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Abstract:

• In the least squares analysis, an appropriate criterion to detect potentially influen-
tial observations, either individually or jointly, deals with the values of corresponding
Hat matrix elements. Hence, some conditions for which these elements give the ex-
treme values are interesting in the model sensitivity analysis. In this article, we find
a new and sharper lower bound for off-diagonal elements of the Hat matrix in the
intercept model, which is shorter than those for the no-intercept model. We give
necessary and sufficient conditions on the space of design matrix, under which the
corresponding Hat matrix elements get desired extreme values.
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1. INTRODUCTION

In the least squares approach, any sensitivity analysis is essentially re-

lated to how points are observed, so reflected on the elements of the Hat matrix.

As the most widely used concepts in regression diagnostics, influential observa-

tions and outliers are identified by the size of these quantities. Consider the

general linear regression model

(1.1) yi = x′
i β + εi , (i = 1, 2, ..., n) ,

where yi is the i-th observed response, xi is a p×1 deterministic vector, β ∈ Rp

is an unknown p×1 vector of parameters, and the εi’s are uncorrelated errors

with mean zero and variance σ2. Writing y = (y1, ..., yn)′, ε = (ε1, ..., εn)′, and

X = (x1, ...,xn)′, model (1.1) can be written as:

(1.2) y = Xβ + ε .

The matrix X is called design matrix, which contains the column one in the

intercept model. We assume throughout that X is full-rank matrix, so X′X is

nonsingular. In this case the ordinary least squares estimator of β is

(1.3) β̂ = (X′X)−1X′y .

The n×1 vector of ordinary predicted values of the response variable is ŷ = Hy,

where the n×n prediction or Hat matrix, H, is given by

(1.4) H = X(X′X)−1X′ .

The residual vector is given by e = (In−H)y with the variance-covariance matrix

V = (In −H)σ2, where In is the identity matrix of order n. The matrix H plays

an important role in the linear regression analysis. Let hij indicate the (i, j)-th

element of H. Hence,

(1.5) hij = x′
i(X

′X)−1xj , (i, j = 1, 2, ..., n) .

The diagonal element hii is so-called the leverage of the i-th data point and

measures how far the observation xi is from the rest of points in the X-space.

Any point with large values of hii tends to be an influential observation. Such

a point is called high-leverage. Cook and Weisberg (1982, p. 13) point to the

following conditions, to hii be large:

• x′
ixi is large relative to the square of the norm x′

jxj of the vectors xj ;

i.e. xi is far removed from the bulk of other points in the data set, or

• x′
ixi is substantially in the direction of an eigenvector corresponding to

a small eigenvalue of X′X.

The various criteria are suggested for the size of hii to xi being high-leverage

(see Chatterjee and Hadi, 1988, p. 100–101).
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On the other hand, off-diagonal elements of the Hat matrix may be re-

garded as another criterion in the regression analysis. Ignoring the constant σ2,

these elements are covariances of any pair of the estimated residuals, so can be

useful to check the independency assumption. From theoretical point of view,

there may exist situations in which observations are jointly but not individually

influential (Chatterjee and Hadi, 1988, p. 185). Huber (1975) mentions that large

values of hij typically correspond to outlying design points. Hadi (1990) proposed

two graphical displays of the elements of H, that are useful in the detection of

potentially influential subsets of observations.

In this paper we discuss the necessary and sufficient conditions for the de-

sign matrix to have some extreme values of Hat matrix elements, in the intercept

and no-intercept linear regression models. We obtain a sharper lower bound for

off-diagonal elements of the Hat matrix in the with intercept linear model, which

is shorter than those for no-intercept model by 1/n.

Repeated application of the following first lemma is made. Part (a) of this

lemma is due to Chipman (1964).

Lemma 1.1. Let A be a matrix of n×p with rank p − m1, (m1 > 0).

(a) If B, of order m1×p and full row rank, has it’s rows LIN (linearly

independent) of those of A, then

A(A′A + B′B)−1B′ = 0n×m1
and B(A′A + B′B)−1B′ = Im1

.

(b) If R, of order m2×p; (m2 ≤ m1) and rank 1, has the first row r′ of the

form R = δr′, where δ = (1, δ2, ..., δm2
)′, and r be LIN of rows of A,

then

R(A′A + R′R)−1R′ =
δδ′

‖δ‖2
.

Lemma 1.2. Let A and B be n×p matrices. Then, rank(A − B) =

rank(A)− rank(B), if and only if AA−B = BAA− = BA−B = B, where A− is

a generalized inverse of A satisfying AA−A = A (see Seber, 2007).

Throughout this paper we use the notation (i) written as a subscript to

a quantity to indicate the omission of the i-th observation. For example, X(i)

and X(ij) are matrix X with the i-th row and (i, j)-th rows omitted, respectively.

The vector x̄ denotes the mean of X’s rows and Jp is a p×p matrix of ones.
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2. BOUNDSFORDIAGONALELEMENTSOFTHEHATMATRIX

This section is allotted to determine the lower and upper bounds of hii,

along with necessary and sufficient conditions for observation matrix X to take

those values. These conditions are fundamentally on the basis of some special

forms of xi and X(i). We consider two customary full rank linear regression

models; without and with intercept.

Lemma 2.1. Let Xn×k be full column rank matrix without column one.

Then,

(i) 0 ≤ hii ≤ 1.

(ii) hii=0, if and only if xi = 0.

(iii) hii=1, if and only if rank(X(i)) = k − 1.

Proof: Part (i) is immediately proved since H and In − H are positive

semi-definite (p.s.d.) matrices. Similarly part (ii) is obtained since (X′X)−1 is a

p.d. matrix. To verify part (iii), without loss of generality, suppose that xi is the

last row of X, i.e. X′ =
[

X′
(i) xi

]

. If hii=1, then

(2.1) H =

[

X(i)(X
′X)−1X′

(i) 0(n−1)×1

01×(n−1) 1

]

.

Since H is an idempotent matrix, X(i)(X
′X)−1X′

(i) is also idempotent. Hence,

rank(X(i)) = rank
(

X(i)(X
′X)−1X′

(i)

)

= trace
(

X(i)(X
′X)−1X′

(i)

)

= k − 1 .

Conversely, let rank(X(i)) = k − 1. Since, rank
[

X′
(i) xi

]

= rank(X′) = k, it fol-

lows that xi is LIN from the rows of X′
(i). Using part (a) of Lemma 1.1,

x′
i

(

X′
(i)X(i) + xix

′
i

)−1
xi(= hii) = 1 ,

and proof is completed.

Lemma 2.2. If the full column rank matrix Xn×(k+1) contains column

one, then

(i) 1
n
≤ hii ≤ 1.

(ii) hii = 1
n
, if and only if xi = x̄.

(iii) hii=1, if and only if rank(X(i)) = k.

Proof: In this case H− 1
n
Jn and In −H are both p.s.d. matrices, so part

(i) holds. To verify part (ii) note that in the with intercept model, we have:

(2.2) (X′X)−1 x̄ =
1

n

[

1
0k×1

]

.
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The sufficient condition is established by noting that

(2.3) x′
i (X

′X)−1 x̄ = x̄′(X′X)−1 x̄ =
1

n
.

Conversely, if hii = 1/n, we have:

(xi − x̄)′ (X′X)−1 (xi − x̄) = 0

which satisfies xi = x̄. Part (iii) is verified similar to part (iii) of Lemma 2.1.

Example 2.1. Consider the simple linear regression model yi = β0 +

β1xi + ǫi with usual assumption. In this case,

hii =
1

n
+

(xi − x̄)2
∑n

k=1(xk − x̄)2
.

It is clear that xi = x̄ satisfies hii = 1/n. Also, if for all k 6= i, we have xk = c (6= xi),

then x̄ = c + (xi − c)/n and hii = 1. Figures 1 and 2 show two examples of these

situations. In Figure 1, the i-th observation gives minimum possible value hii,

and the fitted slope is not affected by this observation. Conversely, Figure 2

shows an example with maximum possible value for hii. In this case, the slope

of fitted line is determined by yi, and deleting such observation changes X′
(i)X(i)

to a singular matrix.

ji

*

*

*
*

*

*

*

**

��������������

6

-

ji

*

*

*

*

*

**
*#

#
#

#
#

#
#

#
#

#
#

6

-

Figure 1: A simple linear regression model Figure 2: A simple linear regression model

with intercept for which hii = 1

n
. with intercept for which hii = 1.

3. BOUNDS FOR OFF-DIAGONAL ELEMENTS OF THE HAT

MATRIX

In this case we assume two situations with and without intercept term in the

linear regression model. Part (i) of the following lemma is shown by Chatterjee

and Hadi (1988, p. 18). (They have appreciated Professor J. Brian Gray for

bringing part (i) of this lemma).
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Lemma 3.1. Let Xn×k be full column rank matrix without column one.

Then,

(i) −1
2 ≤ hij ≤ 1

2 .

(ii) hij = −1
2 , if and only if xi = −xj and rank(X(ij)) = k − 1.

(iii) hij = 1
2 , if and only if xi = xj and rank(X(ij)) = k − 1.

Proof: Since H is idempotent, we have:

(3.1) hii =
n
∑

i=1

h2
ik = h2

ii + h2
ij +

∑

k 6=(i,j)

h2
ik ,

which implies that h2
ij = hii(1 − hii) +

∑

k 6=(i,j) h2
ik. Since 0 ≤ hii ≤ 1, part (i)

is obtained by conditions hii = hjj = 1/2 and hik = hjk = 0 for all k (6= i, j) =

1, 2, ..., n. To verify sufficient condition of part (ii), let hij = −1/2. From (3.1)

we have hii = hjj = 1/2, so

(xi + xj)
′ (X′X)−1 (xi + xj) = 0 ,

which holds only if xi = −xj . Again, if X′ =
[

X′
(ij) xi xj

]

, then

(3.2) H =







X(ij) (X
′X)−1X′

(ij) 0(n−2)×2

02×(n−2)
1
2

[

1 −1
−1 1

]






.

Since H is idempotent, it follows from equation (3.2) that X(ij)(X
′X)−1X′

(ij) is

also idempotent. Hence,

rank
(

X(ij)

)

= rank
(

X(ij)(X
′X)−1X′

(ij)

)

= trace
(

X(ij)(X
′X)−1X′

(ij)

)

= k − 1 .

Conversely, if xi = −xj and rank(X(ij)) = k − 1, since rank
[

X′
(ij) xi xj

]

=

rank(X) = k, it follows that xi is LIN from the rows of X(ij). Applying part (b)

of Lemma 1.1 with replacing A and R by X(ij) and
[

xi −xi

]

, with δ = (1,−1)

gives

R(A′A + C′C)−1R′ =

[

hii hij

hij hjj

]

=

[

1/2 −1/2
−1/2 1/2

]

.

Part (iii) is proved similarly by multiplying xj by −1.

The following lemma gives the boundary of hij in the with intercept model.

We will find its upper bound similar to the case of the no-intercept model, whereas

its lower bound has sharpened by the constant 1/n.

Lemma 3.2. If Xn×(k+1) is full column rank matrix with column one,

then

(i) 1
n
− 1

2 ≤ hij ≤ 1
2 .

(ii) hij = 1
n
− 1

2 , if and only if xi + xj = 2x̄ and rank(X(ij)) = k.

(iii) hij = 1
2 , if and only if xi = xj and rank(X(ij)) = k.
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Proof: In this case H is idempotent and has the property of a transition

probability matrix, i.e. H1=1. Thus, we should minimize hij with restriction

(3.1) along with

(3.3)
n
∑

i=1

hik = 1 .

Using λ as a Lagrangian multiplier, we minimize

(3.4) hij = 1 − hii −
∑

k 6=(i,j)

hik + λ



hii(1 − hii) − h2
ij −

∑

k 6=i,j

h2
ik



 ,

with respect to the λ and elements hik for k 6= j = 1, 2, ..., n. Clearly ∂hij/∂λ = 0

gives (3.1), and ∂hij/∂hii = 0 gives hii = 1
2 − 1

2λ
. On the other hand setting

∂hij/∂hik = 0 results to hik = − 1
2λ

. Substituting in (3.1) gives:

(3.5) h2
ij =

1

4

(

1 − n − 1

λ2

)

,

and so (3.3) yields

(3.6) hij =
1

2

(

1 +
n − 1

λ

)

.

Solving equations (3.5) and (3.6) with respect to λ gives the boundary of hij as

1

n
− 1

2
≤ hij ≤ 1

2
.

In order to prove part (ii), note that hij = 1/n − 1/2 produces all hik, (k 6= i, j)

be equal to 1/n, which leads to hii = hjj = 1/n + 1/2. Hence,

(xi + xj − 2x̄)′ (X′X)−1 (xi + xj − 2x̄) = 0 ,

which holds only if xi + xj = 2x̄. Furthermore, we have

(3.7) H − 1

n
Jn =







X(ij) (X
′X)−1X′

(ij) − 1
n
Jn−2 0(n−2)×2

02×(n−2)
1
2

[

1 −1
−1 1

]






.

Since H− 1
n
Jn is idempotent, equation (3.7) results to X(ij)(X

′X)−1X′
(ij)− 1

n
Jn−2

is idempotent, also. Hence,

k − 1 = trace

(

X(ij) (X
′X)−1X′

(ij) −
1

n
Jn−2

)

= rank

(

X(ij) (X
′X)−1X′

(ij) −
1

n
Jn−2

)

.

We now show that the last rank of difference matrix is equal to the difference

of corresponding rank of matrices. Let A = X(ij) (X
′X)−1X′

(ij) and B = 1
n
Jn−2.
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Since A is symmetric, we have AA− = A−A, resulting A2A− = A. Using equa-

tion (3.7) and noting that (H − 1
n
J)1 = 0, we have

AB = BA = B2 =

(

n − 2

n

)

B and A2 = A − 2

n
B .

Therefore,

(3.8)

(

A − 2

n
B

)

A− = A .

Multiplying (3.8) by A from the left side, we find ABA− = B. Similarly, the

equality A−BA = B is verified. It remains to show that BA−B = B. Multi-

plying (3.8) by B to the right hand side and noting that A−B is symmetric, we

have

BA−B =
n

2

(

AA−B − AB
)

=
n

2

[

B −
(

n − 2

n

)

B

]

= B .

Using Lemma 1.2, we have rank
(

X(ij)(X
′X)−1X′

(ij)

)

− rank(Jn−2) = k − 1, and

thus rank
(

X(ij)

)

= k.

Conversely, suppose X(ij) of order (n−2)×(k+1) has rank k and xi+xj =

2x̄. Then x̄ = x̄(ij), the row means of X(ij). In this case hij = 2/n − hii. Now,

since X(i) is full column rank, then xj is LIN from the rows of X(ij). Using part

(a) of the Lemma 1.1, we have:

x′
i

(

X′
(i)X(i)

)−1
xi = (2x̄ − xj)

′
(

X′
(ij)X(ij) + xjx

′
j

)−1
(2x̄ − xj)

= 4x̄′
(ij)

(

X′
(ij)X(ij) + xjx

′
j

)−1
x̄(ij)

− 4

n − 2
1′X(ij)

(

X′
(ij)X(ij) + xjx

′
j

)−1
xj

+ x′
j

(

X′
(ij)X(ij) + xjx

′
j

)−1
xj

= 4x̄′
(ij)

(

X′
(ij)X(ij) + xjx

′
j

)−1
x̄(ij) + 1

= 4

(

(n−1)x̄(i) + xi

n

)′
(

X′
(i)X(i)

)−1

(

(n−1)x̄′
(i) + xi

n

)

+ 1

= 4
[

x′
i

(

X′
(i)X(i)

)−1
n + 1

]

+ 1 .

Hence, x′
i (X

′
(i)X(i))

−1xi = hii

1−hii
= n+2

n−2 , which implies hij = 1/n − 1/2.

Proof of part (iii) is analogous to part (iii) of Lemma 3.1.

Example 3.1. Consider the simple linear regression model yi= β0+β1xi+ǫi

with usual assumptions. In this model,

hij =
1

n
+

(xi − x̄) (xj − x̄)
∑n

k=1(xk − x̄)2
.
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Now if xi = xj = c and xk = d 6= c (for every k 6= i, j) then x̄ = d + 2(c − d)/n.

It is easy to show that hij = 1/2. On the other hand, if xi 6= xj , xk = d 6= xi, xj

(for every k 6= i, j) and xi + xj = 2x̄ = 2d, then hij = 1/n− 1/2. Figures 3 and 4

show two examples of mentioned situations, in the case when hij gives its maxi-

mum and minimum possible values.

ki

kj

*
*
*

*

*

*

*

*

*

*

��������������

6

-

ki

kj

*

*

*
*

*

*

*

*

*

��������������

6

-

Figure 3: A simple linear regression model Figure 4: A simple linear regression model

with intercept for which hij = 1

n
−

1

2
. with intercept for which hij = 1

n
+ 1

2
.

Example 3.2. Suppose the multiple linear regression model yi = β0 +

β1xi1 + β2xi2 + β3xi3 + ǫi with design matrix X as

X =

























1 3 8 4
1 1 6 6
1 3 5 8
1 1 1 2
1 1 14 2
1 4 9 11
1 1 7 2
1 2 6 5

























.

Hat matrix is

H =





















0.625 −0.375 0.125 0.125 0.125 0.125 0.125 0.125
−0.375 0.625 0.125 0.125 0.125 0.125 0.125 0.125

0.125 0.125 0.298 0.133 −0.161 0.335 −0.003 0.148
0.125 0.125 0.133 0.618 −0.196 −0.235 0.242 0.188
0.125 0.125 −0.161 −0.196 0.791 0.008 0.296 0.049
0.125 0.125 0.335 −0.235 0.008 0.658 −0.123 0.106
0.125 0.125 −0.003 0.242 0.260 −0.123 0.250 0.124
0.125 0.125 0.148 0.188 0.049 0.106 0.124 0.126





















.

It is observed that h12 = −0.375 = 1/n− 1/2, and this is because of xi +xj = 2x̄

and for any i ≥ 3: xi3 = 3xi1 − 1.
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4. CONCLUDING REMARKS

A large number of statistical measures, such as Mahalanobis distance,

weighted square standardized distance, PRESS, etc, have been proposed in the

literatures of diagnosing influential observations, which are typically based on

hij ’s. Removing the i-th point or (i, j)-th points jointly may be useful to detect

the leverage in regression diagnostics. The following outcomes are obtained from

the previous lemmas in sections 2 and 3:

• hii = 0 (or hii = 1/n in the intercept model). In this case the i-th ob-

servation potentially is an outlier, recognized by large distance between

yi and ȳ. This point has no effect on the estimation of unknown param-

eter β, except constant term in the with intercept model (see Figure 1).

In this situation, yi has minimum effect to determine ŷi.

• hii = 1. Presence of such point obviates full collinearity of some columns

of X, so it is likely to be an influential observation. This point is capable

to elongate the regression line itself. In other words, the fitted regression

line passes through other data points to place of the i-th observation.

In this case we see ei = 0 (see Figure 2).

• hij = −1/2 (or hij = 1/n − 1/2 in the intercept model). This case may

be declared as a competition between i-th and j-th observations. Using

Lemma 3.1 and Lemma 3.2, it can be shown that if any of these points

removed, then other point has the maximum value 1 of diagonal element

of corresponding Hat matrix constructed based on the remaining n − 1

observations, so will be an influential observation. In this case, ei = ej ,

so ρ(ŷi, ŷj) = −1. This situation occurs when (i, j)-th points are at the

different sides of the bulk of other points (see Figure 3).

• hij = 1/2. Contrary to the previous case, in this case the i-th and the

j-th observations are at the same side of the bulk of other points. It can

be shown that predicted values of these observations are at the same

direction, i.e. ρ(ŷi, ŷj) = 1 (see Figure 4).
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APPENDIX: Proof of Lemma 1.1

(a): Without loss of generality, let the first p − m1 rows A1 of A be full

row rank; then the last (n+m1 − p) rows A2 of A may be written as A2 = NA1,

where N is (n + m1 − p) × (p − m1). Since B has its rows LIN of those of A, we

may define:
[

A1

B

]

=
[

C1 D
]

,

where C1 and D are p × (p−m1) and p×m1 matrices, respectively. Then,

[

A1

B

]

[

C1 D
]

=

[

A1C1 A1D
BC1 BD

]

=

[

Ip−m1
0

0 Im1

]

.

Now define the p × (n + m1 − p) matrix C2 as C2 = C1N
′. So, we have

A =

[

A1

A2

]

=

[

Ip−m1

N

]

A1 ,

and

C =
[

C1 C2

]

= C1

[

Ip−m1
N′
]

.

From the solutions we obtain

AC =

[

Ip−m1
N′

N NN′

]

, AD = 0n×m1
= (BC)′, BD = Im1

,

where rank(AC) = rank(A) = p−m1. Now since
[

A B
]

has rank p, A′A + B′B

is positive definite and therefore invertible. From above we have expressions

(A′A + B′B)D = B′ .

Premultiplying by (A(A′A + B′B)−1), and then by (B(A′A + B′B)−1) we ob-

tain

A(A′A + B′B)−1 B′ = AD = 0n×m1

and

B(A′A + B′B)−1 B′ = BD = Im1
.

(b): Equalizing R = δr′ results to:

R(A′A + R′R)−1 R′ = δr′ (A′A + rδδ′r′)−1 rδ′ .

Now using part (a) and substituting B by
√

δδ′r′ give

R (A′A + R′R)−1 R′ =
δδ′

‖δ‖2
.
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