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Abstract:

• Partial Least Squares Regression (PLSR) is a linear regression technique developed as
an incomplete or ”partial” version of the least squares estimator of regression, applica-
ble when high or perfect multicollinearity is present in the predictor variables. Robust
methods are introduced to reduce or remove the effects of outlying data points. In the
previous studies it has been showed that if the sample covariance matrix is properly
robustified further robustification of the linear regression steps of the PLS1 algorithm
(PLSR with univariate response variable) becomes unnecessary. Therefore, we pro-
pose a new robust PLSR method based on robustification of the covariance matrix
used in classical PLS1 algorithm. We select a reweighted estimator of covariance, in
which the Minimum Covariance Determinant as initial estimator is used, with weights
adaptively computed from the data. We compare this new robust PLSR method with
classical PLSR and four other well-known robust PLSR methods. Both simulation
results and the analysis of a real data set show the effectiveness and robustness of the
new proposed robust PLSR method.
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1. INTRODUCTION

Classical PLSR is a well-established technique in multivariate data anal-
ysis. It is used to model the linear relation between a set of regressors and a
set of response variables, which can then be used to predict the value of the re-
sponse variables for a new sample. A typical example is multivariate calibration
where the x-variables are spectra and the y-variables are the concentrations of
certain constituents. Since classical PLSR is known to be severely affected by
the presence of outliers in the data or deviations from normality, several PLSR
methods with robust behaviour towards data contamination have been proposed
(Hubert and Vanden Branden, 2003; Liebmann et al., 2010). NIPALS and SIM-
PLS are the popular algorithms for PLSR and they are very sensitive to outliers
in the dataset. For univariate or multivariate response variable several robustified
versions of these algorithms have already been proposed (González et al., 2009).

The two main strategies in the literature for robust PLSR are (1) the down-
weighting of outliers and (2) robust estimation of the covariance matrix. The early
approaches for robust regression by downweighting of outliers are considered semi-
robust: they had, for instance, non-robust initial weights or the weights were not
resistant to leverage points (Hubert and Vanden Branden, 2003). Based on the
first strategy, for example, Wakeling and Macfie (1992) worked with the PLS with
multivariate response variables (which will be called PLS2) and their idea was to
replace the set of regressions involved in the standard PLS2 algorithm by M esti-
mates based on weighted regressions. Griep et al. (1995) compared least median
of squares (LMS), Siegel’s repeated median (RM) and iterative reweighted least
squares (IRLS) for PLS with univariate response variable (PLS1 algorithm), but
these methods are not resistant to high leverage outliers (González et al., 2009).
Based on the second strategy, a robust covariance estimation, the robust PLSR
methods provide resistance to all types of outliers including leverage points (Hu-
bert and Vanden Branden, 2003). For instance, Gil and Romera (1998) proposed
a robust PLSR method based on statistical procedures for covariance matrix ro-
bustification for PLS1 algorithm. They selected the well-known Stahel-Donoho
estimator (SDE) (Gil and Romera, 1998). Since SIMPLS is based on the empirical
cross-covariance matrix between the y-variables and the x-variables and on linear
Least Squares (LS) regression, the results are affected by outliers in the data set.
Hence, Hubert and Vanden Branden (2003) have been suggested a robust version
of this method called RSIMPLS that it is used in case of both univariate and
multivariate response variables. A robust method RSIMPLS starts by applying
ROBPCA on the x- and y-variables in order to replace the covariance matrices
Sxy and Sx by robust estimates and then proceeds analogously to the SIMPLS
algorithm. A robust regression method (ROBPCA regression) is performed in the
second stage. ROBPCA is a robust PCA method which combines projection pur-
suit ideas with Minimum Covariance Determinant (MCD) covariance estimation
in lower dimensions (Engelen et al., 2004; Hubert and Vanden Branden, 2003).
Serneels et al. (2005) proposed a method called as Partial Robust M (PRM)
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regression that it is conceptually different from the other robust PLSR methods:
instead of robust partial least squares, a partial robust regression estimator was
proposed. This method uses SIMPLS algorithm and it could be used in case
of univariate response. In this method, with an appropriately chosen weighting
scheme, both vertical outliers and leverage points were downweighted (Serneels et
al., 2005). As the name suggests, it is a partial version of the robust M-regression.
In an iterative scheme, weights ranging between zero and one are calculated to
reduce the influence of deviating observations in the y space as well as in the
space of the regressor variables. PRM is very efficient in terms of computational
cost and statistical properties (Liebmann et al., 2010). González et al. (2009)
also concentrated in the case of univariate response (PLS1) and showed that if
the sample covariance matrix is properly robustified the PLS1 algorithm will be
robust and, therefore, further robustification of the linear regression steps of the
PLS1 algorithm is unnecessary (González et al., 2009).

In this paper, we concentrate in the case of univariate response (PLS1)
and we present a procedure which applies the standard PLS1 algorithm to a
robust covariance matrix similar to Gil and Romera (1998) and González et al.
(2009) studies. In our study, we estimate the covariance matrix used in PLS1
algorithm robustly by using ’an adaptive reweighted estimator of covariance using
Minimum Covariance Determinant (MCD) estimators in the first step as robust
initial estimators of location and covariance’.

The rest of the paper is organized as follows. Section 2 reviews briefly
the PLS1 algorithm (PLS with univariate response variable). Section 3 presents
the new proposed robust PLSR method ’PLS-ARWMCD’. Section 4 contains
a simulation study where the performance of the new robust PLSR method is
compared to classical PLSR method and other four robust PLSR methods existing
in robust PLSR literature. Section 5 illustrates the performance of the new
proposed robust PLSR method ’PLS-ARWMCD’ in a well known set of real data
in robust PLSR literature. Finally, Section 6 collects some conclusions.

2. THE CLASSICAL PLS1 ALGORITHM

It is supposed that we have a sample of size n of a 1 +p dimensional vector
z = (y,X)

′
which could be decomposed as a set of p independent variables, x and

a univariate response variable y. Throughout this paper, matrices are denoted by
bold capital letters and vectors are denoted by bold lowercase letters. Let Sz, be

the sample covariance matrix of z, consisting of the elements Sz =

[
s2y s

′
y,X

sy,X SX

]
,

where sy,X is the p× 1 vector of covariances between y and the x variables. The

aim of this study is to estimate the linear regression ŷ = β̂
′
x, and it is assumed

that the response variable can be linearly explained by a set of a components
t1, ..., tk with k << p, which are linear functions of the x variables. Hence,
calling X the n × p data matrix of the independent variables, and x

′
i to its ith
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row, the following model showed by (2.1) and (2.2) holds (González et al., 2009).

(2.1) xi = Pti + εi

(2.2) yi = q
′
ti + ηi

Here, P is the p × k matrix of the loadings of the vector ti = (ti1, ..., tik)
′

and q is the k-dimensional vector of the y-loadings. The vectors εi and ηi have
zero mean, follow normal distributions and are uncorrelated. The component
matrix T = (t1, ..., tk)

′
is not directly observed and should be estimated. Then,

it can be shown that the maximum likelihood estimation of the T matrix is given
as in (2.3) (González et al., 2009).

(2.3) T = XWk

Here, the loading matrix Wk = [w1,w2, ...,wk] is the p × k matrix of
coefficients and the vectors wi, 1 ≤ i < k are the solution of (2.4) under the con-
straint in (2.5) with w1αsy,x. Consequently, we can conclude that components
(t1, ..., tk) are orthogonal (González et al., 2009).

(2.4) wi = arg max
w

cov2 (Xw,y)

(2.5) w
′
w = 1 and w

′
iSxwj = 0 for 1 ≤ j < i

It can be shown that vectors wi are found as the eigenvectors linked to the
largest eigenvalues of the matrix is given as in (2.6).

(2.6) (I − Px(i)) sy,xs
′
y,x

Px(i) is the projection matrix on the space spanned by SXWi, given by

Px(i) = (SxWi)
[
(SxWi)

′
(SxWi)

]−1
(SxWi)

′
. From these results it is easy to

see that the vectors wi can be computed recursively as in below.
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(2.7) w1αsy,x

(2.8) wi+1αsy,x − SxWi

(
W

′
iSxWi

)−1
W

′
i sy,x, 1 ≤ i < k

It could be mentioned that by using the expressions given by (2.7) and
(2.8), it is not necessary to calculate the PLS components ti. . In each step of the
algorithm, wi+1 only depends on the value of the i previous vectors w1,w2, ...,wi,
on Sx and on sy,x. Moreover, as w1 only depends on sy,x, the calculation of
W is completely fixed by the values of Sx and sy,x. Finally, as the regression
coefficients in (2.2) are uncorrelated, due to the uncorrelation of the t variables,
it is easy to see that the regression coefficients β̂PLSk are given by (2.9) (González
et al., 2009).

(2.9) β̂PLSk = Wk

(
W

′
kSxWk

)−1
W

′
ksy,x

The application of this algorithm can be seen as a two step procedure: (1)
the weights wi, defining the new orthogonal regressor ti, are computed with (2.7)
and (2.8) by using the covariance matrix of the observations; (2) the y-loadings
qi are computed by regressing y on individual regressor ti. As it is shown in (2.9)
these two steps depend only on the covariance matrix of the observations and it
may be thought that if this matrix is properly robustified the procedure will be
robust (González et al., 2009).

3. THE NEW PROPOSED ROBUST PLSR METHOD

In this section, the new robust PLSR method, which we proposed based on
’an adaptive reweighted estimator of covariance using MCD estimators in the first
step as robust initial estimators of location and covariance’, will be introduced.
This adaptive reweighted estimator of covariance will be used in order to robustify
the sample covariance matrix, Sz, in the PLS1 algorithm. Hence, while defining

this estimator, the equations are examined on zi = (yi,xi) , i = 1, ..., n ∈ Rp
′
,

here, p
′

= p+ 1. In this method, the MCD estimator is calculated by well-known
’FAST-MCD’ algorithm. Hence, in this section, firstly, information about MCD
estimator and operation of the FAST-MCD algorithm will be given.

Besides high outlier resistance, if robust multivariate estimators are to be of
practical use in statistical inference they should offer a reasonable efficiency under
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the normal model and a manageable asymptotic distribution. However, Minimum
Volume Ellipsoid (MVE) and MCD estimators are not in this category. Gervini
(2003) stated that by taking care of both robustness and efficiency considerations,
the best choice seems to be a two-stage procedure. In this procedure, firstly, a
highly robust but perhaps inefficient estimator is computed, which is used for
detecting outliers and computing the sample mean and covariance of the ’cleaned’
data set as in Rousseeuw and Van Zomeren (1990). This procedure consists
of discarding those observations whose Mahalanobis distances exceed a certain
fix threshold value. In the previous studies, the MVE was commonly used as
initial estimator for these procedures. However, Rousseeuw and Van Driessen
(1999) have proposed an algorithm for calculating MCD estimator, although this
algorithm does not guarantee that the exact estimator is found, it is faster and
more accurate than previously existing algorithms even for very large data sets(
n >> p

′
= p+ 1

)
. This fact, added to its 1/

√
n rate of convergence, seems

to point to the MCD method using the FAST-MCD algorithm as the current
best choice in comparison to MVE for initial estimator of a two-step procedure
(Gervini, 2003).

MCD method, proposed by Rousseeuw (1984), is searching for those h data
points for which the determinant of the classical covariance matrix is minimal.
Hence, the MCD estimators of location and covariance will be the mean and
covariance matrix of these h data points, respectively. The calculation of MCD
estimation is not simple. Let z

′
i = (yi,xi)

′
, i = 1, ..., n be an unified data

set. The MCD estimator can only be applied to data sets where the number of

observations is larger than the number of variables
(
n > p

′
= p+ 1

)
. The reason

is that if p
′
> n then also p

′
> h, and the covariance matrix of any h data points

will always be singular, leading to a determinant of zero. Thus, each subset of
h data points would lead to the smallest possible determinant, resulting in a
non-unique solution (Filzmoser et al., 2009; Polat, 2014).

FAST-MCD algorithm could deal with a sample size n in the tens of thou-
sands. FAST-MCD finds the exact solution for small data sets and it is faster
and more accurate than previously existing algorithms, even for very large data
sets. Rousseeuw and Van Driessen (1999) suggested to use FAST-MCD algorithm
in order to estimate location and covariance as considering the its statistical ef-
ficiency and fastness in computation (Rousseeuw and Van Driessen, 1999). In
FAST-MCD algorithm as the raw MCD estimators of location and covariance
are reweighted in order to improve the finite sample efficiency, they are called as
Reweighted Minimum Covariance Determinant (RMCD) estimators (Hubert and
Vanden Branden, 2003; Moller et al., 2005).
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3.1. Construction of the FAST-MCD algorithm

3.1.1. Basic theorem and the C-step for the FAST-MCD algorithm

A key step of the FAST-MCD algorithm is the fact that starting from
any approximation to the MCD, it is possible to compute another approximation
with an even lower determinant. ’C-step’ procedure, which is used in FAST-MCD
algorithm, given in following Theorem 3.1 (Rousseeuw and Van Driessen, 1999).

Theorem 3.1. Since z
′
i = (yi,xi)

′
, i = 1, ..., n consider a data set

Zn = {z1, ...,zn} of p
′

= p + 1-variate observations. Let a set of observa-
tions that defined as H1 ⊂ {1, ..., n} with |H1| = h. Here, H1 shows the sub-
set of h observations having the lowest determinant. Hence, as the location
and covariance for subset of h observations µ̂1 := (1/h)

∑
i∈H1

zi and Σ̂1 :=

(1/h)
∑

i∈H1
(zi − µ̂1) (zi − µ̂1)

′
, respectively, if det

(
Σ̂1

)
6= 0 then the relative

distances are defined as d1(i) :=
√

(z1 − µ̂1)
′
Σ̂−11 (z1 − µ̂1), i = 1, ..., n. Then,

a set of observations H2 is taken such that {d1(i); i ∈ H2} := {(d1)1:n , ..., (d1)h:n}
where (d1)1:n ≤ (d1)2:n ≤ ... ≤ (d1)n:n are the ordered distances, and µ̂2 and Σ̂2

are computed based on H2. Then, det
(
Σ̂2

)
≤ det

(
Σ̂1

)
with equality if and

only if µ̂2 = µ̂1 and Σ̂2 = Σ̂1 (Polat, 2014; Rousseeuw and Van Driessen, 1999).

If det
(
Σ̂1

)
> 0, , applying the Theorem 3.1 yields Σ̂2 with det

(
Σ̂2

)
≤

det
(
Σ̂1

)
. In FAST-MCD algorithm the construction in Theorem 3.1 is referred

to as ’C-step’, where ’C’ can be taken to stand for ’covariance’ since Σ̂2 is the
covariance matrix of H2, or for ’concentration’ since we concentrate on the h
observations with smallest distances, and Σ̂2 is more concentrated (has a lower
determinant) than Σ̂1 (Rousseeuw and Van Driessen, 1999).

Repeating C-steps yields an iteration process. If det
(
Σ̂2

)
= 0 or det

(
Σ̂2

)
=

det
(
Σ̂1

)
we stop; otherwise we run another C-step yielding det

(
Σ̂3

)
, and so on.

The sequence det
(
Σ̂1

)
≥ det

(
Σ̂2

)
≥ det

(
Σ̂3

)
≥ ... is nonnegative and hence

must converge. In fact, since there are only finitely many h subsets there must

be an index m such that det
(
Σ̂m

)
= 0 or det

(
Σ̂m

)
= det

(
Σ̂m−1

)
, hence con-

vergence is reached. In practice, m is often below 10. Afterwards, running the

C-step on
(
µ̂m, Σ̂m

)
no longer reduces the determinant. This is not sufficient

for det
(
Σ̂m

)
to be the global minimum of the MCD objective function, but it is

a necessary condition (Rousseeuw and Van Driessen, 1999). Thus, Theorem 3.1
provides a partial idea for an algorithm: ’Take many initial choices of H1 and
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apply C-steps to each until convergence, and keep the solution with lowest deter-
minant ’. However, several things must be decided to make this idea operational:
how to generate sets H1 to begin with, how many H1 are needed, how to avoid
duplication of work since several H1 may yield the same solution, can’t we do
with fewer C-steps, what about large sample sizes, and so on. These matters will
be discussed in the next sections.

3.1.2. Creating initial subsets H1

In order to apply the algorithmic idea given in the previous section, it
must be decided how to construct the initial subsets H1. For this purpose, first

of all, a random
(
p
′
+ 1
)

-subset J must be drawn according to method given in

Rousseeuw and Van Driessen (1999) study and then µ̂0 := ave(J) and Σ̂0 :=

cov(J) must be computed. If det
(
Σ̂0

)
= 0 then extend J by adding another

random observation, and continue adding observations until det
(
Σ̂0

)
> 0. Then

compute the distances d20(i) := (zi − µ̂0)
′
Σ̂−10 (zi − µ̂0) for i = 1, ..., n. Sort

them into d0 (π(1)) ≤ ... ≤ d0 (π(n)) and put H1 := {π(1), ..., π(h)}. Rousseeuw
and Van Driessen (1999) mentioned that it would be useless to draw fewer than
p
′
+ 1 points, since then Σ̂0 is always singular (Polat, 2014; Rousseeuw and Van

Driessen, 1999).

3.1.3. Selective iteration

Each C-step calculates a covariance matrix, its determinant, and all relative
distances. Therefore, reducing the number of C-steps would improve the speed.
Rousseeuw and Van Driessen (1999) mentioned that often the distinction between
good (robust) solutions and bad solutions already becomes visible after two or
three C-steps. Moreover, they proposed to take only two C-steps from each initial
subsample, select the 10 different subsets with the lowest determinants, and only
for these 10 to continue taking C-steps until convergence (Rousseeuw and Van
Driessen, 1999).

3.1.4. Nested extensions

For a small sample size n, the above algorithm, which was mentioned in
Section 3.1.1, does not take much time. But when n grows, the computation time
increases, mainly due to the n distances that needed to be calculated each time.
To avoid doing all the computations in the entire data set, Rousseeuw and Van
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Driessen (1999) considered a special structure. When n > 1500, the algorithm
generates a nested system of subsets which looks like in Figure 1, where the
arrows mean ’is a subset of’.

Figure 1: Nested system of subsets generated by the FAST-MCD algo-
rithm

In Figure 1 the five subsets of size 300 do not overlap, and together they
form the merged set of size 1500, which in turn is a proper subset of the data set
of size n. Since the method showed in Figure 1 work with two stages, ’nested’
name is used. To construct the Figure 1 the algorithm draws 1500 observations,
one by one, without replacement. The first 300 observations, that it encounters,
are put in the first subset, and so on. Because of this mechanism each subset of
size 300 is roughly representative for the data set, and the merged set with 1500
cases even more representative. When n < 600 the algorithm operates as in the
previous Section 3.1.1. However, when n ≥ 1500 Figure 1 is used (Rousseeuw
and Van Driessen, 1999).

3.2. The implementation of the FAST-MCD algorithm

Combining all the components of the preceding sections yields the FAST-
MCD algorithm. The steps of the algorithm for p

′
= p + 1 dimensional unified

vector z
′
i = (yi,xi)

′
, i = 1, ..., n are given as in below (Polat, 2014; Rousseeuw

and Van Driessen, 1999).

Step 1: The MCD estimates can resist (n− h) outliers, hence the number
h (or equivalently the proportion α = h/n) determines the robustness of the

estimator. The default h value is
[(
n+ p

′
+ 1
)
/2
]

in FAST-MCD algorithm and

the highest resistance towards contamination is achieved by taking this value.

However, the user may choose any integer h with
[(
n+ p

′
+ 1
)
/2
]
≤ h < n.

When a large proportion of contamination is presumed in data set, h should thus
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be chosen h = [0.5n] with α = 0.5. Otherwise if it is exact that the data contains
less than 25% of contamination, which is usually the case, a good compromise
between breakdown value and statistical efficiency is obtained by putting h =
[0.75n] (Polat, 2014; Rousseeuw and Van Driessen, 1999).

Step 2: From here on h < n and p
′ ≥ 2. If n is small (say, n < 600) then,

• repeat (say) 500 times

– construct an initial h-subset H1 using method in Section 3.1.2, i.e.

starting from a random
(
p
′
+ 1
)

-subset

– carry out two C-steps described in Section 3.1.1

• for the 10 results with lowest det
(
Σ̂3

)
:

– carry out C-steps until convergence

• report the solution
(
µ̂, Σ̂

)
with the lowest det

(
Σ̂
)

Step 3: If n is larger (say, n ≥ 600) then,

• construct up to five disjoint random subsets of size nsub according to Section
3.1.4 (say, subsets of size nsub = 300)

• inside each subset, repeat 500/5 = 100 times:

– construct an initial subset H1 of size hsub = [nsub (h/n)]

– carry out two C-steps, using nsub and hsub

– keep the 10 best results
(
µ̂sub, Σ̂sub

)
• pool the subsets, yielding the merged set (say, of size nmerged = 1500)

• in the merged set, repeat for each of the 50 solutions
(
µ̂sub, Σ̂sub

)
:

– carry out two C-steps, using nmerged and hmerged = [nmerged (h/n)]

– keep the 10 best results
(
µ̂merged, Σ̂merged

)
• in the full data set, repeat for the mfull best results:

– take several C-steps, using n and h

– keep the best final result
(
µ̂full, Σ̂full

)
Here, mfull and the number of C-steps (preferably, until convergence) de-

pend on how large the data set is (Polat, 2014; Rousseeuw and Van Driessen,
1999).
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This algorithm called as FAST-MCD. It is affine equivariant: when the data

are translated or subjected to a linear transformation, the resulting
(
µ̂full, Σ̂full

)
will transform accordingly. For convenience, the computer program contains two
more steps (Rousseeuw and Van Driessen, 1999):

Step 4: In order to obtain consistency when the data come from a multivari-

ate normal distribution, µ̂MCD = µ̂full and Σ̂MCD =
medi d

2
(µ̂full,Σ̂full)

(i)

χ2
p′ ,0.5

Σ̂full

are putted.

Step 5: In order to obtain ’one-step reweighted’ estimates, each observation
is reweighted as in (3.1). Hence, by using these weights, the RMCD estimators
are obtained as in (3.2).

(3.1) wi =

{
1, if (zi − µ̂MCD)

′
Σ̂−1MCD (zi − µ̂MCD) ≤ χ2

p′ ,0.975

0, otherwise.

µ̂RMCD =

∑n
i=1wizi∑n
i=1wi

and

Σ̂RMCD =

∑n
i=1wi (zi − µ̂RMCD) (zi − µ̂RMCD)

′∑n
i=1wi

(3.2)

The FAST-MCD algorithm code named as ’mcdcov ’ could be found in
MATLAB LIBRA Toolbox which is written by Verboven and Hubert (2005).
The implementation of mcdcov function could be given briefly as in below (Po-
lat, 2014; Verboven and Hubert, 2005):

• The data set contains n observations and p
′

= p + 1 variables. When
n < 600, the algorithm analyzes the data set as a whole. When the data
set is analyzed as a whole, a subsample of p

′
+ 1 observations is taken,

of which of them the mean and covariance matrix are calculated. The h
observations with smallest relative distances are used to calculate the next
mean and covariance matrix, and this cycle is repeated two C-step times.
FAST-MCD algorithm is a resampling algorithm. 500 subsets of size p

′
+ 1

out of n are drawn randomly. Afterwards, the 10 best solutions (means and
corresponding covariance matrices) are used as starting values for the final
iteration. The number of the subsets is chosen as ’500’ to ensure a high
probability of sampling at least one clean subset. These iterations stop
when two subsequent determinants become equal. At most three C-step
iteration are done. The solution with smallest determinant (location and
covariance) is retained.
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• However, when n ≥ 600 (whether n < 1500 or not), the algorithm does
part of the calculations on (at most) 5 non-overlapping subsets of (roughly)
1500 observations. In this case, the algorithm functions in three stages.

– Stage 1: For each H1 subsample in each subset, two C-steps iterations
are carried out in that subset. In this stage, 5 subsets and 500 sub-
samples are chosen. For each subset, the 10 best solutions (location
and covariance) are stored.

– Stage 2: Then the subsets are pooled, yielding a merged set with at
most 1500 observations. If n is large, the merged set is a proper subset
of the entire data set. In this merged set, each of these (at most 50)

best solutions
(
µ̂sub, Σ̂sub

)
of Stage 1 are used as starting values for

C-step iterations. In this stage, starting from each
(
µ̂sub, Σ̂sub

)
, it is

continued taking C-steps by using all 1500 observations in the merged

set. Also here, the 10 best solutions
(
µ̂merged, Σ̂merged

)
are stored.

– Stage 3: This stage depends on n, the total number of observations
in the data set. Finally, each of these 10 solutions is extended to

the full data set in the same way and the best
(
µ̂full, Σ̂full

)
solution

is obtained. Since the final computations are carried out in the en-
tire data set, they take more time when n increases. Rousseeuw and
Van Driessen (1999) mentioned that the number of initial solutions(
µ̂merged, Σ̂merged

)
and/or the number of C-steps in the full data set

could be limited in order to speed up the algorithm as n becomes large
(Rousseeuw and Van Driessen, 1999; Verboven and Hubert, 2005).
Therefore, the default values of ’mcdcov ’ function are: If n ≤ 5000,
all 10 preliminary solutions are iterated. If n > 5000, only the best
preliminary solution is iterated. The number of iterations decreases
to 1 according to n × p. If n × p ≤ 100000, the number of C-steps
take on the full data set in the Stage 3 iterate three times, whereas for
n× p > 1000000 only one iteration step is taken.

In the next section, information about ’a robust and efficient adaptive
reweighted covariance estimator’, which was proposed in Gervini (2003), will be
given. This robust covariance estimator is constructed by using MCD estimators
in the first step as robust initial estimators of location and covariance.

3.3. A robust and efficient adaptive reweighted estimator of covariance

In the context of linear regression, many estimators have been proposed
that aim to reconcile high efficiency and robustness. Overall, if one wants to take
care of both robustness and efficiency considerations, the best choice seems to
be a two-stage procedure. Gervini (2003) proposed essentially an improvement
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over Rousseeuw and Van Zomeren (1990). It consists of a reweighted one-step
estimator that uses adaptive threshold values. This adaptive reweighting scheme
is able to maintain the outlier resistance of the initial estimator in breakdown
and bias and, at the same time, attain 100% efficiency at the normal distribution.
This kind of adaptive reweighting was first proposed in Gervini (2002) for the
linear regression model. In Gervini (2003), this idea is extended and an adaptive
method is proposed for multivariate location and covariance estimation

Given a sample z1, ...,zn in Rp
′

with p
′

= p+1 and initial robust estimators

of location and covariance
(
µ̂0n, Σ̂0n

)
consider the Mahalanobis distances given

in (3.3) (Gervini, 2003; Polat, 2014).

(3.3) di := d
(
zi, µ̂0n, Σ̂0n

)
=
{

(zi − µ̂0n)
′
Σ̂−10n (zi − µ̂0n)

}1/2

An outlier will typically have a larger Mahalanobis distance than a ’good’
observation. If one assumes a normal distribution, d2i is approximately χ2

p′
dis-

tributed and it is reasonable to suspect of those observations with, for instance,
d2i ≥ χ2

p′ ,0.975
. What Rousseeuw and Van Zomeren (1990) propose is to skip those

outlying observations and compute the sample mean and covariance matrix of the

rest of the data, obtaining in this way new estimators
(
µ̂1n, Σ̂1n

)
(Gervini, 2003;

Polat, 2014).

Since the MCD method calculated by FAST-MCD algorithm is improved
as a good alternative to MVE method, Gervini (2003) stated that MCD estima-
tors could be used as the initial robust estimators of location and covariance in
the ’adaptive reweighted’ method. Hence, in this study, in ’adaptive reweighted’

method using the MCD estimators
(
µ̂MCD, Σ̂MCD

)
as initial robust estimators

of location and covariance
(
µ̂0n, Σ̂0n

)
, the obtained robust location and covari-

ance estimators
(
µ̂1n, Σ̂1n

)
are called as ’Adaptive Reweighted Minimum Covari-

ance Determinant/ARWMCD’ estimators
(
µ̂ARWMCD, Σ̂ARWMCD

)
(Gervini, 2003;

Polat, 2014).

This reweighting step given in Gervini (2003) is known to improve the effi-
ciency of the initial estimator while retaining (most of) its robustness. However,
the threshold value χ2

p′ ,0.975
is an arbitrary number. For large data sets a con-

siderable number of observations have to be discarded from the analysis even if
they follow the normal model. One way to avoid this problem is to increase the
threshold value to another arbitrary fix number, however, in this case the bias
of the reweighted estimator will be affected. Hence, a better alternative is to
use ’an adaptive threshold value’ that increases with n if the data is ’clean’ but
remains bounded if there are outliers in the sample. Gervini (2003), proposed a
method of constructing such adaptive threshold values. Let (3.4) be the empirical
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distribution of the squared Mahalanobis distances (Gervini, 2003; Polat, 2014).

(3.4) Gn(u) =
1

n

n∑
i=1

I
(
d2
(
zi, µ̂MCD, Σ̂MCD

)
≤ u

)

Let Gp′ (u) be the χ2
p′

distribution function. For a normally distributed

sample it is expected to Gn to converge to Gp′ . Therefore, a way to detect

outliers is to compare the tails of Gn with the tails of Gp′ . If η = χ2
p′ ,1−α for a

certain small α, say α = 0.025, (3.5) is defined (Gervini, 2003; Polat, 2014),

(3.5) αn = sup
u≥η

{
Gp′ (u)−Gn(u)

}+

where {�}+ indicates the positive part. This αn can be regarded as a mea-
sure of outliers in the sample. Since a negative difference would not indicate
presence of outliers, it is only taken into account positive differences in (3.5).
If d2(i) denotes the ith order statistic of the squared Mahalanobis distances and

i0 = max
{
i : d2(i) < η

}
, then (3.5) comes down to as in (3.6) (Gervini, 2003;

Polat, 2014).

(3.6) αn = max
i>i0

{
Gp′ (d

2
(i))−

i− 1

n

}+

Those observations corresponding to the largest bαnnc distances are consid-
ered as outliers and eliminated in the reweighting step. Here bac, is the largest
integer that is less than or equal to a. The cut-off value is then defined as in
(3.7) where as usual G−1n (u) = min {s : Gn(s) ≥ u}. Note that cn = d2(in) with

in = n− bαnnc and that in > i0 as a consequence of the definition of αn. There-
fore, cn > η (Gervini, 2003; Polat, 2014).

(3.7) cn = G−1n (1− αn)

To define the reweighted estimator, weights of the form in (3.8) are used
(Gervini, 2003; Polat, 2014).

(3.8) win = w

d2
(
zi, µ̂MCD, Σ̂MCD

)
cn


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Here, the weight function that satisfies (W ) w : [0,∞) → [0, 1] is non-
increasing, w(0) = 1, w(u) > 0 for u ∈ [0, 1) and w(u) = 0 for u ∈ [1,∞).
The simplest choice among those functions satisfying (W ) is the hard-rejection
function w(u) = I(u < 1) which is the one most commonly used in the practice.

Once weights in (3.8) are computed, the one-step reweighted estimators(
µ̂ARWMCD, Σ̂ARWMCD

)
are defined as in (3.9) and (3.10) (Gervini, 2003; Polat,

2014).

(3.9) µ̂ARWMCD =

∑n
i=1winzi∑n
i=1win

(3.10) Σ̂ARWMCD =

∑n
i=1win (zi − µ̂ARWMCD) (zi − µ̂ARWMCD)

′∑n
i=1win

It is clear that under appropriate conditions, the threshold values in (3.7)
will tend to infinity under the multivariate normal model and then (3.9) and (3.10)
will be asymptotically equivalent to the common sample mean and covariance,
and thus attain full asymptotic efficiency (Gervini, 2003).

Finally, in this study, first of all, by using robust covariance estimator
Σ̂ARWMCD that it is given in (3.10), the robust covariance estimator Ŝz of Sz =[
s2y s

′
y,X

sy,X SX

]
is obtained. Then, by using robust covariance estimator Ŝz in

the alternative definition of PLS1 algorithm given between (2.7)-(2.9), a new
robust PLSR method called ’PLS-ARWMCD’ is proposed. The steps of the
PLS-ARWMCD algorithm could be given as in (3.11) (Polat, 2014).

w1αŝy,x

wi+1αŝy,x − ŜxWi

(
W

′
i ŜxWi

)−1
W

′
i ŝy,x, 1 ≤ i < k

β̂PLS−ARWMCD
k = Wk

(
W

′
kŜxWk

)−1
W

′
kŝy,x

(3.11)

Here, the robust covariance estimations ŝy,x and Ŝx are obtained by decom-

posing the robust covariance estimation of unified data set z
′
i = (yi,xi)

′
, i =

1, ..., n , which is calculated by ARWMCD estimator, as in Ŝz =

[
ŝ2y ŝ

′
y,X

ŝy,X ŜX

]
(Polat, 2014).
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4. SIMULATION STUDY

In this section, the new proposed robust PLS-ARWMCD method is com-
pared with other four robust PLSR methods RSIMPLS (Hubert and Vanden
Branden, 2003), PRM (Serneels et al., 2005), PLS-SD (Gil and Romera, 1998),
PLS-KurSD (González et al., 2009) and the classical PLSR method in order to
validate the good properties of the new PLSR robusification. The new proposed
robust PLS-ARWMCD method and the other five methods (including the clas-
sical method) are compared in terms of efficiency, goodness-of-fit (GOF) and
predictive ability by performing a simulation study on uncontaminated and con-
taminated data sets.

According to the initial models given in (2.1) and (2.2), and following a
simulation design similar as the one described in González et al. (2009), we have
generated the data sets as in (4.1).

T ∼ N2 (02,Σt)

X = TI2,p +Np (0p, 0.1Ip)

y = TA2,1 +N(0, 1)

(4.1)

Here, (Ik,p)i,j = 1, for i = j and (Ik,p)i,j = 0, otherwise; Ip is p × p

dimensional identity matrix; 02 = (0, 0)
′

is a two-dimensional vector of zeros and

A2,1 = (1, 1)
′

is a two-dimensional vector of ones and T is the n× 2 dimensional
component matrix. Furthermore, we select n = 200, p = 5, k = 2 and we set

Σt =

[
4 0
0 2

]
.

In this simulation study, the performance of the new proposed robust PLS-
ARWMCD method is compared with other four robust PLSR methods existing
in the literature and the classical method in the presence of five types of contam-
ination.

1. Bad leverage points, which occurs when an observation is far away from
the regression hyperplane while its projection onto the regression hyper-
plane falls outside the large majority of the projected observations (good
observations).

Bad Leverage Points :
Tε ∼ N2 (102,Σt)
Xε = TεI2,p +Np (0p, 0.1Ip)

2. Vertical outliers, which are observations with large distance from the hy-
perplane but with projections within the large majority of the projected
observations.
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Vertical outliers : yε = TA2,1 +N(10, 0.1)

3. Good leverage points, which are observations located in the vicinity of the
hyperplane but far away from the cluster of the large majority of the ob-
servations.

Good Leverage Points :
Tε ∼ N2 (102,Σt)
Xε = TεI2,p +Np ((02,10p−2) , 0.1Ip)

4. Concentrated Outliers, which are clusters of bad leverage points.

Concentrated Outliers :
Tε ∼ N2 (102,Σt)
Xε = TεI2,p +Np (10p, 0.001Ip)

5. Orthogonal outliers, which were first used by Hubert and Vanden Branden
(2003). They have the property that they lie far from the t-space, but they
become regular observations after projection in the t-space. Hence they will
not badly influence the computation of the regression parameters, but they
might influence the loadings.

Orthogonal outliers : Xε = TI2,p +Np ((02,10p−2) , 0.1Ip)

For each situation, m = 1000 data sets were generated. The efficiency
of the considered methods is evaluated by means of the MSE of the estimated
regression parameters β̂ that is defined as in (4.2). Moreover, it is clear that

the true parameter vector is determined as βp,1 = I
′
p,2A2,1. Here, β̂

(l)
k denotes

the estimated parameter based on k components in the lth simulation. The
MSE indicates to what extent the slope and intercept are correctly estimated.
Therefore, the aim is to obtain a MSE value close to zero (Engelen et al., 2004).

(4.2) MSEk

(
β̂
)

=
1

m

m∑
i=1

∥∥∥β̂(l)
k − β

∥∥∥2

Furthermore, we are interested on how well the methods fit the regular
data points. Because of the simulation settings, we know exactly their indices
as we store in the set Gr. Then, the GOF criterion is defined as in (4.3). Here
ri,k is the residual of the ith observation when k components are computed. The
objective is to obtain a GOF value close to 1 (Engelen et al., 2004).

(4.3) GOFk = 1−
var
i∈Gr

(ri, k)

var
i∈Gr

(yi)
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The predictive ability of the methods could be measured by means of the
Root Mean Squared Error (RMSE). First a test set Gt of uncontaminated data
points with size nt = 100 is generated and then (4.4) is computed. Here, ŷi,k is the
predicted y-value of observation i from the test set when the regression parameter
estimates are based on the training set (X,Y ) of size n and k components are
retained in the model (Engelen et al., 2004).

(4.4) RMSEk =

√√√√ 1

nt

nt∑
i=1

(yi − ŷi,k)2

After m = 1000 replications, the mean angle (denoted by mean(angle))
between the estimated slope β̂[yε,Xε],k and the true slope β are also evaluated
and included in the simulation results (González et al., 2009; Hubert and Vanden
Branden, 2003).

The results obtained according to simulation settings given in above for
the data sets uncontaminated and contaminated by replacing first 10% and 20%
of the observations by different types of outliers: bad leverage points, vertical
outliers, good leverage points, concentrated outliers and orthogonal outliers. The
simulation results for the n = 200, p = 5, k = 2 when the proportion of outliers
is 10% given in Table 1. The simulation results for the same simulation setting
when the proportion of outliers is 20% given in Table 2.

Table 1 shows that in case of no contamination is added the new proposed
robust PLS-ARWMCD method and the four robust PLSR methods existing in
the literature (RSIMPLS, PRM, PLS-SD, PLS-KurSD) have nearly close per-
formance to classical PLSR method in terms of efficiency, fitting to data and
predictive ability. However, when the data set is contaminated by different types
of outliers, the four robust PLSR methods existing in literature and the new
proposed robust PLSR method outperform the classical PLSR method especially
in terms of efficiency and predictive ability. Especially when the data contain
bad leverage points or concentrated outliers, the performance of classical PLSR
method in terms of efficiency, fitting to data and predictive ability is much lower
than the new proposed robust PLS-ARWMCD method. The mean angle values
between the estimated slope and the true slope for the classical PLSR method
are also higher than the new proposed robust PLS-ARWMCD method for these
two types of outliers.

Table 1 shows that there are no big differences between the classical method
and the robust PLSR methods (including the new proposed robust PLS-ARWMCD
method) in terms of fitting to data for the contaminated data sets with the ex-
ception of good leverage points, bad leverage points and concentrated outliers.
It could be mentioned that for all the types of outliers the new proposed robust
PLS-ARWMCD method comes to the forefront with robust RSIMPLS and PLS-
KurSD methods existing in the literature especially in terms of efficiency. Overall,
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for all the types of outliers the new proposed robust PLS-ARWMCD method with
more or less differences gives better results than robust PRM method in terms
of efficiency, fitting to data and predictive ability. Furthermore, for all types of
outliers but especially when the data contain bad leverage points or concentrated
outliers, the new proposed robust PLS-ARWMCD method outperforms robust
PLS-SD method in terms of efficiency, fitting to data and predictive ability. The
mean angle values between the estimated slope and the true slope for the PLS-
AWMCD method is also lower than the classical method (as expected) and all
the other four robust PLSR methods for all types of outliers with the exception
of vertical outliers. Because when the data contain vertical outliers RSIMPLS
gives somewhat lower mean(angle) value than the PLS-ARWMCD method.

Table 1: The sample size is n = 200, p = 5 and k = 2, the proportion of
outliers is 10%.

PLSR RSIMPLS PRM PLS- SD PLS-KurSD
PLS-

ARWMCD

No Contamination

MSE 0.0092 0.0111 0.0101 0.0104 0.01 0.0105

GOF 0.8312 0.8308 0.8308 0.8308 0.8309 0.8308

RMSE 1.0961 1.0974 1.0969 1.0973 1.0968 1.0974

Mean(angle) 0.0446 0.0519 0.0462 0.0492 0.0477 0.0491

Bad Leverage Points

MSE 1.7184 0.0115 0.0688 0.0969 0.0109 0.0104

GOF 0.2585 0.8306 0.8177 0.8098 0.8307 0.8309

RMSE 2.2892 1.0996 1.1413 1.1654 1.0996 1.0989

Mean(angle) 1.1403 0.0515 0.0796 0.0943 0.0496 0.0478

Vertical Outliers

MSE 0.0489 0.0107 0.0121 0.0118 0.0113 0.0106

GOF 0.817 0.8295 0.8294 0.8296 0.8299 0.83

RMSE 1.1384 1.0989 1.0998 1.0998 1.0987 1.0981

Mean(angle) 0.113 0.0467 0.0516 0.0526 0.0507 0.0485

Good Leverage Points

MSE 1.0282 0.0118 1.0346 0.0162 0.0109 0.0103

GOF 0.6988 0.8307 0.7721 0.8305 0.8307 0.8309

RMSE 1.4658 1.0996 1.2789 1.1002 1.0996 1.0988

Mean(angle) 0.768 0.053 0.7027 0.0583 0.0496 0.0476

Concentrated Outliers

MSE 1.9646 0.0118 1.6318 0.03 0.0109 0.0104

GOF 0.5093 0.8307 0.7503 0.8281 0.8307 0.8309

RMSE 1.8671 1.0996 1.3228 1.1078 1.0996 1.0989

Mean(angle) 1.1031 0.0529 0.6964 0.0707 0.0496 0.0478

Orthogonal Outliers

MSE 0.1815 0.0137 0.1341 0.0107 0.0109 0.0103

GOF 0.7847 0.8295 0.7988 0.8298 0.8298 0.83

RMSE 1.2316 1.1002 1.1917 1.0996 1.0997 1.099

Mean(angle) 0.2821 0.0575 0.2323 0.0494 0.0503 0.0488
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Table 2 shows that for all the types of outliers with the exception of vertical
outliers when the proportion of outliers increases, it is seen that the performance
of robust PRM method decreases especially in terms of efficiency and predic-
tive ability, moreover, the mean angle values between the estimated slope and
the true slope for this robust method is also higher than the other four robust
PLSR methods (including the new proposed robust PLS-ARWMCD method).
Especially when the proportion of concentrated outliers or orthogonal outliers
is 20% in the data set, PRM method performs worse even than classical PLSR
method in terms of MSE, GOF, RMSE and mean(angle) criterions. Furthermore,
when there is 20% proportion of good leverage points PRM performs worse than
classical PLSR method in terms of efficiency.

It is clear that when there is 20% proportion of bad leverage points or ver-
tical outliers in the data set, the new proposed robust PLS-ARWMCD method,
robust PLS-KurSD and RSIMPLS methods existing in the literature are the
three forefront methods in terms of efficiency and predictive ability. Moreover,
the mean angle values between the estimated slope and the true slope of these
three robust methods are also lower than the robust PRM and PLS-SD meth-
ods for these two types of outliers. The concentrated outliers are the hardest
type of outliers to cope with. It is seen that when there is 20% proportion of
bad leverage points or concentrated outliers in the data set, the new proposed
robust PLS-ARWMCD method performs better than both robust PLS-SD and
PRM methods existing in the literature in terms of efficiency, fitting to data and
predictive ability. Furthermore, PLS-ARWMCD method’s mean angle values are
also lower than these two robust methods for these two types of outliers. It
could be mentioned that when the proportion of outliers in the data set gets a
high-level as 20%, the new proposed robust PLS-ARWMCD method still gives
better results than classical PLSR method for all the types of outliers in terms
of efficiency, fitting to data and predictive ability.

Overall, both of from Table 1 and Table 2, it could be concluded that
the new proposed robust PLS-ARWMCD method outperforms especially its two
robust competitors (PRM and PLS-SD) existing in the literature with more or
less differences in terms of efficiency, fitting to data and predictive ability for five
different types of outliers.
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Table 2: The sample size is n = 200, p = 5 and k = 2, the proportion of
outliers is 20%.

PLSR RSIMPLS PRM PLS- SD PLS-KurSD
PLS-

ARWMCD

No Contamination

MSE 0.0092 0.0111 0.0101 0.0104 0.01 0.0105

GOF 0.8312 0.8308 0.8308 0.8308 0.8309 0.8308

RMSE 1.0961 1.0974 1.0969 1.0973 1.0968 1.0974

Mean(angle) 0.0446 0.0519 0.0462 0.0493 0.0477 0.0491

Bad Leverage Points

MSE 1.8946 0.0122 1.7726 0.4134 0.0121 0.0109

GOF 0.1858 0.8309 0.2395 0.7143 0.831 0.8313

RMSE 2.4002 1.1012 2.3205 1.4282 1.1011 1.0998

Mean(angle) 1.3018 0.0537 1.1833 0.2467 0.054 0.05

Vertical Outliers

MSE 0.0791 0.0115 0.0174 0.0176 0.0126 0.0112

GOF 0.8057 0.8278 0.8265 0.8267 0.8282 0.8286

RMSE 1.1681 1.1002 1.106 1.1063 1.1003 1.0989

Mean(angle) 0.1437 0.0471 0.0632 0.0656 0.054 0.0503

Good Leverage Points

MSE 0.9975 0.0128 1.0568 0.044 0.0121 0.0109

GOF 0.6741 0.831 0.6817 0.8282 0.831 0.8313

RMSE 1.5213 1.1011 1.5049 1.1102 1.1011 1.0998

Mean(angle) 0.7739 0.057 0.7813 0.1165 0.0539 0.05

Concentrated Outliers

MSE 1.8527 0.0128 1.926 0.1628 0.0121 0.0109

GOF 0.4929 0.831 0.485 0.8107 0.831 0.8313

RMSE 1.8946 1.1012 1.9104 1.1648 1.1011 1.0998

Mean(angle) 1.1091 0.0569 1.1119 0.2307 0.0539 0.05

Orthogonal Outliers

MSE 0.1987 0.0176 0.2332 0.0108 0.0115 0.0104

GOF 0.7806 0.831 0.7718 0.8319 0.8319 0.8322

RMSE 1.2488 1.1026 1.2739 1.1007 1.101 1.0999

Mean(angle) 0.2982 0.066 0.3247 0.0504 0.0519 0.0491

5. APPLICATION TO FISH DATA

In this section, the new proposed robust PLSR method and four robust
PLSR methods, existing in the literature, will be compared on a real data includ-
ing outliers in terms of goodness-of-fit and predictive ability by using (4.3) and
(4.4). For this purpose, the fish data which was given in Naes (1985) will be used.
The fish data comprise 45 observations and the last 7 are outliers (in the words of
Naes, ’abnormal samples’). In this example, fat concentration (percentage, %) of
45 fish samples (rainbow trout) and independent variables of the absorbance at 9
Near Infrared Reflectance (NIR) wavelengths measured after sample homogenisa-
tion. The aim of the analysis made on this data set is to model the relationships
between the fat concentration (one response variable) and these nine spectrums
(independent variables). In this study, the data set is divided into two parts. The
first 20 observations are the test set and the other remained 25 samples are the
training set (Gil and Romera, 1998; Hardy et al., 1996; Naes, 1985).
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Firstly, similar to the our simulation studies, while computing the GOF val-
ues 7 outliers are removed from training set that occurs of 25 samples. However,
while computing the RMSE values the models are constituted using the training
set including the 7 outliers. Then, by using the regression coefficients obtained
from these models, the predictions are made from clean test set that occurs of
20 samples. Hence, the predictive ability of the new robust PLSR method ’PLS-
ARWMCD’ is examined especially against the classical PLSR method and the
other four robust methods.

The GOF or RMSE values could be considered while selecting the number
components that will be retained in the model. The optimal number of compo-
nents could be selected as the k for which the GOF values are no more change.
However, as it is mentioned before in Engelen et al. (2004), it is more convenient
to consider the RMSE values while selecting the optimal number of components.
The significant point while selecting the optimal number of components retain-
ing in the model is that adding one more component whether cause an important
decrease or not in RMSE value. Hence, both the aim of data reduction is not
deviated and an unnecessary component is not added to model. In Figure 2, the
figure of RMSE values against the number of components in the model is drawn.

Figure 2: The RMSE values against the number of components in the
model for fish data with the training set of 25 samples and the
test set of 20 samples

When Figure 2 is examined, it is seen that it is right to select the number
of components retaining in the model as three for this data set. Because from
the figure it is seen that adding the third component to the model causes a
significant decrease in the RMSE values of all the methods. It could be seen
also much clearly from Table 3 that the optimal number of components should
be selected as kopt = 3, as adding the third component to the model cause an
important decrease in the RMSE values for all the robust methods. Furthermore,
it is clear that the fitting to data also improves for all the methods after adding
the third component to the model. Table 3 shows that the new proposed robust
PLS-ARWMCD method fitting to the data better and it has a higher predictive
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ability than both classical PLSR method and robust PRM method for kopt = 3.

Table 3: The GOF and RMSE values for fish data in case of the first 20
observations are the test set and the other 25 samples are the
training set

Number of Components PLSR RSIMPLS PRM PLS-SD PLS-KurSD PLS-ARWMCD

k=1 GOF 0.2912 0.4335 0.3777 0.4417 0.4444 0.4397

RMSE 3.0001 2.2937 2.3307 2.2274 2.2029 2.2487

k=2 GOF 0.6927 0.7421 0.2713 0.7853 0.6948 0.7605

RMSE 1.9715 1.8293 2.4072 1.573 1.8935 1.8234

k=3 GOF 0.882 0.9687 0.6166 0.9665 0.9594 0.9579

RMSE 1.4861 1.1401 2.0993 1.0797 1.259 1.3322

k=4 GOF 0.8987 0.971 0.6277 0.9737 0.9447 0.9662

RMSE 1.3742 1.1089 2.0237 1.1198 1.1924 1.2646

k=5 GOF 0.9113 0.979 0.6782 0.9716 0.9777 0.9713

RMSE 1.4874 1.1918 2.0921 1.2705 1.2708 1.5054

k=6 GOF 0.9231 0.9825 0.7705 0.9796 0.9854 0.9816

RMSE 1.5348 1.0543 1.4578 1.3727 1.1129 1.4545

k=7 GOF 0.9299 0.9829 0.7806 0.9714 0.9865 0.9862

RMSE 1.4553 1.519 1.5835 1.2033 1.4528 1.3679

k=8 GOF 0.9463 0.9768 0.8063 0.9769 0.9868 0.9861

RMSE 1.5056 1.7989 1.7409 1.1925 1.4019 1.33

k=9 GOF 0.9463 0.9851 0.8087 0.9812 0.9798 0.987

RMSE 1.5052 1.4874 1.8095 1.2338 1.2843 1.399

6. CONCLUSIONS

In this study, we propose a new robust PLSR method for the linear regres-
sion model with one response variable, PLS-ARWMCD, in order to obtain robust
predictions in case of outliers present in the data set.

In the simulation study, the new proposed robust PLSR method is com-
pared with classical PLSR method and four robust PLSR methods existing in
the literature in terms of efficiency, fitting to data and predictive ability on a
clean data set and on contaminated data sets with bad leverage points, vertical
outliers, good leverage points, concentrated outliers or orthogonal outliers. The
optimal number of components is selected as k = 2 at the beginning of the simu-
lation study. 10% and 20% proportions of this data set are replaced by outliers,
respectively. Thus, the increment in the proportion of outliers how affects on
performances of the new proposed robust PLSR method and four robust PLSR
methods (existing in the literature) is examined. When the 10% proportion of the
data set is contaminated by different types of outliers, both the new proposed ro-
bust PLS-ARWMCD method and the four robust PLSR methods existing in the
literature outperform classical PLSR method in terms of efficiency and predictive
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ability (exception of PRM method that performs not better than classical PLSR
method in terms of efficiency in case of good leverage points existence). The PLS-
ARWMCD method comes to the forefront as a good alternative method against
robust PRM and PLS-SD methods in terms of efficiency, fitting to data and pre-
dictive ability for all the types of outliers. Moreover, PLS-ARWMCD method
shows a close performance with robust RSIMPLS and PLS-KurSD methods in
terms of efficiency, fitting to data, predictive ability and mean angle measures.
When the proportion of outliers in the data set is reached to a high level as 20%,
robust PRM method shows a lower performance than other robust methods in
terms of efficiency, fitting to data and predictive ability for all the types of out-
liers except that vertical outliers. Furthermore, if there is 20% proportion of
concentrated outliers or orthogonal outliers in the data set, robust PRM method
looses its performance completely against classical PLSR method. When there
is high proportion of bad leverage points or concentrated outliers in the data
set, robust PLS-SD method is less efficient and it has a lower predictive ability
than the other robust RSIMPLS, PLS-KurSD methods and new proposed robust
PLS-ARWMCD method.

The results obtained from real data analysis show that the optimal number
of components is selected as kopt = 3, as adding the third component to the
model causes a considerably decrease in the RMSE values of robust methods. It
is clear from the results of the model containing k = 3 components that GOF
values of the new proposed robust PLS-ARWMCD method are higher than both
classical PLSR method and robust PRM method. Moreover, when kopt = 3 is
selected, the RMSE value for PLS-ARWMCD is lower than both classical PLSR
method and robust PRM method. Generally, whatever the optimal number of
the components in the model for the fish data set, the new proposed robust PLS-
ARWMCD method gives better models than both classical PLSR method and
robust PRM method in terms of fitting to data and predictive ability.

Consequently, it is seen that the new proposed robust PLS-ARWMCD
method gives more efficient results than especially classical PLSR method in
data sets contaminated by a reasonable amount of outliers. The simulation study
shows that when the data contain 10% or 20% proportion of bad leverage points,
the new robust PLS-ARWMCD method outperforms both of the robust PRM
and PLS-SD methods in terms of efficiency and predictive ability. When the
data contain 10% proportion of vertical outliers, the new robust PLS-ARWMCD
method shows a close performance to the other four robust PLSR methods ex-
isting in literature. However, when there is 20% proportion of vertical outliers
in the data set; the new robust PLS-ARWMCD method, robust RSIMPLS and
PLS-KurSD methods are the forefront methods in terms of efficiency and pre-
dictive ability. When the data contain 10% or 20% proportion of good leverage
points; the new robust PLS-ARWMCD method has a better performance than
robust PRM method both in terms of efficiency and predictive ability, however, it
is only more efficient than robust PLS-SD method. When there is 10% proportion
of concentrated outliers; the new robust PLS-ARWMCD method is both more
efficient and it has a higher predictive ability than robust PRM method, however,
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it is only more efficient than robust PLS-SD method. When there is 20% pro-
portion of concentrated outliers in the data set, the new robust PLS-ARWMCD
method is both more efficient and it has a higher predictive ability than both
robust PRM and PLS-SD methods. Overall, it could be concluded that the new
proposed robust PLS-ARWMCD could cope with different types and proportions
of outliers efficiently and it give robust predictions.
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