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Abstract:

• The generalised extreme value (GEV) distribution is often fitted to environmental time
series of extreme values such as annual maxima and minima of temperatures. It is
often necessary to allow the distribution’s parameters to depend on time or other
covariates (non-stationary GEV). Increasingly, model fitting within the GAMLSS
framework is being used as an alternative approach. A case study is presented of
temperature extremes in a mountainous area of Greece divided into nine zones by
altitude. Model fitting supported non-stationary GEV models for temperature with
the location parameter depending linearly on year and zone, showing the expected
dependence on altitude along with an increasing trend in annual maxima and declin-
ing trend in annual minima. The scale parameter for maxima depended on zone, with
greater variability at higher altitudes. The scale parameter for minima increased over
time. Fitting non-stationary Inverse Gaussian, Lognormal and Gamma distributions
within the GAMLSS framework identified the same dependence on zone and year.
There was little difference in goodness of fit of the various distributions.
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1. INTRODUCTION

The study of extreme values in climatological time series is an area of intense

scientific activity. Examples of this type of data are series of annual or monthly

maxima of precipitation or temperature. This is the block maximum approach

to defining the extremes of time series; the alternative peaks-over-threshold ap-

proach will not be considered in this paper (Beirlant et al., [1]; Chavez-Demoulin

and Davison, [2]; Gomes and Guillou, [9]; Scarrott and Macdonald, [22]). An early

method of analysis that subsequently became well-established was to fit the Gen-

eralised Extreme Value distribution, assuming a series of independently and iden-

tically distributed values over time (Jenkinson, [11]). However, it has become

increasingly clear that many series do not possess this property of stationarity,

because of natural climate variability or anthropogenic climate change (Jain and

Lall, [10]; Milly et al., [18]; Serinaldi and Kilsby, [23]). Consequently, it becomes

necessary to move from stationary to non-stationary models.

Introducing non-stationarity within the framework of standard statistical

distributions requires extended models with covariate-dependent changes in one

or more of a distribution’s parameters (Coles, [4]). For example, a trend towards

higher temperatures could be represented by the time-dependence of the param-

eter that represents the distribution’s mean, or increased variability in a rainfall

series by time-dependence of the parameter that is associated with the distribu-

tion’s variance. Spatial trends and dependence on any other available covariates

can be represented in a similar way.

2. STATISTICAL MODELLING

2.1. Generalised extreme value (GEV) distribution

The GEV distribution is widely employed in the environmental sciences

and elsewhere for modelling extremes (Reiss and Thomas, [20]). It depends on

three parameters: location µ, scale σ and shape ξ. In the non-stationary GEV

distribution (El Adlouni et al., [7]; Leclerc and Ouarda, [14]), these parameters are

expressed as a function of time t and possibly other covariates (Coles, [4]). If, as is

usually done, we allow non-stationarity of the location and scale parameters but

not of the shape parameter, this non-stationary GEV(µ(t), σ(t), ξ) distribution

has distribution function

F
(

y; µ(t), σ(t), ξ
)

= exp

{

−

[

1 + ξ
y − µ(t)

σ(t)

]

−1/ξ
}

.(2.1)
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In the simplest case, the following regression structures could be considered for

the location and scale parameters

µ(t) = µ0 + µ1t + µ2 t2 + µ3 t3 ,
(2.2)

σ(t) = exp
(

σ0 + σ1t + σ2 t2 + σ3 t3
)

,

allowing up to cubic dependence on time t. We denote by GEVjk the model

with time dependence of order j in the location parameter and order k in the

scale parameter. A convenient tool for fitting either stationary or non-stationary

GEV distributions is the gev.fit function in the R package ‘ismev’ (available from

http://cran.r-project.org/package=ismev), which employs the maximum likeli-

hood method. Other relevant R packages are listed by Gomes and Guillou ([9]).

Bayesian and other estimation methods are discussed by, for example, Beirlant et

al. ([1]), Chavez-Demoulin and Davison ([2]), and Gomes and Guillou ([9]). The

estimation of the shape parameter ξ may sometimes cause difficulty, as observed

by Coles and Dixon ([5]) who proposed using a penalized likelihood function to

avoid this problem. Similarly, Martins and Stedinger ([17]) proposed restricting

the estimate of ξ to fall within the range [−0.5, +0.5] by using a suitable prior

distribution. However, we have not encountered any difficulty in the estimation

of ξ in the practical problems that we have investigated.

2.2. GAMLSS

Generalised additive models for location, scale and shape (GAMLSS; Rigby

and Stasinopoulos, [21]) represent a very wide class of non-stationary distribu-

tions. GAMLSS provide a highly flexible framework for modelling, because as

many as four parameters of a distribution chosen from an extensive family are

allowed to depend on covariates. The first applications of GAMLSS to meteoro-

logical data appear to have been by Villarini and colleagues, who examined the

fit of Gumbel, Weibull, Gamma, Lognormal and Logistic distributions to data

on rainfall and temperature in Rome (Villarini et al., [25]), and the first four of

these to flood peaks in the United States (Villarini et al., [26]). Further exam-

ples of its application are now quite common; recent examples include Lopez and

Frances ([15]), who fitted the Gumbel, Lognormal, Weibull, Gamma and Gener-

alized Gamma distributions, Garcia Galiano et al. ([8]) (fitting the Lognormal,

Weibull and Gamma distributions) and Machado et al. ([16]) (Lognormal, GEV

and two-component extreme value distributions).

The general format of the model for parameter θk is

gk(θk) = Xk βk +

Jk
∑

j=1

Zjk γjk ,(2.3)
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where gk is a link function, Xk is a design matrix containing the values of Jk

covariates for each of n independent observations, βk is a parameter vector of

length Jk, Zjk is another known design matrix of dimension n× qjk and γjk is a

qjk-dimensional random vector. In the absence of random effects, the first term on

the left-hand side of (2.3) gives a parametric linear model; in this case, the advan-

tages of GAMLSS over generalised linear models or generalised additive models

are its not being restricted to exponential family distributions and its ability to

model several parameters of the distribution, not just the mean. Furthermore,

Rigby and Stasinopoulos ([21]) and Stasinopoulos and Rigby ([24]) demonstrate

how the second term of (2.3) can be used to construct a wide variety of models,

although this generality will not be required in the present paper.

GAMLSS modelling is implemented in the R package ‘gamlss’ (http://cran.

r-project.org/package=gamlss; Stasinopoulos and Rigby, [24]), which makes it

easy to include features such as random effects or non-polynomial dependence

on covariates by means of splines. The method of fitting is penalized maximum

likelihood. A recent extension to ‘gamlss.spatial’ (http://cran.r-project.org/

package=gamlss.spatial) offers a facility for spatial modelling by including Markov

Random Field additive terms.

2.3. Model selection

When searching for the best fitting model among many alternatives, it is

important to have objective procedures for making the selection from the various

candidates. The likelihood ratio test can be used if the models are hierarchically

nested. The Akaike information criterion (AIC) and the Bayesian information

criterion (BIC) are also widely employed for model selection. If ℓ̂ is the maximized

value of the likelihood from a model that contains p parameters, and n is the

sample size, these criteria are defined as

AICC = −2 ℓ̂ + 2p +
2p(p + 1)

n− p− 1
(2.4)

(this is the corrected AIC — the third term is a small-sample adjustment) and

BIC = −2 ℓ̂ + p lnn .(2.5)

The preferred model minimizes the chosen criterion although alternative

models with values close to the minimum should not be ignored. More details of

model selection procedures can be found in Claeskens and Hjort ([3]), for example.

Panagoulia et al. ([19]) carried out a simulation study in order to evaluate

empirically the performance of the AICc and BIC in identifying the true model

among the set of models GEVjk (j = 0, 1, 2, 3; k = 0, 1, 2, 3), for samples of sizes

n = 20,50 or 100. Both criteria had high success rates in detecting non-stationarity.



222 Chrys Caroni and Dionysia Panagoulia

The BIC was the more successful in identifying the correct model: over 80% of the

time for n = 50 and over 90% for n = 100, although these percentages obviously

depend on the parameter values selected for the study. AICc was better for

n = 20, although this is a small sample in relation to the number of parameters

in some of these models and neither selection criterion performed very well.

2.4. Uncertainty

Apart from obtaining a description of the phenomenon, one of the major

objectives of fitting a distribution to climate data is to obtain estimates of its

quantiles, especially those related to the return periods of extreme events: for

example, the upper 1% point of the distribution of annual maxima corresponds

to a 1/.01 = 100-year return period. Good estimation of the uncertainty in ex-

treme levels can be as important as the estimate of the level itself (Coles, [4];

Khaliq et al., [12]). Parametric confidence intervals based on a normal distribu-

tion approximation cannot be expected to be accurate for extreme quantiles; that

is, their actual coverage probabilities will not be close to the nominal values. As a

result, confidence interval construction by bootstrap methods has been examined

for GEV models, first by Kysely ([13]) in the stationary case and subsequently

by Panagoulia et al. ([19]) in the non-stationary case. Amongst several methods

compared, the best was found to be the parametric bootstrap with confidence in-

tervals constructed by the bias corrected and accelerated (BCa) technique. Seri-

naldi and Kilsby ([23]) expressed a preference for percentile parametric bootstrap

confidence intervals, although this appears to be based on general considerations

rather than detailed studies. However, they warned that the estimation of ex-

treme quantiles is inherently so uncertain that the discrepancy between different

types of confidence intervals is not of major relevance.

Uncertainty in predictions also stems from model selection. The above con-

fidence intervals are based on the assumption that the correct model has been

selected and take no account of the alternatives that were considered. Model aver-

aging procedures exist and are used in many contexts to overcome this objection,

especially in the Bayesian framework, but will not be considered here.

3. CASE STUDY

3.1. Data

Our analysis concerns time series of meteorological data from one catchment

area in the mountains of Central Greece. Further description of this location can

be found in Panagoulia et al. ([19]), where analyses of annual maxima of rainfall
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over the whole catchment area are carried out for historical data and for data sim-

ulated under climate change scenaria. In the present paper, analyses are carried

out for annual maxima and minima of temperature over the period 1972–1992,

over the whole area and in nine zones corresponding to a partition of the area by

elevation.

3.2. GEV modelling

The series of minima can be analysed by GEV modelling after taking the

negative of its values and fitting the same models as to the series of maxima

(Chavez-Demoulin and Davison, [2]). The series of annual extremes for the entire

area do not appear to be stationary, as the GEV10 model offers significantly

improved fit over the GEV00 model (comparing minus twice the change in log-

likelihood to the chi-squared distribution with one degree of freedom, p = 0.05

for maximum temperatures, p = 0.01 for minima). The smooth curves fitted to

the annual minima in Figure 1 and annual maxima in Figure 2 demonstrate a

decreasing and an increasing trend, respectively. The suggestion in Figure 1 of

greater variance of the minima in the later years is not borne out by statistical
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Figure 1: Annual minimum temperatures in ◦C over the whole study area,
with trend fitted by locally weighted scatterplot smoothing.

tests for a linear trend in the scale parameter (p = 0.40 for GEV11 versus GEV10 ;

p = 0.91 for the corresponding test for the maxima). In contrast to the results

of the analysis of rainfall data in Panagoulia et al. ([19]), the GEV model for
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temperatures did not reduce to the Gumbel (ξ = 0) as the former had much

better fit than the latter (AIC 96.8 compared to 102.1).
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Figure 2: Annual maximum temperatures in ◦C over the whole study area,
with trend fitted by locally weighted scatterplot smoothing.

Parameter estimates obtained from fitting the stationary GEV00 model to

the data from each zone separately are shown in Table 1. There appear to be

trends with zone, that is, with altitude. In particular, as would be expected,

Table 1: Fitting stationary GEV to annual maximum and minimum temperatures
in each zone separately: estimates of location µ, scale σ and shape ξ.

Maxima Minima
Zone

µ σ ξ µ σ ξ

1 25.2 2.05 −0.23 2.16 1.96 −0.310
2 24.4 2.05 −0.19 2.63 1.91 −0.230
3 23.9 2.08 −0.18 3.15 1.78 −0.080
4 23.5 2.12 −0.17 3.97 1.58 0.080
5 23.0 2.22 −0.17 5.07 1.43 0.210
6 22.8 2.49 −0.19 6.24 1.56 0.170
7 22.5 2.73 −0.11 7.70 1.85 0.090
8 22.3 2.85 −0.02 8.76 2.05 0.040
9 22.0 3.06 0.06 10.24 2.28 0.002

Standard
0.53 0.35 0.11 0.46 0.34 0.18

error:

median
(0.48–0.75) (0.32–0.56) (0.10–0.16) (0.36–0.57) (0.29–0.41) (0.17–0.20)

(range)
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the location parameter appears to decline as the altitude increases from Zone 1

to Zone 9 for the maxima and also — apparently to a much greater degree —

for minus the minima. Furthermore, the relationship with zone is very close to

linear. Also, fitting the GEV10 model separately in each zone (results not shown)

suggests time dependence of the scale in many zones, as was noted above in the

analysis of the entire area. The next step was to fit models to the annual maxima

and minima by year and zone, allowing various forms of dependence on both of

these covariates.

The best fitting model for annual maxima, selected using likelihood ratio

tests and the AICc and BIC criteria, included linear dependence of µ on zone

and year, and log-linear dependence of σ on zone. The shape parameter ξ did

not depend on either covariate, despite the indication of a trend in Table 1 which

may have been due to correlations between the estimates of the three parameters.

The fitted model was:

µ̂ = 25.00 − 0.285Zone + 0.118 (Year − 1982) ,

(0.36) (0.073) (0.030)

ln σ̂ = 0.554 + 0.068Zone ,

(0.109) (0.021)

ξ̂ = −0.142

(0.045) .

(Standard errors are shown in parentheses below the parameter estimates to which

they refer.) We note that the estimate of ξ is clearly significantly different from

zero, meaning that the Gumbel distribution is not suitable here. This is different

from the finding for rainfall over the same catchment area in Panagoulia et al.

([19]), although that analysis was for the total area not broken down by zone.

The corresponding analysis for (minus) the annual minima, produced a slightly

different model, with σ depending on year instead of zone. The fitted model was:

µ̂ = 0.438 + 1.043Zone + 0.121 (Year − 1982) ,

(0.314) (0.060) (0.024)

ln σ̂ = 0.579 + 0.026 (Year − 1982) ,

(0.063) (0.011)

ξ̂ = 0.004

(0.063) .

In this case, the estimate of ξ is clearly not significantly different from zero,

implying that the Gumbel distribution could be employed. Comparing the two

sets of equations, it is noticeable that annual maxima are increasing and annual

minima are decreasing, meaning that the temperature range is increasing. In fact,
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the coefficients representing the time dependence of the location µ are almost

equal: annual maxima are increasing at the same rate as annual minima are

decreasing. However, the coefficient of the dependence of µ on altitude is much

bigger for minima than for maxima. This gives an expected result, that minimum

temperatures fall more steeply than maximum temperatures with altitude. The

results for scale show increasing variability of minima with time — which is what

Figure 1 indicated, but did not emerge from the analysis for the entire area

aggregated across zones. The variability of maxima increases at higher altitude

but is not changing with time.

3.3. GAMLSS modelling

There is no theory to guide the choice of which distribution to fit from

among the many available in GAMLSS. We carried out the modelling using the

Inverse Gaussian, Gamma and Lognormal distributions, allowing non-stationarity

in the form of polynomial dependence of the parameters on year and zone just

as we did for the GEV distribution. The preferred models coincided with those

chosen for the GEV. We found that the fits of these non-stationary distribu-

tions were almost identical. For maxima, AIC values were 911.2 for the Inverse

Gaussian distribution, 910.6 for the Lognormal and 912.0 for the Gamma distri-

bution. Graphs demonstrating goodness-of-fit are not presented because the lines

showing each distribution are virtually indistinguishable. Furthermore, estimated

percentiles were very close.

Close similarity of fits between different models is probably a usual feature

of modelling data of this kind. For example, Villarini et al. ([26]) analysed annual

flood peaks from many stations using GAMLSS and found (see their Table 7) that

the Lognormal distribution provided the best fit in 16 sets of data, the Gamma

in seven, the Gumbel in 5 and the Weibull in one. In the absence of theory to

guide the choice, the preference for one or the other may well just be a matter of

sampling variability.

4. CONCLUSION AND COMMENTS

When the underlying distribution is stationary, the choice of the GEV dis-

tribution for modelling extremes is well supported on theoretical grounds, pre-

cisely because it is an extreme value distribution. That is, it is a form that

necessarily arises in the limit to describe the distribution of the maxima of a se-

ries of independent and identically distributed random variables (Cox et al., [6];

Gomes and Guillou, [9]). In the non-stationary case, however, the original se-
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quence does not consist of identically distributed variables. We are not aware

that any limiting form necessarily arises in this case. This suggests that there

is no compelling reason to use the non-stationary GEV in preference to many

other distributions that are available. The choice of distribution then becomes

entirely empirical. This is the approach that seems to have been taken in the

various papers that have appeared in the literature so far on the application

of GAMLSS to meteorological and related data. These papers tend to demon-

strate the possibilities that this flexible approach to modelling offers but not to

go on to draw conclusions about which models are the most appropriate on gen-

eral grounds. Searching through alternative distributions — which the GAMLSS

framework tends to encourage — also adds an extra layer of uncertainty to the

model selection procedure which ought to be accounted for in predictions.
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