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1. INTRODUCTION

In statistical analysis, the comparison of the means of two or more groups
is a very common problem. However, in many real world problems, there can
be more than one variable which are related with each other. In this case, it is
not appropriate to use univariate statistical methods. Therefore, it is required to
utilize some multivariate statistical methods. One of the most common methods
is the Hotelling T 2 statistic to compare the mean vectors of two independent
groups under multivariate normality. It is known that Hotelling T 2 statistic
requires the assumption of equality of two covariance matrices. However, this
assumption is not valid in many statistical application areas. The violation of this
assumption is called multivariate Behrens–Fisher problem in statistical analysis.
In the case of multivariate Behrens-Fisher problem, the type I error rates of
Hotelling T 2 statistic are not close to the nominal level and this also affects the
power of the test negatively. Ito and Schull [12] indicated that when variances of
two groups are not equal, the type I error rate for Hotelling’s T 2 is approximately
equal to the nominal level rate only when the sample sizes of groups are large and
equal. Therefore, many solutions can be found for this problem in the literature.

Bennett [2] is one of the pioneers who presented the exact solution to the
multivariate Behrens-Fisher problem. Since the Bennett’s test depends on the
order of the observations, it is not useful for larger sample sizes. In addition,
James [13] improved the simple chi-square approximation by the Cornish–Fisher
expansion until the third order term. Yao [27] suggested the approximate degrees-
of-freedom solution and indicated that type I error rate of this test is lower than
that of James’ test in almost all cases. Subrahmaniam and Subrahmaniam [21, 22]
compared the tests of Bennett, James, and Yao according to type I error rates and
powers. Johansen [14] also studied the Behrens–Fisher problem in the context
of general linear models. Christensen and Rencher [6] compared the seven tests
given by Bennett [2], James [13], Yao [27], Johansen [14], Nel and Van der Merwe
[18], Hwang and Paulson [11] and Kim [15] for the multivariate Behrens-Fisher
problem in terms of type I error rates and powers. Algina, Oshima and Tang [1]
also compared the tests given by Yao [27] , James [13] and Johansen [14] under
various conditions of heteroscedasticity and non-normality. They showed that
the type I error rate of Johansen’s test is roughly equivalent to that of Yao’s
solution. In addition, the type I error rates of Johansen’s test improve as number
of variables increases. Kim [15] showed that the type I error rate of the test is
more conservative than that of Yao’s test in almost every situation. However,
Kim’s test has higher power than Yao’s test when the smaller sample size is
associated with the large variance [15].

De la Rey and Nel’s [7] compared the tests given by Bennett [2], James
[13], Yao [27] and Nel and Van der Merwe [18] and showed that Nel and Van der
Merwe [18] and Yao [27] gave better solutions. According to the results of the
comparative papers mentioned above, apparently there is no definitive solution
that shows good performance in all circumstances. Finally, Krishnamoorthy and
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Yu [17] modified Nel and Van Der Merwe’s [18] procedure by providing an in-
variant statistic. Recently, bootstrap-based methods for multivariate hypothesis
testing were proposed. For example, Smaga [20] developed bootstrap methods of
some test statistics based on different weight matrices for testing the mean vector
of a multivariate distribution. Konietschke et al. [16] developed parametric and
nonparametric bootstrap methods of Wald-type test for multi-factor multivariate
data which also includes multivariate Behren Fisher problem. They compared
these tests via simulation study under both normality and non-normality models.

The purpose of this paper is to test the equality of two normal mean vectors
under heterogeneity of covariance matrices by using computational approach test
(CAT). This method which was firstly introduced by Pal et al. [19] is used in situ-
ations where traditional approaches do not provide useful solutions. The CAT is a
special case of parametric bootstrap and based on restricted maximum likelihood
estimation under null hypothesis. One of the most important advantages of this
procedure is that it does not require the knowledge of any sampling distribution.
Pal et al. [19] showed the application of the CAT to Gamma and Weibull dis-
tributions for hypothesis testing and interval estimations. CAT was also applied
by Chang and Pal [3] for testing the equality of two normal population means
under heteroscedastisity. Chang et al. [4, 5] suggested test procedures based on
CAT for hypotheses testing of the Poisson and Gamma models. Gökpınar and
Gökpınar [8] applied CAT to test the equality of several normal population means
when the variances are unknown and arbitrary and Gökpınar et al. [9] proposed
CAT for the equality of several inverse Gaussian means under heterogeneity of
scale parameters. Moreover, Gökpınar and Gökpınar [10] proposed CAT for the
equality of coefficient of variations in k populations. In these studies, it was
shown that the CAT procedure is a good alternative for other testing procedures
for various statistical problems.

For this reason, in this study, the CAT method to the equality of two
normal mean vectors under heterogeneity of covariance matrices was applied and
this method was also compared with Bennett [2], Johansen [14], Nel and Van Der
Merwe [18], Krishnamoorthy and Yu [17] tests in terms of their type I error rates
and powers under various situations.

The rest of this study was organized as follows. In Section 2, the method
was described to obtain the maximum likelihood estimates (MLEs) over unre-
stricted parameter space and over a restricted parameter space. Simple fixed
point iteration was proposed to compute the MLEs under restricted parameters
space. In section 3, the tests given by Bennett [2], Johansen [14], Nel and Van
Der Merwe [18], Krishnamoorthy and Yu [17] and Konietschke et al. [16] were
presented. In section 4, the concept of CAT procedure and its application to the
equality of two normal mean vectors under heterogeneity of covariance matrices
were given. In section 5, simulation studies were presented to assess the perfor-
mance of the proposed test in terms of the type I error rates and powers under
multivariate normal distribution with different parameter combinations. Further-
more, to see robustness of all tests under non-normal distribution, the estimated
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type I error rates and powers of all tests were calculated. Finally, concluding
remarks were summarized in Section 6.

2. The Maximum Likelihood Estimates

Let Yi1,Yi2, ...,Yini , have p-variate normal distribution with mean vector
µi = (µi1, µi2, ..., µip)

> and covariance matrix Σi i = 1, 2. Assume that sample
units are independent from each other. ni (i = 1, 2) is the sample size of i-th
group.

Ȳi is the sample mean vector of i-th group and Si is the maximum likelihood
estimation of covariance matrix of i-th group. S(i) is the unbiased estimation of
covariance matrix of i-th group. Thus,

Ȳi =
1

ni

ni∑
j=1

Yij i = 1, 2(2.1)

Si =
1

ni

ni∑
j=1

(Y ij − Ȳi)(Yij − Ȳi)
> i = 1, 2(2.2)

The log-likelihood function under the unrestricted parameter space is given
by

lnL =
−p(n1 + n2)

2
ln(2π)− n1

2
ln(|Σ1|)−

n2
2
ln(|Σ2|)−

1

2

n1∑
j=1

[Y1j − µ1]>Σ−11 [Y1j − µ1]

− 1

2

n2∑
j=1

[Y2j − µ2]>Σ−12 [Y2j − µ2]

(2.3)

To find the unrestricted MLEs, the partial derivatives of Eq.(2.3) with
respect to Σ1, Σ2, µ1 and µ2 yield the following equations:

µ̂1 = Ȳ1, µ̂2 = Ȳ2, Σ̂1 =

n1∑
j=1

[Y1j − Ȳ1]>[Y1j − Ȳ1]

n1
= S1

Σ̂2 =

n2∑
j=1

[Y2j − Ȳ2]>[Y2j − Ȳ2]

n2
= S2

To find restricted MLE (RMLE), under H0 : µ1 = µ2 = µ, the log-
likelihood function can be expressed as
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lnL =
−p(n1 + n2)

2
ln(2π)− n1

2
ln(|Σ1|)−

n2
2
ln(|Σ2|)−

1

2
tr

Σ−11

n1∑
j=1

[Y1j − µ]>[Y1j − µ]


− 1

2
tr

Σ−12

n2∑
j=1

[Y2j − µ]>[Y2j − µ]



(2.4)

where µ denotes the unknown common mean under H0. To find the restricted

MLEs (RMLEs), by using the following equations as ∂tr(X−1A)
∂X = −X−1AX−1

or ∂tr(X−1A)
∂X = −(X−1)>A>(X−1)> the partial derivatives of Eq.(2.4) with

respect to Σ1, Σ2 and µ yield the following equations:

∂lnL

∂Σ1
= −n1

2
Σ−11 +

1

2
Σ−11

n1∑
j=1

[Y1j − µ]>[Y1j − µ]Σ−11

∂lnL

∂Σ2
= −n2

2
Σ−12 +

1

2
Σ−12

n2∑
j=1

[Y2j − µ]>[Y2j − µ]Σ−12

∂lnL

∂µ
= n1Σ

−1
1 Ȳ1 −

1

2

(
2n1Σ

−1
1 µ>

)
+ n2Σ

−1
2 Ȳ2 −

1

2

(
2n2Σ

−1
2 µ

>
)

The RMLEs are given by

Σ̂1(RML) =

n1∑
j=1

[Y1j − µ̂(RML)]
>[Y1j − µ̂(RML)]

n1
Σ̂2(RML) =

n2∑
j=1

[Y2j − µ̂(RML)]
>[Y2j − µ̂(RML)]

n2

(2.5)

µ̂>(RML) =
(
n1Σ̂

−1
1(RML) + n2Σ̂

−1
2(RML)

)−1 (
n1Σ̂

−1
1(RML)Ȳ1 + n2Σ̂

−1
2(RML)Ȳ2

)
Since there are no close forms of these equations, these estimators can

be obtained iteratively as follows: updating the estimates from l-step estimates

(Σ
(l)
1 ,Σ

(l)
2 and µ(l)) by

Σ
(l+1)
1 =

n1∑
j=1

[Y1j − µ(l+1)]>[Y1j − µ(l+1)]

n1
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Σ
(l+1)
2 =

n2∑
j=1

[Y2j − µ(l+1)]>[Y2j − µ(l+1)]

n2

µ(l+1) =

(
n1

(
Σ

(l+1)
1

)−1
+ n2

(
Σ

(l+1)
2

)−1)−1(
n1

(
Σ

(l+1)
1

)−1
Ȳ1 + n2

(
Σ

(l+1)
2

)−1
Ȳ2

)

where initial value µ(0) could set as µ(0) =
(
n1S

−1
1 + n2S

−1
2

)−1 (
n1S

−1
1 Ȳ1 + n2S

−1
2 Ȳ2

)
.

Σ
(l)
1 , Σ

(l)
2 and µ(l) converge to the RMLEs under H0 denoted as Σ̂i(RML) and

µ̂(RML). For example, let,

p = 3, n1 = n2 = 5, µ1 = µ2 = [1 1 1],

Σ1 =

 1 0.2 0.2
0.2 1 0.2
0.2 0.2 1


and

Σ2 =

 1 0.8 0.8
0.8 1 0.8
0.8 0.8 1


The Monte Carlo estimates of the expected value of Σ̂i(RML) and µ̂(RML)

are

Ẽ(µ̂RML) = [1.005 1.006 1.003],

Ẽ(Σ̂1(RML)) =

0.969 0.190 0.199
0.190 0.981 0.197
0.199 0.197 0.969


and

Ẽ(Σ̂2(RML)) =

0.999 0.795 0.798
0.795 0.994 0.794
0.798 0.794 0.992


As seen from above, the obtained result is well.
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3. Test Statistics

Let Yi1,Yi2, ...,Yini , have p-variate normal distribution with mean vector
µi and covariance matrix Σi, i = 1, 2. Let us denote

S(i) =
1

ni − 1

ni∑
j=1

(Yij − Ȳi)(Yij − Ȳi)
> i = 1, 2

Σ̃i =
1

ni
Σi and S̃i =

1

ni
Si i = 1, 2

Since the sample mean vector of i-th group, Ȳ i and the maximum likelihood
estimation of covariance matrix of i-th group, Si’s are independent from each
other, the following equations can be written as follows:

Ȳi ∼ Np(µi,
1

ni
Σi) and S̃i ∼Wp(ni − 1,

1

ni − 1
Σ̃i) i = 1, 2

Here Wp(r,Σ) is p-variate Wishart distribution with degrees of freedom r. This
distribution is also known as generalized chi-square distribution which is obtained
by Wishart [25].

The null and alternative hypotheses for testing the equality of two multi-
variate normal mean vectors are as follows:

(3.1) H0 : µ1 = µ2 H1 : µ1 6= µ2

For this problem, a natural statistic, the multivariate version of the statistic
considered by Welch [24], is given as follows:

(3.2) T = (Ȳ1 − Ȳ2)>(Se)
−1(Ȳ1 − Ȳ2)

where Se = S1
n1

+ S2
n2

.

T statistic is asymptotically distributed as chi-square with degrees of free-
dom p when n1 and n2 approach to infinite. This approach is not valid for the
small values of n1 and n2. Under H0 and the assumption of the homogeneity of
covariance matrices (Σ1 = Σ2), (n− p− 1)T/(p(n− 2)) is distributed as F with
degrees of freedom p and n− p− 1, where n = n1 + n2.

In the rest of this section, the tests given by Bennett [2], Johansen [14], Nel
and Van Der Merwe [18], Krishnamoorthy and Yu [17] were introduced briefly.
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3.1. Bennett Test

Bennett [2] proposed a test for the equality of two mean vectors for n2 ≥ n1.
This test statistic can be given as follows:

TB = n1z̄
>S−1z z̄(3.3)

where zj = Y1j −
√

n1
n2
Y2j + 1√

n1n2

n1∑
k=1

Y1k − 1
n2

n2∑
k=1

Y2k j = 1, ..., n1

and also z̄ and Sz are the mean and variance-covariance matrix of zj , j =
1, .., n1, respectively. By using the following transformation, the distribution of
test statistic can be obtained as follows:

F =
n1 − p
p(n1 − 1)

TB ∼ Fp,n1−p.

3.2. Johansen Test

Johansen [14] obtained a test given below:

TJ =
T

C
(3.4)

Here, T is given in Eq. (2.6),

C = p− 2D − 6D/[p(p− 1) + 2]

D =
2∑
i=1

1

2(ni − 1)

{
tr(I−V−1Vi)

2 + [tr(I−V−1Vi)]
2
}

where V i = (Si/ni)
−1, i = 1, 2 and V = V 1 + V 2.

This test statistic is distributed as F with degrees of freedom p and f =p(p+
2)/(3D).

3.3. Nel and Van der Merwe Test

Nel and Van der Merwe [18] modified the test statistic given in Eq. (3.2)
as follows:

TNV =
v − p+ 1

pv
T ∼ Fp,v−p+1,(3.5)

where v = tr(Se)
2+[tr(Se)]2

1
n1−1

{
tr
(

S1
n1

)2
+
[
tr
(

S1
n1

)]2}
+ 1

n2−1

{
tr
(

S2
n2

)2
+
[
tr
(

S2
n2

)]2}
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3.4. Krishnamoorthy and Yu Test

Krishnamoorthy and Yu [17] obtained a test statistic by modifying the test
statistic given by Nel and Van der Merwe [18]. The test statistic is as follows:

TM =
(v̂M − p+ 1)T

pv̂M
(3.6)

where

v̂M =
p(p+ 1)(n− 2)

ϕ̂1 + ϕ̂2

ϕ̂1 =
n22(n− 2)

n2(n1 − 1)

{
tr(S1S̄

−1)
}2

+
n21(n− 2)

n2(n2 − 1)

{
tr(S2S̄

−1)
}2

ϕ̂2 =
n22(n− 2)

n2(n1 − 1)
tr(S1S̄

−1S1S̄
−1) +

n21(n− 2)

n2(n2 − 1)
tr(S2S̄

−1S2S̄
−1)

and

S̄ =
n2
n

S1 +
n1
n

S2.

TM is distributed as F with degrees of freedom p and v̂M − p+ 1 [26].

3.5. Yao Test

Yao [27] proposed a test which is an extension of the Welch test provided
by Tukey [23]. This test statistic TY based on T in Eq. (3.2) can be given as:

TY =
m− p+ 1

pm
T 2 ∼ Fp,m−p+1(3.7)

where 1
m = 1

(T )2

2∑
i=1

1
ni−1

[
(Ȳ 1 − Ȳ 2)

>(Se)−1Si
ni

(Se)−1(Ȳ 1 − Ȳ 2)
]2

3.6. Wald Test and its Bootstrap Approach

Konietschke et al. [16] developed parametric bootstrap methods for the
multivariate Behrens–Fisher problem. According to this, for two multivariate
normal mean vectors , H0 stated in Eq. (3.1) is equivalent to testing H>0 :
Hµ∗ = 0 , where µ∗ = (µ>1 ,µ

>
2 )> and contrast matrix is given by H = P ⊗ Ip.



CAT for comparing two mean vectors 11

Here

P =
1

2

[
1 −1
−1 1

]
and Ip is the p-dimensional unit matrix.

The Wald test statistic for testing H>0 is

Qn(H) = nȲ>H(HV̂nH)+HȲ(3.8)

where (.)+ denotes the Moore-Penrose inverse and V̂n = diag
(
n
ni
S(i); 1 ≤ i ≤ 2

)
.

Qn(H) is asymptotically distributed as χ2 with degrees of freedom rank(H).

Konietschke et al. [16] applied the nonparametric and parametric bootstrap
of the Wald test. The algorithm of these tests, respectively, are given below:

The nonparametric bootstrap of the Wald test:

1. For given data, calculate value of test statistic given in Eq.(3.8).

2. Generate nonparametric bootstrap sample, Y •i1,Y
•
i2, ...,Y

•
ini

, which are
drawn with replacement from the pooled observation vectors, Y 11, ...,Y 2n2 .

3. Compute value of test statistic given in Eq. (3.8) from the nonparametric

bootstrap sample and denote it by Q
•(l)
n (H).

4. Repeat the steps 2 and 3 for a large number of times (say, L times).

5. Compute the Monte Carlo estimates of the p-values as p̂ =
L∑
l=1

I(Q
•(l)
n (H) >

Qn(H))/L, where I is the indicator function.

6. If p̂ < α, H0 is rejected.

We refer to the nonparametric bootstrap of the Wald test as WB in rest of study.

The parametric bootstrap of the Wald test:

1. For given data, calculate value of test statistic given in Eq.(3.8).

2. Generate parametric bootstrap variables as,

Y ∗i1,Y
∗
i2, ...,Y

∗
ini
∼ N(0,S(i)), i = 1, 2.

3. Compute value of test statistic given in Eq. (3.8) from the parametric

bootstrap vectors, and denote it by Q
∗(l)
n (H).

4. Repeat the steps 2 and 3 for a large number of times (say, L times).
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5. Compute the Monte Carlo estimates of the p-values as p̂ =
L∑
l=1

I(Q
∗(l)
n (H) >

Qn(H))/L, where I is the indicator function.

6. If p̂ < α, H0 is rejected.

We refer to the parametric bootstrap of the Wald test as WPB in rest of study.

4. Computational Approach Test

Initially, before applying CAT for testing the null hypothesis given in Eq.
(3.1), the general technique in CAT was first given.

LetX1, X2, ..., Xn be a random sample having a probability density function
as f(x|θ), where the functional form of f is assumed to be known. Let θ =
(θ(1), θ(2)) be the parameter vector and our primary interest lies in θ(1), i.e., θ(2)

is the nuisance parameter. Our goal is to test H>0 : θ(1) = θ
(1)
0 versus a suitable

alternative. To test H>0 : θ(1) = θ
(1)
0 against H>1 , H>0 was first expressed as

H>∗0 : η(θ(1), θ
(1)
0 ) = 0 against H>∗1 , where η is a scalar valued function. The

general methodology of the CAT for testing H>∗0 : η(θ(1), θ
(1)
0 ) = 0 against a

suitable alternative at a desired level α was given through the following steps
[19].

1. Obtain the MLEs of the parameters, θ(1) and θ(2). Obtain a suitable

η(θ(1), θ
(1)
0 ) and the MLE of η, η̂ = η̂(θ̂(1), θ

(1)
0 ) can be used as a test s-

tatistic.

2. Under H0, find the RMLEs of θ(2) parameter, which is denoted by θ̃(2).

Generate artificial sample Y1, Y2, ..., Yn from f(y|θ(1)0 , θ̃(2)) large number of
times, say L times.

3. For each of these replicated samples, recalculate the MLE of η, η̂∗(l) l =
1, ..., L.

4. Estimate the p-value as, p̂ =
L∑
l=1

(η̂∗(l) > η̂)/L. In the case of p̂ < α, H0 is

rejected.

CAT is based on restricted maximum likelihood estimations (RMLEs) un-
der null hypothesis. There is no need to obtain theoretical distribution of test
statistic and the p value can be calculated directly; therefore, this method is quite
easy to apply. Then, the testing procedure based on CAT for the equality of two
multivariate normal mean vectors under heterogeneity of covariance matrix can
be given as follows:
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The observed value of the test statistic based on random sample is calcu-
lated as follows:

Step 1 The observed value of the test statistic based on random sample is calcu-
lated as follows:

η̂ML = (Ȳ1 − Ȳ2)>

(
Σ̂1

n1
+

Σ̂2

n2

)−1
(Ȳ1 − Ȳ2)(4.1)

Step 2 Under H0, the RMLEs of (µ,Σi) are obtained as µ̂(RML) and Σ̂i(RML) in
Eq. (2.5), iteratively.

Step 3 A large number is generated, say L, of artificial sample fromNp(µ̂(RML), Σ̂i(RML))

i=1,2. For every artificial sample η̂
(l)
ML, l = 1, ..., L are calculated.

Step 4 p value is calculated as p̂ =
L∑
l=1

(η̂
(l)
ML>η̂ML)

L . H0 is rejected when p̂ < α.

By using these steps, a simulation study was carried out.

First, we carry out the CAT for testing the H0 using the test statistic η̂ML

in Eq. (4.1) and refer to this test statistics as CAT. Beside, we carry out the
CAT using the test statistics TB in Eq. (3.3), TM in Eq. (3.6), TJ in Eq. (3.4),
TY in Eq. (3.7) and TNV in Eq. (3.5), we refer to these test statistics as B-CAT,
M-CAT, J-CAT, Y-CAT, NV-CAT, respectively.

5. Simulation Study

In this section, all tests were compared with respect to their estimated type-
I error rates and powers for multivariate normality and non-normality. For this
purpose, the cases of p= 2, 3, 4 with different combinations of equal and unequal
sample sizes were considered. To estimate type-I error rates and the powers of
all tests under multivariate normality assumption, 2000 random numbers with a
sample size ni (i=1,2) from the multivariate normal distribution were generated.
Mean vectors were used as µ1 = (0, 0, ..., 0)1xp and µ2 = (∆,∆, ...,∆)1xp.

Following Konietschke et al.[16], we considered six covariance structure as:

Setting 1: Σ1= Ip + 0.5(Jp − Ip) = Σ2,
Setting 2: Σ1= [σrs] = (0.6)|r−s| = Σ2,
Setting 3: Σ1= Ip + 0.5(Jp − Ip) and Σ2 = 3Ip + 0.5(Jp − Ip),
Setting 4: Σ1 = [σrs] = (0.6)|r−s| and Σ2 = (0.6)|r−s| + 2Ip,
Setting 5: Σ1= Ip + 0.5(Jp − Ip) and Σ2 = 9Ip + 0.5(Jp − Ip),
Setting 6: Σ1 = [σrs] = (0.6)|r−s| and Σ2 = (0.6)|r−s| + 8Ip,
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where Ip is an identity vector with dimension p and Jp is the pxp matrix of 1’s.
While setting 1 represents a scenario with homoscedastic compound symmetric,
settings 3 and 5 represent the scenarios with moderate and severe heteroscedastic
versions of this structure, respectively. While setting 2 represents a scenario with
homoscedastic autoregressive covariance structure, setting 4 and 6 represent the
scenarios with moderate and severe heteroscedastic versions of this structure,
respectively.

To calculate the p̂-values of the CAT and CAT versions of the tests, m was
taken as 2000. The simulation study was conducted in MATLAB. Initially, the
estimated type-I error rates of all tests under the null hypothesis were calculated.
The simulation results were provided in Tables 1-3 under the multivariate normal
model at the nominal level 0.05.

Tables 1-3 are here.

It can be seen in Table 1 that for p = 2, in cases of homoscedastic and
moderate heteroscedastic structures (setting 1, 2, 3 and 4), all tests except Wald
test have the estimated type I error rates close to the nominal level 0.05. As
heterogeneity is getting severe (setting 5 and 6), in cases of small sample sizes,
the estimated type I error rates of the WB and TY tests as well as the Wald test
exceed the nominal level 0.05, that is, these tests tend to be liberal.

It can be seen in Table 2 that in case of homoscedastic structure, the results
of the tests for p = 3 show similar pattern as those for the cases of p = 2. However,
in case of heterogeneity even when moderate heterogeneity, the TY , TJ , Wald,
WB tests tend to be liberal for small sample sizes. Furthermore, as heterogeneity
is getting severe, these tests tend to be highly liberal for small sample size. A
remarkable consequence is that when sample sizes are different, the estimated
type I error rates of the WB test are considerably lower than the nominal level
0.05.

It can be seen in Table 3 that for p = 4, in case of homoscedastic structure
and different sample sizes, the TY and TJ , tests tend to be liberal. Furthermore,
when small and equal sample sizes, these tests tend to be highly liberal in case
of heterogeneity. As sample sizes increase, these tests have the estimated type
I error rates close to the nominal level 0.05. Besides, in case of heteroscedastic
structure, the estimated type I error rates of the WB test exhibit similar pattern
as those for the cases of p = 2 and p = 3. However, as p increases, this test
tend to be highly liberal. It can be seen from all tables that as p increase, the
TY , TJ , and WB tests tend to be highly liberal. Furthermore, as heterogeneity is
getting severe, these tests also tend to be highly liberal. The CAT versions of the
TY and TJ , tests, J-CAT and Y-CAT, greatly improved these tests’ behavior. In
this cases, these tests have the estimated type I error rates close to the nominal
level 0.05 in most cases. As for the WPB test, in homoscedastic structure, the
estimated type I error rates of this test is slightly higher than the nominal level
0.05 when sample size is small and unequal. Furthermore, as heterogeneity is
getting severe, the estimated type I error rates of this test is getting quite higher



CAT for comparing two mean vectors 15

than the nominal level 0.05.

In summary, according to the results obtained from all tables, the CAT,
K-CAT, J-CAT, Y-CAT, NV-CAT, TM and WPB tests have the estimated type
I error rates close to the nominal level 0.05 in most cases. Furthermore, as p
increase and heterogeneity is getting severe, the estimated type I error rates
of all tests are affected negatively from this case, that is, these tests behaviors
depend on the p and degree of heterogeneity.

The simulated powers of all tests were provided in Tables 4-6 under the
normal model. The tests attaining nominal level closely can be compared mean-
ingfully in terms of power. Since the estimated type I error rates of the Wald test
exceed 6% in all considered cases, the Wald test was ignored and excluded from
tables. While the powers of the tests were interpreted, the tests which had greater
the estimated type I error rates than 6% given in Tables 1-3 were disregarded.
Thus, the estimated powers of these tests were denoted by ∗.

Tables 4-6 are here.

When all tests were compared in terms of their powers in Table 4-6, the TB
test and the CAT version of this test, B-CAT, has a smaller power than the other
tests in most cases. In cases where the estimated type I error rates of the TJ , TY
and WB tests are close the nominal level, the powers of these tests are close to the
CAT, K-CAT, J-CAT, Y-CAT, NV-CAT, TM and WPB tests, even sometimes
the powers of these tests are slightly higher than those of these tests. However,
as p and the degree of heterogeneity increase, and in case of small sample sizes,
the TJ , TY and WB tests tend to be highly liberal, which is a disadvantage for
them.

When the CAT, K-CAT, J-CAT, Y-CAT, NV-CAT, TM and WPB tests
were compared in terms of their powers, these tests have powers close to each
other. Besides, while the CAT has a bit higher power than the other tests in
some cases, the NV-CAT has a bit higher power than the other tests in some
cases. Since the CAT has simple form than the other CAT versions of the tests,
it can be preferred instead of the others where they have similar powers.

To get idea about robustness of the above tests against multivariate non-
normality we conduct simulation study under multivariate non-normal models.
Following Konietschke et al. [16], we generated data as

Yij = µi + Σ
1/2
i εij , i = 1, ..., ni; j = 1, 2

using the Cholesky decomposition Σ
1/2
i of a given covariance matrix Σi. The

independent and identically distributed random error vectors εij = (ε
(1)
ij , ..., ε

(p)
ij )>
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were generated from different standardized symmetric or skewed distributions by

ε
(s)
ij =

W
(s)
ij − E(W

(s)
ij )√

V ar(W
(s)
ij )

Here W
(s)
ij are double exponential distribution (DE), t-distribution with degrees

of freedom 7 (t7), χ
2 distribution with degrees of freedom 15 (χ2

15) and χ2 dis-
tribution with degrees of freedom 20 (χ2

20). We refer to these distributions as
distribution 1, 2, 3 and 4 in tables, respectively. We estimated the type-I error
rates of all tests under these distributions, respectively. The simulated results
were provided in Tables 7-18.

Tables 7-18 are here.

The results under the double exponential model are almost similar to those
under the normal model. However, unlike normal distribution, it can be seen that
the estimated type I error rates of all tests are smaller than the nominal level 0.05
especially in small sample size. Besides, while the estimated type I error rates
of the WB test are close to the nominal level in cases of homogeneity structure,
those of this test are higher than the nominal level as the degree of heterogeneity.

The results under t7-model are quite similar to those under the normal
model. While the results under the χ2

15-model are somewhat similar to those
under the normal model, it can be seen that the estimated type I error rates
of tests increase significantly. Because of skewed distribution, the TJ , TY and
WB tests tend to be highly liberal when heterogeneity is severe and sample size
is small. A remarkable consequence is that as p increase, especially in cases of
small sample size, the estimated type I error rates of all tests are higher than the
nominal level. However, the B-CAT test has the estimated type I error rate close
to the nominal level. Also, note that as the degree of freedom increase, since χ2

20

distribution is more close to a symmetric distribution than χ2
15 distribution, the

results under this model are more similar to those under the normal model.

In cases of normal distributed and symmetric distributed models, it can
be seen that the CAT, the CAT versions of tests, TM and WPB tests have the
estimated type I error rates close to the nominal level 0.05. The TJ , TY and WB
tests tend to be highly liberal in cases of small sample size and heterogeneity.
In cases of model with skewed distribution, that is, the χ2

15-model, the estimat-
ed type I error rates of many tests significantly exceed the nominal level 0.05.
However, the B-CAT performs well than other tests in terms of type I error rate
under this model.

As Konietschke et al. [16] noted and our simulation study can be seen, the
WB test’s behavior depends on the p, degree of heterogeneity and the amount of
skewness. Furthermore, TJ and TY tests’ behavior also depend on the p, degree
of heterogeneity and the amount of skewness. Thus, as seen from simulation
study, CAT method can be uses as a good alternative for the equality of two
multivariate normal mean vectors under heterogeneity of covariance.
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6. Conclusions

In this study, the CAT were proposed and compared it against the other
popular tests (TB, TM , TNV , TJ , TY , WB, WPB) as well as their CAT versions (B-
CAT, M-CAT, J-CAT, Y-CAT, NV-CAT) to test the equality of two multivariate
normal mean vectors under heterogeneity of covariance matrix. The results of
Monte Carlo simulations that were conducted to compare the estimated type I
error rates and powers of these tests were presented. The simulation study shows
that the CAT, M-CAT, J-CAT, Y-CAT, NV-CAT, TM and WPB tests performed
better than the others in terms of both the estimated type I error rates and power,
even the CAT and NV-CAT had a bit higher power than the other tests in some
cases. This method can be adapted to the heterogeneity MANOVA models.
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