
λ2ati + λwi − 2

]
−
√

2

π

λ(α− 1)

γ2

n∑
i=1

a2
tiw2i

− (α− 1)

γ2

n∑
i=1

atiw1i

[
2 + a2

ti − atiw1i

]
.

jβγ =
1

γ3

n∑
i=1

[
ti
β2
− 1

ti

]
− λ

2γ2β3/2

n∑
i=1

ti + β√
ti
wi [1− λati(λati + wi)]

− α− 1

2γ2β3/2

n∑
i=1

ti + β√
ti

[√
2

π
λatiw2i + w1i(1 + a2

ti − atiw1i)

]
,

jλγ =
1

γ

n∑
i=1

atiwi [1− λatiwi(λati + wi)] +

√
2

π

α− 1

γ

n∑
i=1

atiw2i

[
ati +

1

1 + λ2
w1i

]
,

jββ = − n

2β2
+

n∑
i=1

1

(ti + β)2
+

1

γ2β3

n∑
i=1

ti −
1

2γβ5/2

n∑
i=1

3ti + β√
ti

[λwi + (α− 1)w1i]

+
1

4γ2β3

n∑
i=1

(ti + β)2

ti

[
λ2wi

(
λ(ti − β)

γβ1/2t
1/2
i

+ wi

)
+ (α− 1)

(
ti − β

γβ1/2t
1/2
i

w1i + w2
1i −

√
2

π
λw2i

)]
,

jλβ =
1

2γβ3/2

n∑
i=1

ti + β√
ti
wi [1− λatiwi(λati + wi)] +

√
2

π

α− 1

2γβ3/2

n∑
i=1

ti + β√
ti
w2i

[
ati +

1

1 + λ2
w1i

]
,

jαγ =
1

γ

n∑
i=1

atiw1i, jαβ =
1

2γβ3/2

n∑
i=1

ti + β√
ti
w1i,

jλλ =

n∑
i=1

a2
tiwi(λati + wi)−

√
2

π

2λ(α− 1)

(1 + λ2)2

n∑
i=1

w2i +

√
2

π

α− 1

1 + λ2

n∑
i=1

w2i

[
−λa2

ti +

√
2

π

1

1 + λ2
w2i

]
,

jαλ =

√
2

π

1

1 + λ2

n∑
i=1

w2i, jαα =
n

α2
.

The elements of the Fisher information matrix are n−1 times the expected
values of the elements of the matrix of second derivatives of the log-likelihood
function.
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Considering now λ = 0 and α = 1 and using the approximation in Cribari-
Neto and Branco ([7]), we can write the expected Fisher information matrix as

IF (θ) =


1
γ2 0 0 1

4γ
π2

√
8+π2

0
√
2π+γp(γ)√
2πγ2β2

A1(γ, β) A2(γ, β)

0 A1(γ, β) 2
π

√
1
2

1
4γ

π2
√
8+π2

A2(γ, β)
√

1
2 1

 ,

where p(γ) = γ
√

2
π −

π exp( 2
γ2

)

2 erfc( 2
γ ), with erfc(x) = 2√

π

∫∞
x exp(−t2)dt being

the error function (see Prudnikov et al. ([27])), A1(γ, β) =
√

2
π

1
4γ2β2

∫∞
0

(
1 + β

t

)
φ(at)dt

and A2(γ, β) =
√

2
π

1
4γ2β2

∫∞
0

(
1 + β

t

)
φ(2
√

2at/π)Φ(−at)dt.

The 2x2 superior submatrix of I(θ) is the Fisher information matrix for
the ordinary BS distribution, as can be seen in Lemonte et al. ([21]). It can be
verified that the columns (lines) of the matrix IF (θ) are linearly independent and
hence, it is invertible. Hence, for large samples, the MLE θ̂ of θ is asymptotically
normal, that is,

θ̂
A→ N4(θ, IF (θ)−1),

resulting that the asymptotic variance of the ML estimators θ̂ is the inverse of
IF (θ), which we denote by Σθ̂ = IF (θ)−1.

Approximation N4(θ,Σθ̂) can be used to construct confidence intervals for

θr, which are given by θ̂r ∓ z1−ρ/2

√
σ̂(θ̂r), where σ̂(·) corresponds to the r-th

diagonal element of the matrix Σθ̂ and z1−ρ/2 denotes 100(1 − ρ/2)-quantile of
the standard normal distribution.
On the other hand, in presence of right-censoring we can adopt the follow-
ing scheme. Assuming that for each individual the failure time is indepen-
dent of the censoring time (say, Yi and Ci for i = 1, . . . , n respectively). The
observed times are given by Ti = min(Yi, Ci) and the failure indicator is de-
noted as δi = I(Yi ≤ Ci). Given a sample of observed times and failure indi-
cators (t1, δ1), (t2, δ2), . . . , (tn, δn) and under the additional assumption of non-
informative censoring, i.e., the distribution of failure times (Yi) don’t provide
information about the censoring times (Ci) and viceversa (see Lagakos ([16])),
the log-likelihood function for θ is given
(2.8)

l(θ; t) =

n∑
i=1

[δi logϕPSNBS(ti; γ, β;φ, λ, α) + (1− δi) logS((ti; γ, β;φ, λ, α))] .

For δi = 1, i = 1, . . . , n, equation (2.8) is reduced to (2.7). Finally, inference
based on (2.8) can be performed in a similar manner as was done in the uncen-
sored case, as described above.
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3. Relationship among distributions of the family PSEBS.

The pdf for the PSEBS model with tν distribution (denoted PSTBS) is
given by:

(3.1)

ϕPSTBS(t; ξ) =
αΓ(ν+1

2 )

(νπ)1/2Γ(ν2 )

[
1 +

a2
t

ν

]− ν+1
2

Fst(λat){Hst(at;λ)}α−1At(γ, β),

where ξ = (γ, β;λ, α, ν) and ν representing degrees of freedom and Fst is
the cdf of the tν distribution (see Johnson et al. ([14])) and Hst is the cdf of
the skew-tν distribution. The power skew-Cauchy Birnbaum-Saunders (PSCBS)
model follows from pdf (3.1) by taking ν = 1. Note that in the particular case
that λ = 0 and α = 1, the PSTBS coincides with the Birnbaum-Saunders-tν
(BST) distribution studied in Dı́az-Garćıa and Leiva-Sánchez ([9]) and for λ = 0
is obtained the Power Birnbaum-Saunders Student-t distribution studied in ([24]).
Moreover, for α = 1, we obtain the skew-tν-Birnbaum-Saunders (STBS) model,
studied in Vilca-Labra and Leiva-Sánchez ([30]). The relationships among some
of those models are presented in Figure 6.
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Figure 6: Relationship among distributions of the family PSEBS.

The density generator of the normal, Cauchy, tν , generalized tν , type I lo-
gistic, type II logistic and power exponential are, respectively, given by g(u) =
(2π)−1/2 exp(−u/2), g(u) = {π(1+u)}−1, g(u) = νν/2B(1/2, ν/2)−1(ν+u)−(ν+1)/2,
where ν > 0 and B(·, ·) is the beta function, g(u) = sr/2B(1/2, r/2)−1(s +
u)−(r+1)/2 (s, r > 0), g(u) = c exp(−u)(1+exp(−u))−2, where c ≈ 1.484300029 is
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the normalizing constant obtained from
∫∞

0 u−1/2g(u)du = 1, g(u) = exp(−
√
u)(1+

exp(−
√
u))−2 and g(u) = c(k) exp(−1

2u
1/(1+k)), −1 < k ≤ 1, where c(k) =

Γ(1 + (k + 1)/2)21+(1+k)/2.

4. Applications

In this section, it is shown that the model discussed in the previous sec-
tions can give good feedback to understand relations between variables in applied
problems. The first application considers the remission times (in months) of the
bladder cancer patients. The second application presented is based on certain
features of the trees in a forestry area, and the last applications is a censured
data.

4.1. Application I

We consider an uncensored data set corresponding to remission times (in
months) of a random sample of 128 bladder cancer patients. These data were
previously studied by Lee and Wang ([17]). Bladder cancer is a disease in which
abnormal cells multiply without control in the bladder. The most common type
of bladder cancer recapitulates the normal histology of the urothelium and is
known as transitional cell carcinoma.

Descriptive statistics results are summarized in Table 1, where
√
b1 and

b2 are sample asymmetry and sample kurtosis coefficients, respectively. There
is indication of high kurtosis in this data set, which suggest that PSNBS model
can be more appropriate than BS model. ML estimators were computed by
maximizing log-likelihood using function “optim” in R Core Team ([28]). Table
2 shows the fitting of the BS, SNBS, PNBS and PSNBS models (standard error
are in parenthesis). To compare the fitting of these models, we use Akaike ([1])
criterion, namely

AIC = −2`(·; t) + 2k,

we consider also the AICC (corrected Akaike information criterion), namely

AICC = AIC +
2k(k + 1)

n− (k + 1)
,

where k is the number of parameters in the model. According to this criterion
the model that best fits the data is the one with the lowest AIC or AICC. We
also apply the formal goodness-of-fit tests in order to verify which distribution
fits better to these data. We consider the Cramér-von Mises (W ∗), Anderson-
Darling (A∗) statistics, Kolmolgorov- Smirnov(K-S) test statistics and p-value.
The statistics W ∗ and A∗ are described in detail in Chen and Balakrishnan ([6]).
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In general, the smaller the values of the statistics W ∗ and A∗, the better the fit
to the data.

Table 1: Descriptive statistics for the data set

n t s2
√
b1 b2

128 4.1293 9.3660 3.2480 15.1950

Table 2: ML estimates for BS, PNBS, SNBS and PSNBS models

Parameters γ β α λ

BS 1.3740(0.0862) 4.5711(0.4461) − −
PNBS 3.2915(0.2856) 0.4227(0.6321) 5.1830(0.2051) −
SNBS 2.3350(0.4131) 1.3566(0.3849) − 1.9050(1.1294)

PSNBS 5.3315(3.0351) 0.1764(0.2060) 2.3024(0.4235) 2.5762(3.7211)
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Figure 7: Graphs for PSNBS model (a) empirical cdf (b) histogram

Table 3: AIC, AICC, W ∗, A∗, K-S and p-value for the remission times of
bladder cancer data for BS, PNBS, SNBS and PSNBS models

`(θ) AIC AICC W ∗ A∗ K-S P-value

BS 430.0420 864.0836 864.1898 0.4136 2.5615 0.1689 0.0013
PNBS 413.0645 832.1290 832.3433 0.1196 0.7219 0.0694 0.5680
SNBS 418.8570 843.7140 843.9283 0.1667 1.0930 0.1214 0.0459

PSNBS 411.8310 831.6620 832.0224 0.0829 0.5073 0.0623 0.7037

The values of these statistics for all models are given in Table 3. As ex-
pected, the values of AIC, AICC, W ∗, A∗, K-S and p-value indicates better fit
for the PSNBS model over the SNBS, PNBS and BS models. Figure 7 shows
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Figure 8: (a) qq-plot PNBS and (b) qq-plot PSNBS

graphs for PSNBS model (a) empirical cdf (b) histogram and Figure 8- (a) and
(b) shows the qq-plot for the models with better fit. Note that the PSNBS model
provides better fit to the data set analyzed. Therefore, the PSNBS model fits
better than the other models, although it has one more parameter.

4.2. Application II

A major problem with forest areas is tree mortality due to various factors
that can be seen as caused by stress through a phenomenon similar to material
fatigue. In this context, two problems of great interest are tree mortality and the
distribution of the diameter at the breast height (DBH). It has been observed
that the BS distribution has a failure rate that can capture such features. As
seen above, the ordinary BS is a particular case of the PSEBS distribution, so
that the PSEBS is more flexible to explain skewness and kurtosis excess. Thus,
we apply this distribution to explain the behavior of the variable DHB (in cm)
in explaining forest mortality of Gray Birch (Betula populifolia Marshall) of a
perennial with an average height of ten meters. The data basis consists of 160
trees and are available in Leiva et al. ([19]). Descriptive statistics results are
summarized in Table 4. There is indication of high kurtosis in this data set, that
suggest a more flexible model than the BS model, such as the PSTBS model. For
this reason we implement the BS, BST, STBS and PSTBS models.

Table 4: Descriptive statistics for the data set

n t s2
√
b1 b2

160 14.5387 13.0510 2.8893 13.9716

Table 5 reports the estimates of the degrees of freedom, ν, for each model
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based on the tν distribution, which are obtained by maximizing the profile log-
likelihood function. ML estimates (standard errors in parenthesis) are presented
in Table 6.

Table 5: Estimation of ν for the BST, STBS and PSTBS models by max-
imizing the log-likelihood function

Log-likelihood Log-likelihood Log-likelihood

ν BST STBS PSTBS

1 -406.4265 -402.8126 -390.2868
2 -392.7834 -387.5216 -383.0684
3 -389.9824 -383.4061 -381.0513
4 −389.4381 -381.8612 -380.0609
5 -389.5679 -381.1933 -379.6883
6 -389.9238 -380.8925 -379.4448
7 -390.3497 -380.8505 -379.4001
8 -390.7852 −380.7285 -379.0779
9 -391.2060 -381.0066 −378.8113
10 -391.6025 -383.8818 -379.3470

Table 6: ML estimates for BS, BST (ν = 4), STBS (ν = 8) and PSTBS
(ν = 9) models

γ β α λ

BS 0.2083(0.0116) 14.2302(0.2331) − −
BST 0.151(0.074) 13.818(0.014) − −
STBS 0.2653(0.103) 11.346(0.025) − 3.325(1.174)

PSTBS 0.2796(0.1135) 9.8844(0.1244) 2.3178(0.9654) 7.7185(11.4417)

According to the AIC and AICC criteria, W ∗, A∗, K-S and p-value indicates
better fit for the PSNBS model over the other models. See Table 7.

Table 7: AIC, AICC, W ∗, A∗, K-S and p-value for the remission times
of Gray birch data for BS, BST4, STBS8 and PSTBS9 models

`(θ) AIC AICC W ∗ A∗ K-S P-value

BS 399.7764 803.5528 803.6590 0.4396 2.7084 0.1066 0.0526
BST 389.4381 782.8762 782.9526 0.16602 1.1472 0.0707 0.4004
STBS 380.7285 767.4569 767.6108 0.04515 0.3166 0.0535 0.7506

PSTBS 378.8113 764.355 764.6131 0.040 0.2966 0.047 0.8614
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Figure 9: Graphs for PSTBS9 model (a) empirical cdf and (b) histogram

Figure 9 shows graphs for PSTBS9 model (a) empirical cdf (b) histogram
and Figure 10-(a) and (b) shows the qq-plot for the models with better fit.
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Figure 10: (a) qq-plot STBS8 and (b) qq-plot PSTBS9

4.3. Application III (censored data)

The World Health Organization recommends breastfeeding exclusive for
babies until 4 and 6 months. For this reason, an study from Universidade Fed-
eral de Minas Gerais UFMG main breastfeeding practice, as well as the possible
factors of risk for an early weaning. The study consists of 150 mothers with
children under 2 years of age. The response variable was the maximum time of
breastfeeding, i.e., the time counted from birth to the weaning. More details on
this data set can be found in Colosimo and Giolo ([8]). The values of the ML
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estimates for the BS, SNBS and PSNBS statistics for all models are given in
Table 8. As expected, the values of AIC better fit for the PSNBS over other
models, and the Figure 11 we can see that most babies stop having exclusive
breastfeeding after 7 or 8 months.

Table 8: ML estimates for BS, SNBS and PSNBS models and AIC criteria

γ β α λ `(θ) AIC

BS 2.362 (0.268) 6.696(1.372) − − -243.545 491.090
SNBS 5.380(1.538) 0.591(0.277) − 4.015 (1.712) -230.047 466.094

PSNBS 6.441(2.794) 0.252(0.227) 1.489(0.299) 3.761(2.287) -228.357 464.715
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Figure 11: Estimated survival function for weaning study data under
PSNBS model

5. Final comments

This Paper proposes a flexible asymmetric BS distribution which contains
previous ones as special cases and is able to surpass traditional models in terms
of wider ranges of asymmetry and kurtosis. It is also shown that it is able to
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perform well in real applications, outperforming potential rival models. Maxi-
mum likelihood estimation is implemented and Fisher and observed information
matrices are derived. It is shown that both are nonsingular. Some more features
of this family of distributions are:

• The PSEBS model contains, as special cases, the SEBS model proposed
by Vilca-Labra and Leiva-Sánchez ([30]) and the PEBS model proposed by
Mart́ınez-Flórez et al. (2014a).

• The proposed model it has a closed expression and presents more flexible
asymmetry and kurtosis coefficients than PEBS and SEBS models.

• Some properties of the BS distribution were extended for the PSEBS model.

• The moments of the PSEBS family are finite.

• In the three applications it is shown that the PSEBS model fit better than
the other models. This is confirmed by the different criteria used.
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