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1. INTRODUCTION

Consider a linear regression model

(1.1) yi = x>i β + εi, i = 1, 2, . . . , n,

where yi’s are random responses, xi = (xi1, xi2, . . . , xip)
> are known vectors,

β = (β1, β2, . . . , βp)
> is a vector denoting unknown coefficients, εi’s are unob-

servable random errors and the superscript
(>) denotes the transpose of a vector

or matrix. Further, ε = (ε1, ε2, . . . , εn)> has a cumulative distribution function
F (ε); E (ε) = 0 and V (ε) = σ2In, where σ2 is finite and In is an identity matrix
of dimension n× n. In this paper, we consider that the design matrix has rank p
(p ≤ n).

It is usually assumed that the explanatory variables are independent of each
other in a multiple linear regression model. However, this assumption may not
be valid in real life, that is, the independent variables in model may be correlated
which cause to multicollinearity problem. In literature, some biased estimations,
such as shrinkage estimation, principal components estimation (PCE), ridge es-
timation, partial least squares (PLS) estimation and Liu-type estimators were
proposed to combat this problem. The ridge estimation is proposed by Hoerl and
Kennard (1970), and is one of the most effective methods is the most popular
one. This estimator has less mean squared error (MSE) than the least squares
estimation (LSE) estimation.

The multiple linear regression model is used by data analysts in nearly every
field of science and technology as well as economics, econometrics, finance. This
model is also used to obtain information about unknown parameters based on
sample information and, if available, other relevant information. The other infor-
mation may be considered as non-sample information (NSI), see Ahmed (2001).
This is also known as uncertain prior information (UPI). Such information, which
is usually available from previous studies, expert knowledge or researcher’s ex-
perience, is unrelated to the sample data. The NSI may or may not positively
contribute to the estimation procedure. However, it may be advantageous to use
the NSI in the estimation process when sample information may be rather limited
and may not be completely reliable.

In this study, we consider a linear regression model (1.1) in a more realistic
situation when the model is assumed to be sparse. Under this assumption, the
vector of coefficients β can be partitioned as (β1,β2) where β1 is the coefficient
vector for main effects, and β2 is the vector for nuisance effects or insignificant
coefficients. We are essentially interested in the estimation of β1 when it is
reasonable that β2 is close to zero. The full model estimation may be subject
to high variability and may not be easily interpretable. On the other hand, a
sub-model strategy may result with an under-fitted model with large bias. For
this reason, we consider pretest and shrinkage strategy to control the magnitude
of the bias. Ahmed (2001) gave a detailed definition of shrinkage estimation,
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and discussed large sample estimation techniques in a regression model. For
more recent work on the subject, we refer to Ahmed et al. (2012), Ahmed and
Fallahpour (2012), Ahmed (2014a), Ahmed (2014b), Hossain et al. (2016), Gao
et al. (2016). Further, for some related work on shrinkage estimation we refer to
Prakash and Singh (2009) and Shanubhogue and Al-Mosawi (2010), and others.

In this study, we also consider L1 type estimators, and compare them with
pretest and shrinkage estimators. Yüzbaşı and Ahmed (2015) provided some
numerical comparisons of these estimators. The novel aspects of this manuscript,
we investigate the asymptotic properties of pretest and shrinkage estimators when
the number of observations is larger than the number of covariates.

The paper is organized as following. The full and sub-model estimators
based on ridge regression are given in Section 2. The pretest, shrinkage estimators
and penalized estimations are also presented in this section. The asymptotic
properties of the pretest and shrinkage estimators are given in Section 3. The
results of a Monte Carlo simulation study that include a comparison with some
penalty estimators are given in Section 4. A real data example is given in Section
5. The concluding remarks are presented in Section 6.

2. ESTIMATION STRATEGIES

The ridge estimator can be obtained from the following model

y = Xβ + ε subject to β>β ≤ φ,

where φ is inversely proportional to k, y = (y1, . . . , yn)> and X = (x1, . . . ,xn)>,
which is equal to

arg min
β

{∑n

i=1

(
yi − x>

i β
)2

+ k
∑p

j=1
β2j

}
.

It yields

(2.1) β̂RFM =
(
X>X + kIp

)−1
X>y,

where β̂RFM is called a ridge full model estimator and k ∈ [0,∞] is tuning ridge
parameter. If k = 0, then β̂RFM is the LSE estimator, and k =∞, then β̂RFM =
0. In this study, we select optimal the value of k which minimizes the mean square
error of the equation (2.1) via 10-fold cross validation.

We let X = (X1,X2), where X1 is an n × p1 sub-matrix containing the
regressors of interest and X2 is an n × p2 sub-matrix that may or may not be

relevant in the analysis of the main regressors. Similarly, β =
(
β>1 ,β

>
2

)>
be the

vector of parameters, where β1 and β2 have dimensions p1 and p2, respectively,
with p1 + p2 = p, pi ≥ 0 for i = 1, 2.
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A sub-model or restricted model is defined as:

y = Xβ + ε subject to β>β ≤ φ and β2 = 0,

then we have the following restricted linear regression model

(2.2) y = X1β1 + ε subject to β>1 β1 ≤ φ.

We denote β̂RFM
1 as the full model or unrestricted ridge estimator of β1 is given

by

β̂RFM
1 =

(
X>1M

R
2 X1 + kIp1

)−1
X>1M

R
2 y,

where MR
2 = In −X2

(
X>2 X2 + kIp2

)−1
X>2 . For model (2.2), the sub-model or

restricted estimator β̂RSM
1 of β1 has the form

β̂RSM
1 =

(
X>1 X1 + k1Ip1

)−1
X>1 y,

where k1 is ridge parameter for sub-model estimator β̂RSM
1 .

Generally speaking, β̂RSM
1 performs better than β̂RFM

1 when β2 is close to

zero. However, for β2 away from the zero, β̂RSM
1 can be inefficient. But, the

estimate β̂RFM
1 is consistent for departure of β2 from zero.

The idea of penalized estimation was introduced by Frank and Friedman
(1993). They suggested the notion of bridge regression as follows. For a given
penalty function π (·) and tuning parameter that controls the amount of shrinkage
λ, bridge estimators are estimated by minimizing the following penalized least
square criterion

n∑
i=1

(
yi − x>i β

)2
+ λπ (β) ,

where π (β) is
∑p

j=1 |βj |
γ , γ > 0. This penalty function bounds the Lγ norm of

the parameters.

2.1. Pretest and Shrinkage Ridge Estimation

The pretest is a combination of β̂RFM
1 and β̂RSM

1 through an indicator
function I (Ln ≤ cn,α) , where Ln is appropriate test statistic to test H0 : β2 =
0 versus HA : β2 6= 0. Moreover, cn,α is an α−level critical value using the
distribution of Ln. We define test statistics as follows:

Ln =
n

σ̂2

(
β̂LSE
2

)>
X>2M1X2

(
β̂LSE
2

)
,

where σ̂2 = 1
n−1(y−Xβ̂RFM)>(y−Xβ̂RFM) is consistent estimator of σ2, M1 =

In −X1

(
X>1 X1

)−1
X>1 and β̂LSE

2 =
(
X>2M1X2

)−1
X>2M1y. Under H0, the test
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statistic Ln follows chi-square distribution with p2 degrees of freedom for large
n values. The pretest test ridge regression estimator β̂RPT

1 of β1 is defined by

β̂RPT
1 = β̂RFM

1 −
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α) ,

where cn,α is an α− level critical value.

The shrinkage or Stein-type ridge regression estimator β̂RS
1 of β1 is defined

by

β̂RS
1 = β̂RSM

1 +
(
β̂RFM
1 − β̂RSM

1

) (
1− (p2 − 2)L −1

n

)
, p2 ≥ 3.

The estimator β̂RS
1 is general form of the Stein-rule family of estimators,

where shrinkage of the base estimator is towards the restricted estimator β̂RSM
1 .

The Shrinkage estimator is pulled towards the restricted estimator when the
variance of the unrestricted estimator is large. Also, β̂RS

1 is the smooth version

of β̂RPT
1 .

The positive part of the shrinkage ridge regression estimator β̂RPS
1 of β1

defined by

β̂RPS
1 = β̂RSM

1 +
(
β̂RFM
1 − β̂RSM

1

) (
1− (p2 − 2)L −1

n

)+
,

where z+ = max(0, z).

2.1.1. Lasso strategy

For γ = 1, we obtain the L1 penalized least squares estimator, which is
commonly known as Lasso (least absolute shrinkage and selection operator).

β̂Lasso = arg min
β

∑n

i=1

(
yi − x>

i β
)2

+ λ

p∑
j=1

|βj |

 .

The parameter λ ≥ 0 controls the amount of shrinkage.

2.1.2. Adaptive Lasso strategy

The adaptive Lasso estimator is defined as

β̂aLasso = arg min
β

∑n

i=1

(
yi − x>

i β
)2

+ λ

p∑
j=1

ξ̂j |βj |

 ,
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where the weight function is

ξ̂j =
1

|βj∗|γ
; γ > 0.

The βj
∗ a root–n consistent estimator of β. For computational details we refer

to Zou (2006).

2.1.3. SCAD strategy

The smoothly clipped absolute deviation (SCAD) is proposed by Fan and
Li (2001). Given a > 2 and λ > 0, the SCAD penalty at β is

Jλ(β; a) =


λ |β| , |β| ≤ λ

−
(
β2 − 2aλ |λ|+ λ2

)
/ [2(a− 1)] , λ < |β| ≤ aλ

(a+ 1)λ2/2 |β| > aλ.

Hence, the SCAD estimation is given by

β̂SCAD = arg min
β

∑n

i=1

(
yi − x>

i β
)2

+ λ

p∑
j=1

Jλ(βj ; a)

 .

For estimation strategies based on γ = 2, we establish some useful asymp-
totic results in the following section.

3. ASYMPTOTIC ANALYSIS

Consider a sequence of local alternatives {Kn} given by

Kn : β2 = β2(n) =
κ√
n
,

where κ = (κ1, κ2, . . . , κp2)> is a fixed vector. The asymptotic bias of an estima-
tor β∗1 is defined as B (β∗1) = E lim

n→∞
{
√
n (β∗1 − β1)}, the asymptotic covariance

of an estimator β∗1 is Γ (β∗1) = E lim
n→∞

{
n (β∗1 − β1) (β∗1 − β1)

>
}

, and by using

asymptotic covariance matrix Γ, the asymptotic risk of an estimator β∗1 is given
by R (β∗1) = tr (WΓ), where κ is a positive definite matrix of weights with di-
mensions of p× p, and β∗1 is one of the suggested estimators.

We consider two regularity conditions as the following to establish the
asymptotic properties of the estimators.

(i) 1
n max
1≤i≤n

x>i (X>X)−1xi → 0 as n→∞, where x>i is the ith row of X
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(ii) lim
n→∞

n−1(X>X) = C, for finite C.

Theorem 3.1. When k 6=∞, if k/
√
n→ λ0 ≥ 0 and C is non-singular,

then √
n
(
β̂RFM − β

)
d→
(
−λ0C−1β, σ2C−1

)
.

For proof, see Knight and Fu (2000).

Proposition 3.1. Assuming above regularity conditions (i) and (ii) hold,
then, together with Theorem 3.1, under {Kn} as n→∞ we have

(
ϑ1
ϑ3

)
∼ N

[(
−µ11.2

δ

)
,

(
σ2C−111.2 Φ

Φ Φ

)]
,

(
ϑ3
ϑ2

)
∼ N

[(
δ
−γ

)
,

(
Φ 0

0 σ2C−111

)]
,

where ϑ1 =
√
n
(
β̂RFM
1 − β1

)
, ϑ2 =

√
n
(
β̂RSM
1 − β1

)
, ϑ3 =

√
n
(
β̂RFM
1 − β̂RSM

1

)
,

C =

(
C11 C12

C21 C22

)
, γ = µ11.2+δ and δ = C−111 C12ω, Φ = σ2C−111 C12C

−1
22.1C21C

−1
11 ,

µ = −λ0C−1β =

(
µ1

µ2

)
and µ11.2 = µ1 −C12C

−1
22 ((β2 − κ)− µ2) .

The expressions for bias for listed estimators are:

Theorem 3.2.

B
(
β̂RFM
1

)
= −µ11.2

B
(
β̂RSM
1

)
= −γ

B
(
β̂RPT
1

)
= −µ11.2 − δHp2+2

(
χ2
p2,α; ∆

)
,

B
(
β̂RS
1

)
= −µ11.2 − (p2 − 2)δE

(
χ−2p2+2 (∆)

)
,

B
(
β̂RPS
1

)
= −µ11.2 − δHp2+2

(
χ2
p2,α; ∆

)
,

−(p2 − 2)δE
{
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) > p2 − 2

)}
,

where ∆ =
(
κ>C−122.1κ

)
σ−2, C22.1 = C22 − C21C

−1
11 C12, and Hv (x,∆) is the

cumulative distribution function of the non-central chi-squared distribution with
non-centrality parameter ∆ and v degree of freedom, and

E
(
χ−2jv (∆)

)
=

∫ ∞
0

x−2jdHv (x,∆) .
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Proof: See Appendix.

Now, we define the following asymptotic quadratic bias (QB) of an estima-
tor β∗1 by converting them into the quadratic form since the bias expression of
all the estimators are not in the scalar form.

QB (β∗1) = (B (β∗1))>C11.2B (β∗1) ,

where C11.2 = C11 −C12C
−1
22 C21.

QB
(
β̂RFM
1

)
= µ>11.2C11.2µ11.2,

QB
(
β̂RSM
1

)
= γ>C11.2γ,

QB
(
β̂RPT
1

)
= µ>11.2C11.2µ11.2 + µ>11.2C11.2δHp2+2

(
χ2
p2,α; ∆

)
+δ>C11.2µ11.2Hp2+2

(
χ2
p2,α; ∆

)
+δ>C11.2δH

2
p2+2

(
χ2
p2,α; ∆

)
,

QB
(
β̂RS
1

)
= µ>11.2C11.2µ11.2 + (p2 − 2)µ>11.2C11.2δE

(
χ−2p2+2 (∆)

)
+(p2 − 2)δ>C11.2µ11.2E

(
χ−2p2+2 (∆)

)
+(p2 − 2)2δ>C11.2δ

(
E
(
χ−2p2+2 (∆)

))2
,

QB
(
β̂RPS
1

)
= µ>11.2C11.2µ11.2 +

(
δ>C11.2µ11.2 + µ>11.2C11.2δ

)
· [Hp2+2 (p2 − 2; ∆)

+(p2 − 2)E
{
χ−2p2+2 (∆) I

(
χ−2p2+2 (∆) > p2 − 2

)}]
+δ>C11.2δ [Hp2+2 (p2 − 2; ∆)

+(p2 − 2)E
{
χ−2p2+2 (∆) I

(
χ−2p2+2 (∆) > p2 − 2

)}]2
.

The QB of β̂RFM
1 is µ>11.2C11.2µ11.2 and the QB of β̂RSM

1 is an unbounded

function of γ>C11.2γ. The QB of β̂RPT
1 starts from µ>11.2C11.2µ11.2 at ∆ = 0,

and when ∆ increases it increases to the maximum point and then decreases to
zero. For the QBs of β̂RS

1 and β̂RPS
1 , they similarly start from µ>11.2C11.2µ11.2,

and increase to a point, and then decrease towards zero.

Theorem 3.3. Under local alternatives and assumed regularity condi-
tions the risks of the estimators are:

R
(
β̂RFM
1

)
= σ2tr

(
WC−111.2

)
+ µ>11.2Wµ11.2

R
(
β̂RSM
1

)
= σ2tr

(
WC−111

)
+ γ>Wγ
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R
(
β̂RPT
1

)
= R

(
β̂RFM
1

)
− 2µ>11.2WδHp2+2

(
χ2
p2,α; ∆

)
−σ2tr(WC−111.2 −WC−111 )Hp2+2

(
χ2
p2,α; ∆

)
+δ>Wδ

{
2Hp2+2

(
χ2
p2,α; ∆

)
−Hp2+4

(
χ2
p2,α; ∆

)}
,

R
(
β̂RS
1

)
= R

(
β̂RFM
1

)
+ 2(p2 − 2)µ>11.2WδE

(
χ−2p2+2 (∆)

)
−(p2 − 2)σ2tr

(
C21C

−1
11 WC−111 C12C

−1
22.1

)
{2E

(
χ−2p2+2 (∆)

)
−(p2 − 2)E

(
χ−4p2+2 (∆)

)
}

+(p2 − 2)δ>Wδ{2E
(
χ−2p2+2 (∆)

)
−2E

(
χ−2p2+4 (∆)

)
− (p2 − 2)E

(
χ−4p2+4 (∆)

)
},

R
(
β̂RPS
1

)
= R

(
β̂RS
1

)
−2µ>11.2WδE

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
+(p2 − 2)σ2tr

(
C21C

−1
11 WC−111 C12C

−1
22.1

)
·
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
−(p2 − 2)E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
−σ2tr

(
C21C

−1
11 WC−111 C12C

−1
22.1

)
Hp2+2 (p2 − 2; ∆)

+δ>Wδ [2Hp2+2 (p2 − 2; ∆)−Hp2+4 (p2 − 2; ∆)]

−(p2 − 2)δ>Wδ
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
−2E

(
χ−2p2+4 (∆) I

(
χ2
p2+4 (∆) ≤ p2 − 2

))
+(p2 − 2)E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
.

Proof: See Appendix.

Noting that if C12 = 0, then all the risks reduce to common value
σ2tr

(
WC−111

)
+ µ>11.2Wµ11.2 for all ω. For C12 6= 0, the risk of β̂RFM

1 remains

constant while the risk of β̂RSM
1 is an unbounded function of ∆ since ∆ ∈ [0,∞) .

The risk of β̂RPT
1 increases as ∆ moves away from zero, achieves it maximum and

then decreases towards the risk of the full model estimator. Thus, it is a bounded
function of ∆. The risk of β̂RFM

1 is smaller than the risk of β̂RPT
1 for some small

values of ∆ and opposite conclusions holds for rest of the parameter space. It
can be seen that R(β̂RPS

1 ) ≤ R(β̂RS
1 ) ≤ R(β̂RFM

1 ), strictly inequality holds for
small values of ∆. Thus positive shrinkage is superior to the shrinkage estimator.
However, both shrinkage estimators outperform the full model estimator in the
entire parameter space induced by ∆. On the other hand, the pretest estimator
performs better than the shrinkage estimators when ∆ takes small values and
outside this interval the opposite conclusion holds.
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4. SIMULATION STUDIES

In this section, we conduct a Monte Carlo simulation study. The design
matrix is generated to be correlated with different magnitudes. We simulate the
response from the following model:

yi = x1iβ1 + x2iβ2 + ...+ xpiβp + εi, i = 1, 2, . . . , n,

where εi ∼ N
(
0, σ2

)
with σ2 = 1. We generate the design matrix X from

a multivariate normal distribution with mean vector µ = 0p1 and covariance
matrix Σx. Further, we consider the off-diagonal elements of the covariance
matrix Σx are equal to be ρ, which is the coefficient of correlation between any
two predictors, with ρ = 0.25, 0.5, 0.75. The ratio of the largest eigenvalue to
the smallest eigenvalue of matrix X>X is calculated as the condition number
test (CNT) which is helpful in detecting the existence of multicollinearity in the
design matrix. If the CNT is larger than 30, then the model may have significant
multicollinearity, for which we refer to Belsley (1991).

For H0 : βj = 0, j = p1 + 1, p1 + 2, . . . , p, with p = p1 + p2, the regression

coefficients are set β =
(
β>1 ,β

>
2

)>
=
(
β>1 ,0

>
p2

)>
with β1 = (1, 1, 1, 1)>. In order

to investigate the behaviour of the estimators, we define ∆∗ = ‖β− β0‖, where

β0 =
(
β>1 ,0

>
p2

)>
and ‖·‖ is the Euclidean norm. We considered ∆ values between

0 and 4. If ∆∗ = 0, then it means that we will have β = (1, 1, 1, 1, 0, 0, . . . , 0︸ ︷︷ ︸
p2

)> to

generated the response under null hypothesis. On the other hand, when ∆∗ > 0,
say ∆∗ = 2, we will have β = (1, 1, 1, 1, 2, 0, 0, . . . , 0︸ ︷︷ ︸

p2−1

)> to generated the response

under the local alternative hypotheses. When we increase the number of ∆, it
indicates the degree of violation of null hypothesis. In our simulation study, we
consider the sample size of n = 60, 100. Also, the number of predictor variables:
(p1, p2) ∈ {(4, 4), (4, 8), (4, 16), (4, 32)}. Finally, each realization was repeated
1000 times to calculate the MSE of suggested estimators and α = 0.05. All com-
putations were conducted using the statistical package R (R Development Core
Team, 2010). The performance of one of the suggested estimator was evaluated
by using MSE criterion. Also, the relative mean square efficiency (RMSE) of the
βN
1 to the β̂RFM

1 is indicated by

RMSE
(
β̂RFM
1 : βN

1

)
=

MSE
(
β̂RFM
1

)
MSE (βN

1 )
,

where βN
1 is one of the listed estimators.

For brevity, we report the results for the values of n = 60, 100, p1 = 4,
p2 = 32 and ρ = 0.75 in Table 1, and we plot the simulation results in Figures 1
and 2.
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Table 1: RMSE of estimators for p1 = 4, p2 = 32 and ρ = 0.75.

n = 60 n = 100
∆ CNT RSM RPT RS RPS CNT RSM RPT RS RPS

0.000 2.240 1.964 2.015 2.158 1.871 1.737 1.749 1.802
0.200 2.152 2.016 1.910 2.074 1.695 1.546 1.623 1.667
0.400 2.099 1.689 1.918 2.082 1.541 1.283 1.508 1.543
0.600 1.621 1.323 1.615 1.708 1.298 1.058 1.387 1.400
0.800 1.396 1.027 1.554 1.589 1.156 0.955 1.392 1.396
1.000 1798.267 1.193 0.908 1.465 1.500 599.313 0.815 0.925 1.209 1.209
1.250 1.037 0.885 1.410 1.410 0.700 0.962 1.217 1.217
1.500 0.798 0.982 1.352 1.352 0.540 0.993 1.111 1.111
1.750 0.628 0.985 1.238 1.238 0.411 1.000 1.078 1.078
2.000 0.586 0.995 1.227 1.227 0.319 1.000 1.060 1.060
4.000 0.198 1.000 1.058 1.058 0.098 1.000 1.018 1.018
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Figure 1: RMSE of the estimators as a function of the non-centrality parameter
∆∗ when n = 60 and p1 = 4.
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Figure 2: RMSE of the estimators as a function of the non-centrality parameter
∆∗ when n = 100 and p1 = 4.

The findings can be summarized as follows:

a) When ∆∗ = 0, RSM outperforms all listed estimators. In contrast to this,
after the small interval near ∆∗, the RMSE of β̂RSM

1 decreases and goes to
zero.

b) The RPT outperforms RS and RPS in case of ∆∗ = 0. However, for large p2
values while keeping p1 and n fixed, RPT is less efficient than RPS. When
∆∗ is larger than zero, the RMSE of β̂RPT

1 decreases, and it remains below

1 for intermediate values of ∆∗, after that the RMSE of β̂RPT
1 increases and

approaches one for larger values of ∆∗.
c) Clearly, RPS performs better than RS in the entire parameter space in-

duced by ∆∗. Both shrinkage estimators outshine the full model estimator
regardless the correctness of the selected sub-model at hand. This is con-
sistent with the asymptotic theory we presented earlier. Recalling that ∆∗

measures the degree of deviation from the assumption on the parameter
space, it is clear that one cannot go wrong with the use of shrinkage esti-
mators even if the selected sub-model is not correctly specified. As evident
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from the table and graphs, if the selected sub-model is correct, that is,
∆∗ = 0 then shrinkage estimators are relatively highly efficient than the
full model estimator. In other words risk reduction is substantial. On the
other hand, the gain slowly diminishes if the sub-model is grossly misspec-
ified. Nevertheless, the shrinkage estimators are at least as good as the full
model estimator in terms of risk. Hence, the use of shrinkage estimators
make sense in real-life applications when a sub-model cannot be correctly
specified, which is the case in most applications.

d) Generally speaking, ridge-type estimators perform better than classical es-
timator in the presence of multicollinearity among predictors. Our simula-
tion results strongly corroborates to this effect; the RMSE of the ridge-type
estimators are increasing function of the amount of multicollinearity.

4.1. Comparison Lasso, aLasso and SCAD

For comparison purposes, we considered n = 50, 75, p2 = 5, 9, 15, 20 and
p1 = 5 at ∆∗ = 0. Here, we used cv.glmnet function in glmnet package in R for
Lasso and aLasso, and cv.ncvreg function in ncvreg package for SCAD method.
The weights for aLasso are obtained from the 10-fold CV Lasso. Results are
presented in Table 2.

Table 2: CNT and RMSE of estimators for p1 = 5.

n ρ p2 CNT LSE RSM RPT RS RPS Lasso aLasso SCAD

50 0.25 5 10.88 0.90 2.63 2.54 1.61 1.83 1.30 1.46 1.39
9 20.36 0.85 3.84 3.50 2.34 2.78 1.54 1.92 1.89

15 46.75 0.76 5.51 4.12 2.85 4.17 1.92 2.56 2.77
20 90.66 0.65 7.32 5.36 4.24 5.44 2.25 3.18 3.14

0.5 5 29.39 0.85 2.75 2.39 1.04 1.93 1.22 1.29 1.16
9 53.39 0.77 4.10 3.32 2.22 2.94 1.46 1.67 1.38

15 126.44 0.67 5.93 4.69 3.06 4.38 1.76 2.13 1.65
20 245.60 0.54 8.07 5.77 4.13 5.70 1.99 2.38 1.94

0.75 5 79.58 0.71 3.93 2.80 1.66 2.12 1.01 0.93 0.73
9 156.47 0.64 4.75 3.14 2.07 3.01 1.18 1.03 0.73

15 385.42 0.48 6.50 4.18 2.72 4.41 1.35 1.26 0.83
20 718.83 0.39 8.94 4.64 3.40 5.91 1.50 1.25 0.83

75 0.25 5 8.90 0.94 2.20 1.97 1.53 1.64 1.25 1.53 1.48
9 15.12 0.91 3.44 2.96 2.25 2.68 1.60 2.12 2.09

15 28.11 0.85 5.54 3.26 3.63 3.88 2.05 3.13 2.99
20 43.77 0.78 7.15 4.11 4.94 5.47 2.63 4.13 3.78

0.5 5 22.77 0.88 2.59 2.11 1.45 1.79 1.25 1.45 1.19
9 38.33 0.86 4.03 2.95 2.32 2.73 1.56 1.96 1.59

15 77.16 0.78 5.79 4.34 3.42 4.35 1.97 2.71 2.45
20 122.80 0.72 7.30 5.52 4.13 5.50 2.28 3.15 2.75

0.75 5 65.35 0.80 3.21 2.63 1.33 2.02 1.13 1.11 0.89
9 113.78 0.76 5.27 3.67 2.30 3.32 1.42 1.52 1.17

15 225.06 0.66 6.81 4.24 3.80 4.68 1.61 1.71 1.20
20 359.89 0.57 7.59 5.52 4.11 5.58 1.82 1.91 1.41
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Not surprisingly, the performance of the sub-model estimator is the best.
The pretest estimator also performs better than other estimators. However, the
performance of RPS is better than RPT for larger values of p2. The performance
LSE estimator is worse than listed estimators since the designed matrix is ill-
conditioned. The performance of the Lasso, aLasso and SCAD are comparable
when ρ is small. On the other hand, pretest and shrinkage estimators remain
stable for a given value of ρ. Also, for large values of p2, the shrinkage and
pretest estimators indicate their superiority over L1 penalty estimators. Thus,
we recommend using shrinkage estimators in the presence of multicollinearity.

5. APPLICATION

We use the air pollution and mortality rate data by McDonald and Schwing
(1973). This data includes p = 15 measurements on mortality rate and explana-
tory variables, which are air-pollution, socio-economic and meteorological, for
n = 60 US cities in 1960. The data are freely available from Carnegie Mellon
University’s StatLib (http://lib.stat.cmu.edu/datasets/). In Table 3, we
listed variables. Also, the CNT value is calculated as 882.081.574 which implies
the existence of multicollinearity in the data set.

Table 3: Lists and Descriptions of Variables

Variables Descriptions

Dependent Variable
mort Total age-adjusted mortality rate per 100.000

Covariates
Air-Pollution
prec Average annual precipitation in inches
jant Average January temperature in degrees F
jult Average July temperature in degrees F
humid Annual average % relative humidity at 1pm

Socio-Economic
ovr65 % of 1960 SMSA population aged 65 or older
popn Average household size
educ Median school years completed by those over 22
hous % of housing units which are sound & with all facilities
dens Population per sq. mile in urbanized areas, 1960
nonw % non-white population in urbanized areas, 1960
wwdrk % employed in white collar occupations
poor % of families with income < 3000

Meteorological
hc Relative hydrocarbon pollution potential of hydrocarbons
nox Relative hydrocarbon pollution potential of nitric oxides
so2 Relative hydrocarbon pollution potential of sulphur dioxides
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In order to apply the proposed methods, we use two step approach since
the prior information is not available here. In the first step, one might do usual
variable selection to select the best sub-model. We use the Best Subset Selection
(BSS). It showed that prec, jant, jult, educ, dens, nonw, hc and nox are the most
important covariates for prediction of the response variable mort and the other
variables may be ignored since they are not significantly important. In the second
step, we have two model which are the full model with all the covariates and
the sub-model with covariates via the BSS. Finally, we construct the shrinkage
techniques from the full-model and the sub-model. We fit the full and sub-model
which are given in Table 4.

Table 4: Fittings of full and sub-models

Models Formulas

Full model log(mort) = β0 + β1prec +β2jant+β3jult+β4ovr65+β5popn+β6educ+β7hous
+β8dens+β9nonw+β10wwdrk+β11poor+β12hc+β13nox+β14so2+β15humid

Sub-Model log(mort) = β0 + β1prec +β2jant+β3jult+β6educ+β8dens+β9nonw+β12hc+β13nox

To evaluate the performance of the suggested estimators, we calculate the
predictive error (PE) of an estimator. Furthermore, we define the relative pre-
dictive error (RPE) of β̂∗ in terms of the full model ridge regression estimator
β̂RFM to easy comparison, is evaluated by as follows

RPE
(
β̂∗
)

=
PE(β̂RFM)

PE(β̂∗)
,

where β̂∗ can be any of the listed estimators. If the RPE is larger than one, it
indicates the superior to RFM.

Our results are based on 2500 case resampled bootstrap samples. Since
there is no noticeable variation for larger number of replications, we did not
consider further values. The average prediction errors were calculated via 10-fold
CV for each bootstrap replicate. The predictors were first standardized to have
zero mean and unit standard deviation before fitting the model. Figure 3 shows
that prediction errors of estimators. As expected, the RSM has the smallest
prediction error since the suggested sub-model is correct. Also, the Lasso, aLasso
and SCAD have higher prediction error than the suggested techniques.
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Figure 3: Prediction errors of listed estimators based on bootstrap simulation

Table 5: Estimate (first row) and standard error (second row) for significant
coefficients for the air pollution and mortality rate data. The RPE column gives
the relative efficiency based on bootstrap simulation with respect to the RFM.

(Const.) prec jant jult educ dens nonw hc nox RPE

RFM 6.846 0.013 -0.010 -0.002 -0.008 0.010 0.019 -0.007 0.009 1.000
0.005 0.005 0.006 0.005 0.006 0.004 0.007 0.015 0.017

RSM 6.845 0.016 -0.018 -0.012 -0.013 0.015 0.042 -0.080 0.081 1.336
0.005 0.007 0.007 0.006 0.006 0.004 0.007 0.026 0.022

RPT 6.845 0.016 -0.018 -0.011 -0.013 0.015 0.040 -0.072 0.073 1.288
0.005 0.007 0.007 0.006 0.007 0.004 0.009 0.029 0.026

RS 6.845 0.017 -0.017 -0.010 -0.012 0.015 0.038 -0.063 0.065 1.160
0.005 0.007 0.007 0.007 0.008 0.005 0.012 0.039 0.037

RPS 6.845 0.016 -0.016 -0.009 -0.012 0.014 0.035 -0.055 0.057 1.316
0.005 0.006 0.006 0.006 0.007 0.004 0.008 0.025 0.023

Lasso 6.845 0.019 -0.019 -0.008 -0.012 0.014 0.035 -0.029 0.032 1.060
0.005 0.009 0.009 0.007 0.011 0.006 0.011 0.046 0.049

aLasso 6.845 0.022 -0.022 -0.013 -0.012 0.015 0.039 -0.037 0.040 0.965
0.006 0.010 0.009 0.008 0.012 0.006 0.012 0.050 0.053

SCAD 6.845 0.019 -0.022 -0.010 -0.014 0.014 0.039 -0.035 0.038 0.897
0.006 0.012 0.011 0.009 0.013 0.007 0.014 0.052 0.055

Table 5 reveals that the RPE of the sub-model estimator, pretest, shrinkage
and positive part of shrinkage estimators outperform the full model estimator.
On the other hand, the sub-model estimator has the highest RPE since it is
computed based on the assumption that the selected sub-model is the true model.
As expected due to the presence of multicollinearity, the performance of both
ridge-type shrinkage and pretest estimators is good and better than estimators
based on L1 criteria. Thus, the data analysis corroborates with our simulation
and theoretical findings.
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6. CONCLUSIONS

In this study we assessed the performance of least squares, pretest ridge,
shrinkage ridge and L1 estimators when predictors are correlated. We established
the asymptotic properties of the pretest ridge and shrinkage ridge estimators. We
demonstrated that shrinkage ridge estimators outclass the full model estimator
and relatively perform better than sub-model estimator in a wide range of the
parameter space. We conducted a Monte Carlo simulation to investigate the be-
havior of proposed estimators when a selected sub-model may or may not be a
true model. Not surprisingly, the sub-model ridge regression estimator outshines
all other estimators when the selected sub-model is the true one. However, when
this assumption is violated, the performance of the sub-model estimator is pro-
foundly poor. Further, the shrinkage estimators outperform pretest ridge esti-
mators when p2 is large. Our asymptotic theory is well supported by numerical
analysis.

We also analyze the relative performance Lasso, adaptive Lasso and SCAD
with other listed estimators. We observe that the performance of pretest and
shrinkage ridge regression estimators are superior to L1 estimators when predic-
tors are highly correlated. The result of a data analysis is very consistent with
theoretical and simulated analysis. In conclusion, we suggest to use ridge-type
shrinkage estimators when the design matrix is ill-conditioned. The result of this
paper are general in nature and consistent with the available results in the re-
viewed literature. Further, the result of this paper maybe extended to host of
models and applications.

APPENDIX

By using ỹ = y −X2β̂
RFM
2

β̂RFM
1 = arg min

β1

{
‖ỹ −X1β1‖+ k ‖β1‖2

}
=
(
X>1 X1 + kIp1

)−1
X>1 ỹ

=
(
X>1 X1 + kIp1

)−1
X>1 y −

(
X>1 X1 + kIp1

)−1
X>1 X2β̂

RFM
2

= β̂RSM
1 −

(
X>1 X1 + kIp1

)−1
X>1 X2β̂

RFM
2 .(6.1)

Using the equation (6.1), under local alternative {Kn}, Φ is derived as
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follows:

Φ = Cov
(
β̂RFM
1 − β̂RSM

1

)
= E

[(
β̂RFM
1 − β̂RSM

1

)(
β̂RFM
1 − β̂RSM

1

)>]
= E

[(
C−111 C12β̂

RFM
2

)(
C−111 C12β̂

RFM
2

)>]
= C−111 C12E

[
β̂RFM
2

(
β̂RFM
2

)>]
C21C

−1
11

= σ2C−111 C12C
−1
22.1C21C

−1
11 = σ2(C−111.2 −C

−1
11 )

Lemma 6.1. Let X be q−dimensional normal vector distributed as
N (µx,Σq) , then, for a measurable function of ϕ, we have

E
[
Xϕ

(
X>X

)]
=µxE

[
ϕχ2

q+2 (∆)
]

E
[
XX>ϕ

(
X>X

)]
=ΣqE

[
ϕχ2

q+2 (∆)
]

+ µxµ
>
x E
[
ϕχ2

q+4 (∆)
]

where χ2
v (∆) is a non-central chi-square distribution with v degrees of freedom

and non-centrality parameter ∆.

Proof: It can be found in Judge and Bock (1978)

Proof of Theorem 3.2: B
(
β̂RFM
1

)
= −µ11.2 is provided by Proposi-

tion 3.1, and

B
(
β̂RSM
1

)
= E

{
lim
n→∞

√
n
(
β̂RSM
1 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 −C−111 C12β̂

RFM
2 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)}
− E

{
lim
n→∞

√
n
(
C−111 C12β̂

RFM
2

)}
= −µ11.2 −C−111 C12ω = − (µ11.2 + δ) = −γ.

Hence, by using Lemma 6.1, it can be written as follows:

B
(
β̂RPT
1

)
= E

{
lim
n→∞

√
n
(
β̂RPT
1 − β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 −

(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)− β1

)}
= E

{
lim
n→∞

√
n
(
β̂RFM
1 − β1

)}
−E
{

lim
n→∞

√
n
((
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)

)}
= −µ11.2 − δHp2+2

(
χ2
p2,α; ∆

)
.
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B
(
β̂RS
1

)
= E

{
lim
n→∞

√
n
(
β̂RS
1 − β1

)}
= E

{
lim
n→∞
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)
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Proof of Theorem 3.3: Firstly, the asymptotic covariance of β̂RFM
1 is

given by

Γ
(
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The asymptotic covariance of β̂RPT
1 is given by

Γ
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β̂RPT
1

)
= E

{
lim
n→∞

√
n
(
β̂RPT
1 − β1

)√
n
(
β̂RPT
1 − β1

)>}
= E

{
lim
n→∞

n
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)

]
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
I (Ln ≤ cn,α)

]>}
= E

{
[ϑ1 − ϑ3I (Ln ≤ cn,α)] [ϑ1 − ϑ3I (Ln ≤ cn,α)]>

}
= E

{
ϑ1ϑ

>
1 − 2ϑ3ϑ

>
1 I (Ln ≤ cn,α) + ϑ3ϑ

>
3 I (Ln ≤ cn,α)

}
.

Considering,

E
{
ϑ3ϑ

>
1 I (Ln ≤ cn,α)

}
= E

{
E
(
ϑ3ϑ

>
1 I (Ln ≤ cn,α) |ϑ3

)}
= E

{
ϑ3E

(
ϑ>1 I (Ln ≤ cn,α) |ϑ3

)}
= E

{
ϑ3 [−µ11.2 + (ϑ3 − δ)]> I (Ln ≤ cn,α)

}
= −E

{
ϑ3µ

>
11.2I (Ln ≤ cn,α)

}
+ E

{
ϑ3 (ϑ3 − δ)> I (Ln ≤ cn,α)

}
= −µ>11.2E {ϑ3I (Ln ≤ cn,α)}+ E

{
ϑ3ϑ

>
3 I (Ln ≤ cn,α)

}
−E
{
ϑ3δ

>I (Ln ≤ cn,α)
}

and based on Lemma 6.1, we have

E
{
ϑ3ϑ

>
1 I (Ln ≤ cn,α)

}
= −µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+
{
Cov(ϑ3ϑ

>
3 )Hp2+2

(
χ2
p2,α; ∆

)
+E (ϑ3) E

(
ϑ>3

)
Hp2+4

(
χ2
p2,α; ∆

)
− δδ>Hp2+2

(
χ2
p2,α; ∆

)}
= −µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+ ΦHp2+2

(
χ2
p2,α; ∆

)
+δδ>Hp2+4

(
χ2
p2,α; ∆

)
− δδ>Hp2+2

(
χ2
p2,α; ∆

)
,

then,

Γ
(
β̂RPT
1

)
= µ11.2µ

>
11.2 + 2µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+ σ2C−111.2 −ΦHp2+2

(
χ2
p2,α; (∆)

)
−δδ>Hp2+4

(
χ2
p2,α; ∆

)
+ 2δδ>Hp2+2

(
χ2
p2,α; ∆

)
= σ2C−111.2 + µ11.2µ

>
11.2 + 2µ>11.2δHp2+2

(
χ2
p2,α; ∆

)
+σ2(C−111.2 −C

−1
11 )Hp2+2

(
χ2
p2,α; ∆

)
+δδ>

[
2Hp2+2

(
χ2
p2,α; ∆

)
−Hp2+4

(
χ2
p2,α; ∆

)]
.
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The asymptotic covariance of β̂RS
1 is given by

Γ
(
β̂RS
1

)
= E

{
lim
n→∞

√
n
(
β̂RS
1 − β1

)√
n
(
β̂RS
1 − β1

)>}
= E

{
lim
n→∞

n
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n

]
[(
β̂RFM
1 − β1

)
−
(
β̂RFM
1 − β̂RSM

1

)
(p2 − 2) L −1

n

]>}
= E

{
ϑ1ϑ

>
1 − 2 (p2 − 2)ϑ3ϑ

>
1 L −1

n + (p2 − 2)2 ϑ3ϑ
>
3 L −2

n

}
.

Considering,

E
{
ϑ3ϑ

>
1 L −1

n

}
= E

{
E
(
ϑ3ϑ

>
1 L −1

n |ϑ3
)}

= E
{
ϑ3E

(
ϑ>1 L −1

n |ϑ3
)}

= E
{
ϑ3 [−µ11.2 + (ϑ3 − δ)]>L −1

n

}
= −E

{
ϑ3µ

>
11.2L

−1
n

}
+ E

{
ϑ3 (ϑ3 − δ)>L −1

n

}
= −µ>11.2E

{
ϑ3L

−1
n

}
+ E

{
ϑ3ϑ

>
3 L −1

n

}
− E

{
ϑ3δ

>L −1
n

}
by using Lemma 6.1, we have

E
{
ϑ3ϑ

>
1 L −1

n

}
= −µ>11.2δE

(
χ−2p2+2 (∆)

)
+
{
Cov(ϑ3ϑ

>
3 )E

(
χ−2p2+2 (∆)

)
+E (ϑ3) E

(
ϑ>3

)
E
(
χ−2p2+4 (∆)

)
− δδ>Hp2+2

(
χ2
p2,α; ∆

)}
= −µ>11.2δE

(
χ−2p2+2 (∆)

)
+ ΦE

(
χ−2p2+2 (∆)

)
+δδ>E

(
χ−2p2+4 (∆)

)
− δδ>E

(
χ−2p2+2 (∆)

)
.

Then,

Γ
(
β̂RS
1

)
= σ2C−111.2 + µ11.2µ

>
11.2 + 2 (p2 − 2)µ>11.2δE

(
χ−2p2+2,α (∆)

)
− (p2 − 2) Φ

{
2E
(
χ−2p2+2 (∆)

)
− (p2 − 2) E

(
χ−4p2+2

(∆)
)}

+ (p2 − 2) δδ>
{
−2E

(
χ−2p2+4

(∆)
)

+ 2E
(
χ−2p2+2 (∆)

)
+ (p2 − 2) E

(
χ−4p2+4

(∆)
)}

.
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Finally,

Γ
(
β̂RPS
1

)
= E

{
lim
n→∞

n
(
β̂RPS
1 − β1

)(
β̂RPS
1 − β1

)>}
= Γ

(
β̂RS
1

)
− 2E

{
lim
n→∞

√
n

[(
β̂RFM
1 − β̂RSM

1

)(
β̂RS
1 − β1

)>
×
{

1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2)

]}
+E
{

lim
n→∞

√
n

[(
β̂RFM
1 − β̂RSM

1

)(
β̂RFM
1 − β̂RSM

1

)>
×
{

1− (p2 − 2) L −1
n

}2
I (Ln ≤ p2 − 2)

]}
= Γ

(
β̂RS
1

)
− 2E

{
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
+2E

{
ϑ3ϑ

>
3 (p2 − 2) L −1

n I (Ln ≤ p2 − 2)
}

−2E
{
ϑ3ϑ

>
3 (p2 − 2)2 L −2

n I (Ln ≤ p2 − 2)
}

+E
{
ϑ3ϑ

>
3 I (Ln ≤ p2 − 2)

}
−2E

{
ϑ3ϑ

>
3 (p2 − 2) L −1

n I (Ln ≤ p2 − 2)
}

+E
{
ϑ3ϑ

>
3 (p2 − 2)2 L −2

n I (Ln ≤ p2 − 2)
}

= Γ
(
β̂RS
1

)
− 2E

{
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
−E
{
ϑ3ϑ

>
3 (p2 − 2)2 L −2

n I (Ln ≤ p2 − 2)
}

+E
{
ϑ3ϑ

>
3 I (Ln ≤ p2 − 2)

}
.

Considering,

E
{
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
= E

{
E
(
ϑ3ϑ

>
1

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2) |ϑ3

)}
= E

{
ϑ3E

(
ϑ>1
{

1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2) |ϑ3

)}
= E

{
ϑ3 [−µ11.2 + (ϑ3 − δ)]>

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

}
= −µ11.2E

(
ϑ3
{

1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2)

)
+E
(
ϑ3ϑ

>
3

{
1− (p2 − 2) L −1

n

}
I (Ln ≤ p2 − 2)

)
−E
(
ϑ3δ

> {1− (p2 − 2) L −1
n

}
I (Ln ≤ p2 − 2)

)
= −δµ>11.2E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
ΦE

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
+δδ>E

({
1− (p2 − 2)χ−2p2+4

(∆)
}
I
(
χ2
p2+4

(∆) ≤ p2 − 2
))

−δδ>E
({

1− (p2 − 2)χ−2p2+2 (∆)
}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
,
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we have

Γ
(
β̂RPS
1

)
= Γ

(
β̂RS
1

)
+ 2δµ>11.2E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
−2ΦE

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ−2p2+2 (∆) ≤ p2 − 2

))
−2δδ>E

({
1− (p2 − 2)χ−2p2+4 (∆)

}
I
(
χ2
p2+4 (∆) ≤ p2 − 2

))
+2δδ>E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
− (p2 − 2)2 ΦE

(
χ−4p2+2,α (∆) I

(
χ2
p2+2,α (∆) ≤ p2 − 2

))
− (p2 − 2)2 δδ>E

(
χ−4p2+4 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
+ΦHp2+2 (p2 − 2; ∆) + δδ>Hp2+4 (p2 − 2; ∆)

= Γ
(
β̂RS
1

)
+ 2δµ>11.2E

({
1− (p2 − 2)χ−2p2+2 (∆)

}
I
(
χ2
p2+2 (∆) ≤ p2 − 2

))
+ (p2 − 2)σ2C−111 C12C

−1
22.1C21C

−1
11

×
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
− (p2 − 2) E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
−σ2C−111 C12C

−1
22.1C21C

−1
11 Hp2+2 (p2 − 2; ∆)

+δδ> [2Hp2+2 (p2 − 2; ∆)−Hp2+4 (p2 − 2; ∆)]

− (p2 − 2) δδ>
[
2E
(
χ−2p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))
−2E

(
χ−2p2+4 (∆) I

(
χ2
p2+4 (∆) ≤ p2 − 2

))
+ (p2 − 2) E

(
χ−4p2+2 (∆) I

(
χ2
p2+2 (∆) ≤ p2 − 2

))]
.

Now, the proof of Theorem 3.3 can be easily obtained by following the
definition of asymptotic risk.
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