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Abstract:

• Fractal hypothesis is both challenging and technical issue of mammary cancer. We
conduct a simple discrimination on the basis of box-counting dimension. Moreover, we
discuss on statistical distributions of fractal dimensions for both mammary cancer and
mastopathy. Thereby, we detect significant differences in the underlying distribution
between the two groups. A multifractal analysis on the basis of a wavelet based
approach has been conducted. Discussion on alternative cancer therapy and cancer
prevention is provided.
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1. INTRODUCTION

When we consider fractal based cancer diagnostic, many times a statistical

procedure to assess the fractal dimension is needed. We shall look for some ana-

lytical tools to discriminate between cancer and healthy ranges of fractal dimen-

sions of tissues (see [3, 19]). Fractal dimension may also help for early diagnosis of

breast cancer, which is the key for breast cancer survival. Breast cancer, hereafter

described as mammary cancer, is the most common cancer in women. The alge-

braic and topologic properties of cancer growth are available via appropriate set

structure, e.g. bornology (see [20, 21]) or topology (see [28]). Here we illustrate

some issues on discrimination between mammary cancer (mamca) and masto-

pathic (masto) tissues, which is follow-up of study of [13]. The data contains 391

histological images of mammary (n = 192) and mastopathic (n = 199) tissue,

which were used to compute the box-counting dimension by means of ImageJ

software [1]. We refer to [12] or [13] for more details how the fractal dimension

was obtained. A modelling procedure for mammary cancer and mastopathy on

the basis of randomized fractals has been introduced in [12], showing that this

flexible model can reconstruct the development of the tissue of both, cancer and

mastopathy. This approach allows to measure the fractal dimension with the aid

of box-counting dimension, in order to observe the development of the tissue over

time as well as to discriminate between these two groups.

Mammogram or sonogram examinations have been used as a first step in

cases of breast cancer suspicion. Since biopsy, which is an invasive surgical oper-

ation imposing psychological and physiological stress for patients, has to be used

to confirm the disease to date, other diagnostic tools with accurate diagnostic

rates are of interest to be developed. Recently, computer aided diagnosis systems

(CAD) are frequently investigated by researchers, see [4] among others, however,

we discriminate between mastopathy and cancer on the basis of statistical differ-

ences (e.g. in terms of underlying distributions) in the fractal dimension of the

two groups.

2. SIMPLE DISCRIMINATION BETWEEN MASTOPATHY AND

MAMMARY CANCER BASED ON THE BOX-COUNTING

DIMENSION

We consider boxplots in Figure 1 in order to have a graphical comparison

between the two groups. Therein, the box-counting dimensions seem to be on

average lower for mammary cancer tissue in addition that some candidates for

outliers are apparent in the lower boundaries.
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Figure 1: Boxplot of the groups mastopathy (left) and mammary cancer (right).

If we will follow the simple concept that higher dimension is more risky,

the issue is that we will arrive with this dataset to some sort of contradiction.

When we make a simple clustering based on ordering the box-counting dimen-

sion and decide to tell that more risky tissue has a box-counting dimension bigger

than the median (1.5972) and non-risky tissue is below, then we only classified

135 of mamca and 60 of masto below. Recall that 199 observations contain the

characteristic mastopathy and 192 observations mammary cancer. Even using

the arithmetic mean of 1.587391 decreases the number of classified tissues to 128

for mamca and 56 for masto. Based on this simple example we can conclude

that we need a more sophisticated procedure based on the box-counting dimen-

sion to discriminate between the two groups and we should take more detailed

characteristics of the tissue into account. In extremal case there is no possibility

to develop automatic clustering based on box-counting dimension, which could

avoid histological expert examination.

Figure 2 indicates that using the only single box-counting dimension estab-

lishes inverse problems, which are ill posed. Loosely saying we need a continuous

dimension spectrum, e.g. multi-fractal dimension spectra. It has already been

used in breast cancer discrimination by [6, 10, 22]. A multifractal system is a

generalization of a fractal system in which a single exponent (the fractal dimen-

sion) is not enough to describe its dynamics; instead, a continuous spectrum of

exponents (the so-called singularity spectrum) is needed. This also relates to

Tweedie exponential dispersion models, which, as a special case, contain both

normal and gamma distributions. This is further justification for these two sim-

ple distributional families: in the case of our empirical data we have found a

strong deviation from normality for mastopathy, and therefore we used gamma

G(α, β) and Weibull W (k, λ) distribution. In contrast to that mammary cancer

data is also tested for normal distribution in the following.
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The distribution of the ordered observations of the different groups is high-

lighted in Figure 2. Apparently, mammary cancer tissue have on average lower

dimensions (dashed line) compared to mastopathological tissue (solid line). These

conclusions were already recognizable due to the comparison of the mean as well

as the interquartile-distance within the boxplots.
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Figure 2: Plot of the dimensions discriminated between the groups
mastopathy and mammary cancer.

3. TESTING FOR DISTRIBUTIONS OF THE GROUPS

Separating the data and testing for distributional fit of the groups may

lead to further information on group discrimination. Therefore, maximum likeli-

hood procedures have been conducted in order to estimate fitting parameters for

gamma and Weibull distribution for fractal dimension of the mastopathy. Esti-

mation for gamma distribution yields a shape equal to 162.58 and scale equal to

98.85, which results in a p-value of 0.15 by usage of Kolmogorov–Smirnov-test

(KS-test). For Weibull distribution the two distribution forming parameters were

estimated as 16.20 and 1.70. Testing with those parameters gives a p-value of 0.96.

Fitting the distributions with estimated parameters in addition to the histogram

is plotted on the left part of Figure 3. A better fit of the mammary cancer data

with normal distribution has been seen in previous calculations. ML-estimations

are computed in order to continue the testing procedure with gamma (α̂ = 129.50

and β̂ = 84.76 results in p = 0.43) and Weibull (k̂ = 13.23 and λ̂ = 1.59 gives

p = 0.20) distributions. In addition to that mean (1.53) and variance (0.017)

are computed to fit normal distribution (p = 0.66). These p-values show that
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gamma, Weibull, and normal distribution may not be rejected to fit mammary

cancer box-counting dimensions. The right plot of Figure 3 shows the fit for the

fractal dimension of mammary cancer data with the parameter estimates given

above. Therein, gamma distribution is presented as solid line, Weibull distribu-

tion as dotted line and normal distribution is visualized with a dash-dotted line.
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Figure 3: Fit of mastopathy (left) and mammary cancer (right) groups separately.

Table 1 provides the shape and scale parameters for both gamma and Weibull

for the complete data as well as both groups separately. Note that parameters

for normal distribution are not provided due to lack of comparability, since only

for mammary cancer data this distribution was not rejected.

Table 1: Computation of p-values for gamma and Weibull distribution
with shape and scale parameter for both, complete data and
separated by groups mastopathy and mammary cancer.

Distribution Group shape scale p-value

Gamma

All 120.84 76.12 0.22

Masto 162.58 98.85 0.15

Mamca 129.50 84.76 0.43

Weibull

All 13.25 1.65 0.39

Masto 16.20 1.7 0.96

Mamca 13.23 1.59 0.20

Note that for the total data we received estimator of shape estimator 120.84

and a scale estimator of 76.12 for gamma distribution. KS-test of this set of pa-

rameters results in 0.22. Moreover, ML estimation for Weibull distribution gives

the estimators 13.25 and 1.65 with a corresponding p-value of 0.39. Therefore,
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one can see that discriminating between the groups yields differences in terms

of underlying distribution parameters. Adjusting the data for outliers results in

negligible differences in the estimates.

In the following we will apply that the sum of squared independent standard

normal distributed random variables follows Chi-Squared distribution. We will

assume:

• The differences between the curves are standard normal distributed.

Therefore, Shapiro–Wilk-test can be used. On the given dataset it re-

sults in a rejection of the null-hypothesis of standard normal distribu-

tion. Hence, there is another possibility to justify the condition in order

that usage of Chi-Squared distribution is allowed.

• The squared differences are Chi-Square distributed with one degree of

freedom.

Computing the sum of the squared differences delivers a value equal to

5.38. A Chi-Square-test was accomplished to test whether we can distinguish

between two groups within the data. The p-value of the distribution function of

the Chi-Squared distribution with 199 degrees of freedom is approximately one.

This p-value is another proof that the two groups are different. Furthermore, we

made a standardization (by subtracting the mean and dividing by the standard

error) of the previously calculated differences. The distribution function at the

sum of standardized squared differences of 198 and 199 degrees of freedom is

0.49331. Hence, this p-value does not yield enough support to reject the null

hypothesis of differences between the groups. However, the property of the data

(only positive values) as well as high flexibility of gamma distribution leads us to

hypothesis for gamma distribution. We simulated in order to maximize p-values

with changes in shape and scale parameters of gamma distribution. By reducing

the shape parameter and in contrast to that increasing the rate (reducing the

scale parameter), Table 2 shows a convergence to higher p-values.

Table 2: Simulation of p-values with given shape and scale parameter.

shape scale p-value

0.45491680
1

0.45729929
8.354 ·10

−5

0.48
1

0.4573
3.7 ·10

−12

0.44
1

0.4673
1.65 ·10

−11

0.425
1

0.48
1 ·10

−9

0.42
1

0.48
0.0049

0.425
1

0.48
0.0449

0.43
1

0.48
0.0097

0.42
1

0.485
0.1272

0.415
1

0.485
0.0996
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We can see with the aid of KS-test that we will find a rather good fit for

specific values of the parameters. Thereby, the shape parameter of 0.415 and a

scale parameter of 1/0.485 delivered an accurate p-value of 0.0996. The test with

a shape parameter of 0.42 delivered an even better p-value of 0.1272. Therefore,

it can be assumed that the standardized differences are gamma distributed with a

shape parameter lying in between the range [0.415, 0.42] and the scale parameter

close to 2.06 ( 1
0.485). Therefore, we compare the standardized differences with

generated random variables of a gamma distribution, with a shape parameter of

0.415 and a scale parameter of 2.062 in Figure 4.
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Figure 4: Comparison of standardized differences with
random variables of a gamma distribution.

Shapiro–Wilk tests deliver a p-value for mammary cancer tissue of 0.0452

and a value smaller than 0.001 was obtained for mastopathic tissue. Hence, for

a significance level of 95% both p-values are too small to state that the box-

counting dimension of mammary cancer tissue or mathopathic tissue is normal

distributed. QQ-Plots in Figure 5 are another indication, that mastopathy is not

normal distributed, but normal distribution of the dimensions of mammary cancer

should not be rejected without further analysis. Indeed, the lower quantiles differ

significantly from the comparative line in the range of −3 to about −1.5 of the

theoretical quantiles. Therefore, outlier detection for mammary cancer data with

usage of box-plot rule has been performed. These computations are performed

with q0.25 − 1.5 · IQR and q0.75 + 1.5 · IQR, where IQR is the interquantile range

as q0.75−q0.25 and qα is the α-quantile. Four candidates for outliers from the lower

end of the data were obtained and removed in order to yield useful information

on the distributional behavior of mammary cancer tissue. The according p-value

has significantly increased up to 0.5716 and therefore, it can be assumed that

the modified data is normal distributed. Another indication for normality of
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this group are histogram and QQ-Plot of the modified data in the second row of

Figure 5. Both of the plots suggest that the modified box counting dimension of

mammary cancer tissue is normal distributed.
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Figure 5: Top row: QQ-Plot of the groups mastopathy (left) and mam-
mary cancer (right). Bottom row: Histogram and QQ-Plot
of mammary cancer data without outliers (n = 188).

Robust normality testing procedures have been applied to both groups.

Therefore, data has been truncated in the lower boundaries, such that only tissue

higher than threshold ε has been taken into account. Shapiro–Wilk tests have

been used to compute p-values for the fit of normal distribution. The develop-

ment of p-values can be found in Figure 6, where especially modified box-counting
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dimensions of mammary cancer tissue can be seen as normally distributed in con-

trast to mastopathic tissue box-counting dimensions. This test approach unfolds

the different behaviour of the box-counting dimension with respect to normality.
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Figure 6: Test for normal distribution with truncated data for both groups.

Therefore, truncation of the data from the lower boundaries reveals mammary

cancer box-counting dimension is more robust with respect to normality than

mastopathic tissue.

4. MULTIFRACTAL ANALYSIS OF MAMMOGRAPHY:

A WAVELET BASED APPROACH

Multifractal analysis is concerned with describing the local singular behav-

ior of measures or functions in a Geometrical and Statistical fashion. It was first

introduced by Mandelbrot in the context of turbulence (see [17, 18]) even if the

term “multifractal”, was successively proposed by [9].

Multifractal structures have been found in various contexts. Most promi-

nently in studies of turbulence, stock market exchange rates, geophysics and

recently also in traffic, introducing fruitful and novel aspects to the mentioned

fields. The basic concept of multifractal analysis is to assess fractal dimensions

of self-similar structures with varying regularities and to produce the distribu-

tion of indices of regularity, which constitutes the multifractal spectrum (MFS).

The multifractal formalism relates the MFS to the partition function measur-

ing high-order dependencies in the data. In the following we will describe the

wavelet-based multifractal spectrum (WMFS) proposed by [11, 23, 24] and we

will apply it to a sample of mammographic images. The advantages of using the

wavelet-based MFS are availability of fast algorithms for wavelet transform, the
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locality of wavelet representations in both time and scale, and intrinsic dyadic

self-similarity of basis functions. The multifractal formalism is based on the con-

cepts of the partition function which can be defined in terms of wavelet coefficients

as

(4.1) T (q) = lim
j→−∞

log2 E |dj,k|
q ,

where dj,k is the wavelet coefficient at level j and location k, and q is the order of

moments. We emphasize that q is a real number within a certain range covering

the negative numbers as well [11]. Even though (4.1) is very informative, the sin-

gularity measure is not explicit. It was proposed in [11] that the local singularity

strength could be measured in terms of wavelet coefficients as:

(4.2) α(t) = lim
k2j→t

1

j
log2 |dj,k| ,

where dj,k is the normalized wavelet coefficient at scale j and location k. The

local singularity strength measure (4.2) converges to the local Hölder index of

the process at time t. Small values of α(t) reflect more irregular behavior at

time t. Any inhomogeneous process has a collection of local singularity strength

measures and their distribution f(α) forms the MFS. A useful tool to estimate

the MFS is through the Legendre as follows

(4.3) fL(α) = inf
q

{
qα − T (q)

}
.

It can be shown that fL(α) converges to the true MFS by using the theory of

large deviations [8]. If we rearrange (4.1), it becomes

(4.4) E |dj,k|
q ∼ 2jT (q) as j → −∞ .

A standard linear regression can be used to estimate the partition function

T (q) since the values E|dj,k|
q could be easily obtained by the moment-matching

method.

Let Ŝj(q) = 1
2j

∑N2−j

k=1 |dj,k|
q be the empirical qth moment of the wavelet

coefficients (N is the length of the time series). By applying the Central Limit

Theorem, Ŝj(q) → E|dj,k|
q as N →∞. Then, using the scaling property of the

wavelet coefficients given by dj,k = 2jHd0,k, we have that Ŝj(q) is asymptotically

normal with mean 2jT (q)E |d0,0|
q and variance σ2

j,q =
22jT (q) Var |d0,0|q

2−jN
(see, [11]).

Considering the logarithm transformation of Ŝj(q) we can write

(4.5) log2 Ŝj(q) = j T (q) + εj ,

where the error term εj is introduced from the moment matching method when

replacing the true moments with the empirical ones. Using approximation the-

orems (see, [26]) one can prove that the log2 Ŝj(q) is asymptotical normal with
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mean and variance described by [11]. The ordinary least square (OLS) estimator

gives the estimation of the partition function,

(4.6) T̂ (q) :=

j2∑

j=j1

aj log2 Ŝj(q) ,

where the regression weights aj must verify the two conditions
∑

j aj = 0 and∑
j j aj = 1 (see [2] and [5]). Thus, we can estimate f(α) through a local slope

of T̂ (q) at values

α̂(ql) =
[
T̂ (ql+1) − T̂ (ql)

]
/q0 , ql = lq0 ,

as

f̂
(
α(ql)

)
= ql α(ql) − T̂ (ql) .

Multifractal spectra can even be found for monofractal processes, where

the spectra generated from such processes are ramp-like with a dominant (modal)

irregularity corresponding to the theoretical Hurst exponent (see [23]). The MFS

can be easily generalized to higher dimensions (see [6, 22]).

4.1. Multifractal descriptors

The multifractal spectrum can be approximately described by three canon-

ical descriptors, which are:

(1) Spectral Mode (Hurst exponent, SM);

(2) left slope (LS) or left tangent (LT );

(3) width spread (Broadness, B) or right slope (LS) or right tangent (RT ).

A typical multifractal spectrum can be quantitatively described as shown in Fig-

ure 7. In particular, SM represents the apex of spectrum or most common Hölder

regularity index α found within the signal, and LS (or LT ) represents the slope

of the distribution produced by the collection of Hölder regularity index α with

smaller values of the mode (SM). However, broadness (B) is a more intricate

descriptor of the multifractal spectrum. Broadness (B) is believed to be more

meaningful than right slope (RS) or right tangent (RT ), because it is a com-

pound measure representing the overall nature of the multifractal spectra, taking

into account the overall variability among the Hölder regularity index α. In ad-

dition, broadness (B) partially accounts for right slope (RS) or right tangent

(RT ) in calculation, as the resulting value of B is based on the relative values

of RS and LS. Both slopes (or both tangents) can be easily obtained using the

interpolation technique, while it is not straightforward to define the broadness

(B) automatically. There are many ways to define the broadness (B). In this

work, we select the method proposed by [27]. The overall multifractal descriptors

are also graphically presented in Figure 7.



Fractal Based Cancer Modelling 151

Figure 7: Illustration of geometric descriptors of multifractal spectra.
Note that the horizontal axis represents values of Hölder regu-
larity index α(q), while the vertical axis represents values pro-
portional to the relative frequency of these indices, f(α(q)).

4.2. Application to mammographic tissue images

In this section, we apply the wavelet-based multifractal spectra to two

digital mammogram images (shown in Figure 8) of size 512 × 512 representing

mastopathic and cancerous tissues. We refer to the paper of [12] for a detailed

description of the images.
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Figure 8: (a) Mastopathic tissue;
(b) Mammary cancer (invasive ductal mammary carcinoma).
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First, we perform the 2D discrete complex wavelet transform for each image

of size 512× 512 by using complex Daubechies 6-tap filter (see [12, 15]), then we

evaluate the wavelet multifractal spectra by extending (4.1) and (4.3) to 2D.

Figure 9 compares the multifractal spectrum of the mastopathic tissue with the

cancerous mammogram image. Although they seem to have a similar behavior it

is evident that the Hurst exponents representing the local regularity are different

for the two images.

Figure 9: Wavelet multifractal spectrum for the mastopathic tissue (solid
line) and cancerous tissue (dashed line). The filled dot and the
asterisk on the horizontal axis represent the spectral mode for
the mastopathic and cancerous tissue, respectively.

The different fractality is also confirmed by the calculation of the multi-

fractal descriptors shown in Table 3. The mastopathic tissue seems to be more

regular than the cancerous one (the regularity is represented by the SM or Hurst

exponent) and the range (or broadness) of the local Hölder index is larger than

for the cancerous tissue.

Table 3: Wavelet multifractal descriptors.

Tissue H L1 L2 R1 R2 B

masto 0.26 2.2 −1.2 0.89 −0.70 0.51

mamca 0.13 2.8 −1.2 1.15 −0.76 0.43

Hence, we conclude that the multifractal spectrum and its descriptors could

be used in classification algorithms for discriminating between mastopathic and

cancerous tissue. This could provide an automatic tool to support medical deci-

sions.
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5. DISCUSSION AND CONCLUSION

Due to its prevalence and mortality a cancer diagnosis is one of the main

fears of the general public. Certainly due to modern diagnostic tools as well as

improvements in therapy, cancer can be seen as a chronic disease, where some

of the patients will be living for several years after diagnosis. Earlier studies

have proven that a positive attitude will lead to a significant increase in life

expectancy of cancer patients. The risk of suicide or a burn-out is rapidly in-

creasing within the first weeks after cancer diagnosis due to the very stressful

first period. Utilizing psycho-oncologic care gives assistance in these situations.

However, this option is quite unknown to most patients such that only 1% uses

this support [25]. All these facts support the necessity to find quick, semi or full-

automated methods for tissue discrimination. The discrimination between the

groups in terms of distributional fit allows the interpretation that more abnor-

mal tissue follows normal distribution. Moreover, it has been shown that gamma

as well as Weibull distributions are proper distributions for fitting mammary as

well as mastopathic box-counting dimensions. Combining several instruments

for cancer testing is of major importance, because e.g. deciding for mammary

cancer or mastopathy just on the basis of box-counting dimension may lead to

many miss-specifications. Medical staff can be supported in the decision process

by these fractal measures, nevertheless, other supporting tools as shape analysis

of the cancer (see [14] among others) or alternative cancer therapies in cases of

high risks for cancer (see [25]) are desired to have the highest possible medical

attendance for patients. Additionally the impact of environmental factors on

developing cancer or as preventive strategy have to be taken into account.

Criticism on the use of screening mammography due to over-diagnosis led

some researchers to show that one in three breast cancers identified by mammog-

raphy would not cause symptoms in a patient’s lifetime (see [16]). Therefore, al-

ternative and accurate screening technologies must be developed. The functional

and technical background of dynamic infrared (IR) imaging has the potential

for early detection of breast cancer and treatment response evaluation if opti-

mal diagnostic algorithms are developed. We have shown that the wavelet-based

multifractal analysis of dynamic IR thermograms is able to discriminate between

cancerous breasts with monofractal (cumulative) temperature temporal fluctua-

tions characterized by a unique singularity exponent (h = c1), and healthy breasts

with multifractal temperature fluctuations requiring a wide range of singularity

exponents as quantified by the intermittency coefficient c2 ≫ 0.
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[11] Gonçalves, P.; Riedi, H. and Baraniuk, R. (1998). Simple statistical analy-

sis of wavelet-based multifractal spectrum estimation. In “Proceedings 32nd Asilo-
mar Conference on Signals, Systems and Computers”, Pacific Grove, CA, Nov.
1998.



Fractal Based Cancer Modelling 155
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K.; Nicolis, O.; Wartner, F. and Stehĺık, M. (2015). Fractal and stochas-
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