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1. INTRODUCTION

A great deal of literature has been written on the analysis of the depen-

dence structure between random variables. There is an increasing interest in the

understanding of the dependencies between extreme values in what is known as

tail dependence. However, the analysis of multivariate tail dependence in copula

models has been exclusively focused on the positive case. Only the lower and

upper tail dependence have been considered, leaving a void in the analysis of

dependence structure implied by the use of these models. In this paper we tackle

this issue by considering the dependence in the 2d different orthants of dimension

d for a random vector.

The use of the tail dependence coefficient (TDC) and the tail dependence

function comes as a response to the inability of other measures when it comes to

tail dependence (see [22, 13] and [20, Chapter 5]). This includes the Pearson’s

correlation coefficient and copula measures such as the Spearman’s ρ, Kendall’s τ

and the Blomqvist’s β.

The analysis of lower tail dependence has been derived using the copula,

C, see e.g. [13, 22, 23]. In the context of nonparametric statistics, it is possible

to measure upper tail dependence by using negative transformations or rotations.

However, presenting a formal definition of upper tail dependence in the multi-

variate case and analysing it in copula models can not be achieved by the use

of such methods. Also, trying to define it in terms of C becomes cumbersome

in higher dimensions. By using the survival copula, the results and analysis of

lower tail dependence have been generalised to upper tail dependence. For more

on the analysis of the use of the survival copula for upper tail dependence, see

[10, 23, 14, 15, 20, 27]. The study of non-positive tail dependence is also rele-

vant when dealing with empirical data and in copula models analysis, see e.g.

[32, 4]. In the case of copula models, the study of tail dependence helps in the

understanding of the underlying assumptions implied by the use of these models.

For example, the Student’s t copula is often used to model data with only posi-

tive tail dependence. However, although this model accounts for the positive tail

dependence, it also assumes the existence of negative tail dependence. Table 1

illustrates positive and negative tail dependence in the bivariate case which we

generalise to the multivariate one.

Table 1: Tail dependence in the four different orthants of dimension two
for variables X and Y .

Lower Tail of X Upper Tail of X

Lower Tail of Y
classical lower
tail dependence

upper-lower
tail dependence

Upper Tail of Y
lower-upper
tail dependence

classical upper
tail dependence



4 Yuri Salazar Flores

Although much has been written on the need to understand multivariate

non-positive tail dependence, no formal definition has been presented. In this

work we define the necessary concepts to study non-positive tail dependence

in multivariate copula models. We use a copula approach and base our study

on the associated copulas (see [13, p. 15]). If a copula is the distribution of

U= (U1, ..., Ud), the associated copulas are the distribution functions of vectors of

the form (U1, 1−U2, U3, ..., 1−Ud−1, 1−Ud). The use of copulas of transformations

for non-positive dependence is also suggested in [5, 30].

The reasoning behind the use of associated copulas is the same as for the

use of the survival copula for upper tail dependence analysis. Similarly to that

case, the definition and study of non-positive tail dependence is simplified by the

use of these copulas. They enable us to present a unified definition of multivariate

general tail dependence. This definition is consistent with generalisations from

dimension 2 to d of positive tail dependence. The study of the associated copulas

to analyse non-positive tail dependence is then a generalisation of the use of the

copula and the survival copula for lower and upper tail dependence respectively.

The reminder of this work is divided in three sections: In the second section

we present the concepts we use to study dependence in all the orthants. This

includes general definitions of dependence and probability functions. We present

a version of Sklar’s theorem that proves that the copulas that link these gen-

eral probability functions and its marginals are the associated copulas. We then

present four propositions regarding these copulas. At the end of this section we

present general definitions of the tail dependence functions and TDCs. In the

third section we use the results obtained in Section 2 to study the perfect de-

pendence models, elliptical copulas and Archimedean copulas. We present the

copulas of the perfect dependence cases, which include non-positive perfect de-

pendence. We call these copulas the monotonic copulas. We then characterise

the associated elliptical copulas and obtain an expression for the associated tail

dependence functions of the Student’s t copula model. This model accounts for

all 2d types of tail dependence simultaneously. After that, we prove that, by

construction, Archimedean copulas with strict generators can not account for

non-positive tail dependence. We then present three examples with non-strict

generators which account for negative tail dependence. At the end of this section

we discuss a method for modelling arbitrary tail dependence using copula models.

Finally, in the fourth section, we conclude and discuss future lines of research for

general dependence.

Unless we specifically state it, all the definitions and results presented re-

garding general dependence are a contribution of this work.
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2. ASSOCIATED COPULAS, TAIL DEPENDENCE FUNCTIONS

AND TAIL DEPENDENCE COEFFICIENTS

In this section we analyse the dependence structure among random variables

using copulas. Given a random vector X = (X1, ..., Xd), we use the corresponding

copula C and its associated copulas to analyse its dependence structure. For this

we introduce a general type of dependence D, one for each of the 2d different

orthants. This corresponds to the lower and upper movements of the different

variables.

To analyse different dependencies, we introduce the D-probability function

and present a version of Sklar’s theorem that states that an associated copula

is the copula that links this function and its marginals. We present a formula

to link all associated copulas and three results on monotone functions and asso-

ciated copulas. We then introduce the associated tail dependence function and

the associated tail dependence coefficient for the type of dependence D. These

functions generalise the positive (lower and upper) cases (extensively studied in

[12, 13, 23]). With the concepts studied in this section, we aim to provide the

tools to analyse the whole dependence structure among random variables, includ-

ing non-positive dependence.

2.1. Copulas and dependence

The concept of copula was first introduced by [29], and is now a cornerstone

topic in multivariate dependence analysis (see [13, 22, 20]). We now present the

concepts of copula, general dependence and associated copulas that are funda-

mental for the rest of this work.

Definition 2.1. A multivariate copula C(u1, ..., ud) is a distribution func-

tion on the d-dimensional-square [0, 1]d with standard uniform marginal distribu-

tions.

If C is the distribution function of U = (U1, ..., Ud), we denote as Ĉ the

distribution function of (1−U1, ..., 1−Ud). C is used to link distribution functions

with their corresponding marginals, accordingly we refer to C as the distributional

copula. On the other hand, Ĉ is used to link multivariate survival functions with

their marginal survival functions, this copula is known as the survival copula.1

Let X = (X1, ..., Xd) be a random vector with joint distribution function F , joint

survival function F , marginals Fi and marginal survival functions Fi, for i ∈

1We use the term distributional for C, to distinguish it from the other associated copulas.
The notation for the survival copula corresponds to the one used in the seminal work of [13].
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{1, ...d}. Two versions of Sklar’s theorem guarantees the existence and uniqueness

of a copulas C and Ĉ which satisfy

F (x1, ..., xd) = C
(
F1(x1), ..., Fd(xd)

)
,(2.1)

F (x1, ..., xd) = Ĉ
(
F1(x1), ..., Fd(xd)

)
,(2.2)

see [13, 22]. In the next section we generalise these equations using the concept

of general dependence, which we now define.

Definition 2.2. In d dimensions, we call the vector D = (D1, ..., Dd) a

type of dependence if each Di is a boolean variable, whose value is either L

(lower) or U (upper) for i ∈ {1, ...d}. We denote by ∆ the set of all 2d types of

dependence.

Each type of dependence corresponds to the variables going up or down

simultaneously. Tail dependence, which we define later, refers to the case when

the variables go extremely up or down simultaneously. Two well known types

of dependence are lower and upper dependence. Lower dependence refers to the

case when all variables go down at the same time (Di = L for i ∈ {1, ..., d}) and

upper dependence to the case when they all go up at the same time (Di = U

for i ∈ {1, ..., d}). These two cases are examples of positive dependence and

they have been extensively studied for tail dependence analysis, see e.g. [13, 22].

In the bivariate case the dependencies D = (L,U) and D = (U,L) correspond

to one variable going up while the other one goes down. These are examples of

negative dependence. Negative tail dependence is often present in financial time

series, see [32, 4, 14]. Hence, in dimension 2 there are four types of dependence

that correspond to the four quadrants. Note that, in dimension d, for each of the

2d orthants we define a dependence D.

Using the concept of dependence, we now present the associated copulas,

see [13, Chapter 1, p. 15].

Definition 2.3. Let X = (X1, ..., Xd) be a random vector with corre-

sponding copula C, which is the distribution function of the vector (U1, ..., Ud)

with uniform marginals. Let ∆ denote the set of all types of dependencies of

Definition 2.2. For D = (D1, ..., Dd) ∈ ∆, let VD = (VD1,1, ..., VDd,d) with

VDi,i =

{
Ui if Di = L

1 − Ui if Di = U
.

Note that VD also has uniform marginals. We call the distribution function of

VD, which is a copula, the associated D-copula and denote it CD. We denote AX

= {CD| D ∈ ∆}, the set of 2d associated copulas of the random vector X. Also,

for any ∅ 6= S ⊆ I, let D(S) denote the corresponding |S|-dimensional marginal

dependence of D. Then the copula CD(S), the distribution of the |S|-dimensional

marginal vector (VDi,i| i ∈ S), is known as a marginal copula of CD.
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Note that the distributional and the survival copula are C = C(L,...,L) and

Ĉ = C(U,...,U) respectively.

2.1.1. The D-probability function and its associated D-copula

The distributional copula C and the survival copula Ĉ are used to explain

the lower and upper dependence structure of a random vector respectively. We

use the associated D-copula to explain the D-dependence structure of a random

vector. For this, we first present the D-probability functions, which generalise

the joint distribution and survival functions.

Definition 2.4. Let X = (X1, ..., Xd) be a random vector with marginal

distributions Fi for i ∈ {1, ...d} and D = (D1, ..., Dd) a type of dependence ac-

cording to Definition 2.2. Define the event Bi(xi) in the following way

Bi(xi) =

{
{Xi ≤ xi} if Di = L

{Xi > xi} if Di = U
.

Then the corresponding D-probability function is

FD(x1, ..., xd) = P

(
d⋂

i=1

Bi(xi)

)
.

We refer to

FDi,i =

{
Fi if Di = L

Fi if Di = U
,

for i ∈ {1, ...d} as the marginal functions of FD (note that the marginals are either

univariate distribution or survival functions).

In the bivariate case for example, there are four D-probability functions:

F (x1, x2), F (x1, x2), FLU (x1, x2) = P (X1≤ x1, X2 > x2) and FUL(x1, x2) =

P (X1 > x1, X2 ≤ x2). In general, these functions complement the use of the

joint distribution and survival functions in our analysis of dependence in the

2d orthants.

The following theorem presents the associated copula CD in terms of the

FD and its marginals. It is because of this theorem that we can use the associated

copula CD to analyse D-dependence. We restrict the proof to the continuous case

(for Sklar’s theorem for distribution functions see [20, 13, 22]).
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Theorem 2.1. Sklar’s theorem for D-probability functions and

associated copulas.

Let X = (X1, ..., Xd) be a random vector, D = (D1, ..., Dd) a type of de-

pendence, FD its D-probability function and FDi,i for i ∈ {1, ...d} the marginal

functions of FD as in Definition 2.4. Let the marginal functions of FD be contin-

uous and F← denote the generalised inverse of F , defined as F←(u) := inf{x ∈ R |

F(x) ≥ u}. Then the associated copula CD : [0,1]d→ [0,1], satisfies, for all x1, ..., x2

in [−∞,∞],

(2.3) FD(x1, ..., xd) = CD

(
FD1,1(x1), ..., FDd,d(xd)

)
,

which is equivalent to

(2.4) CD(u1, ..., ud) = FD

(
F←D1,1(u1), ..., F

←
Dd,d(ud)

)
.

Conversely, let D = (D1, ..., Dd) be a dependence and FDi,i a univariate distribu-

tion, if Di = L, or a survival function, if Di = U , for i ∈ {1, ...d}, then:

(a) If CD is a copula, then FD in (2.3) defines a D-probability function

with marginals FDi,i, i ∈ {1, ...d}.

(b) If FD is any D-probability function, then CD in (2.4) is a copula.

Proof: The proof of this theorem is analogous to the proof of Sklar’s

theorem for distribution functions. When two random variables have the same

probability functions, we say they are equivalent in probability and denote it as
P
∼.

In this general version of the theorem, we have that for the distribution function

Fi, the events {Xi≤ xi}
P
∼ {Fi(Xi)≤Fi(xi)} and {Xi>xi}

P
∼ {Fi(Xi)≤ Fi(xi)},

for i ∈ {1, ..., d} and xi ∈ [−∞,∞]. This implies

(2.5) P
(
Bi(xi)

)
= P

(
FDi,i(Xi) ≤ FDi,i(xi)

)
,

for i ∈ {1, ..., d}.

Considering equation (2.5) and Definition 2.4, we have that for any x1, ..., xd

in [−∞,∞]

(2.6) FD(x1, ..., xd) = P
(
FD1,1(X1)≤FD1,1(x1), ..., FDd,d(Xd)≤FDd,d(xd)

)
.

Using the continuity of Fi, we have that Fi(Xi) is uniformly distributed (see

[20, Proposition 5.2 (2)]). Hence, if we define U = (F1(X1), ..., Fd(Xd)), its

distribution function is a copula C. Note that in this case VD, defined as in

Definition 2.3, is equal to (FD1,1(X1), ..., FDd,d(Xd)). It follows that the distribu-

tion function of (FD1,1(X1), ..., FDd,d(Xd)) is the associated copula CD, in which

case equation (2.5) implies

CD

(
FD1,1(x1), ..., FDd,d(xd)

)
= P

(
FD1,1(X1)≤FD1,1(x1), ..., FDd,d(Xd)≤FDd,d(xd)

)
,

and equation (2.3) follows.
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Now, one of the properties of the generalised inverse is that, when T is

continuous, T ◦ T←(x) = x (see [20, Proposition A.3]). Hence, if we evaluate FD

in (F←D1,1(u1), ..., F
←
Dd,d(ud)), using equation (2.3), we get equation (2.4). This

equation explicitly represents CD in terms of FD and its marginals implying its

uniqueness.

For the converse statement of the theorem, we have

(a) Let U= (U1, ..., Ud) be the random vector with distribution function C.

Define X = (X1, ..., Xd) = (F←D1,1(U1), ..., F
←
Dd,d(Ud)) and

Bi(xi) =

{
{Xi ≤ xi} if Di = L

{Xi > xi} if Di = U
,

for i ∈ {1, ...d}. Considering that F (x) ≤ y ⇐⇒ x ≤ F←(y), we have F
←

(x) ≤ y

⇐⇒ x ≥ F (y). Using these properties, we get

{
Ui ≤ FDi,i(xi)

} P
∼ Bi(xi) ,

for i ∈ {1, ...d}. Using this, the D-probability function of X is

P

(
d⋂

i=1

Bi(xi)

)
= C

(
FD1,1(x1), ..., FDd,d(xd)

)
.

This implies that FD defined by (2.3) is the D-probability function of X with

marginals

P
(
Bi(xi)

)
= P

(
Ui ≤ FDi,i(xi)

)
= FDi,i(xi) ,

for i ∈ {1, ...d}.

(b) Similarly, let (X1, ..., Xd) be the random vector with D-probability

function FD. Define U = (U1, ..., Ud) = (FD1,1(X1), ..., FDd,d(Xd)) (note that the

vector is uniformly distributed). Again, using the properties of the generalised

inverse, we have {
Ui ≤ ui

} P
∼ Bi

(
F←Di,i

(ui)
)

,

for i ∈ {1, ...d}. Hence the distribution function of U is FD

(
F←D1,1

(u1), ...,F
←

Dd,d(ud)
)
,

which implies that the function is a copula.

For the properties of the generalised inverse function used in this proof, see

[20, Proposition A.3].

For this theorem we referred to generalised inverse functions as they are

more general than inverse functions. However, whenever we are not proving a

general property, we assume distribution functions have inverse functions.

Note that this theorem implies that in the continuous case CD is the

D-probability function of (FD1,1(X1), ..., FDd,d(Xd)) characterised in (2.3). This
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theorem implies the importance of the associated copulas to analyse dependencies.

It also implies the Fréchet bounds for the D-probability functions of Definition

2.4. The bounds can also be obtained similarly to [13, Theorems 3.1 and 3.5],

max
{

0, FD1,1(x1) + ··· + FDd,d(xd) − (d−1)
}

≤ FD(x1, ..., xd)

≤ min
{
FD1,1(x1), ..., FDd,d(xd)

}
.(2.7)

2.1.2. Properties of the associated copulas

In the bivariate case, [13, Chapter 1], and [22, Chapter 2], presented the

expressions to link the associated copulas with the distributional copula C. In the

multivariate case [14, Equation 8.1] and [10, Theorem 3], presented the expression

between the distributional and the survival copula and [5, Theorem 2.7] proved

that is possible to express the associated copulas in terms of the distributional

copula C. We now present a general equation for the relationship between any

two associated copulas CD∗ and CD+ in the multivariate case. The equation is

based on all the subsets of the indices where the D∗ and D+ are different.

Proposition 2.1. Let X = (X1, ..., Xd) be a random vector with associ-

ated copulas AX and D∗= (D∗1, ..., D
∗
d) and D+ = (D+

1 , ..., D
+
d ) any two types

of dependence. Consider the following sets and notations: I = {1, ..., d}; I1 =

{i ∈ I | D∗i = D+
i } and I2 = {i ∈ I | D∗i 6= D+

i }; d1 = |I1| and d2 = |I2|; Sj = {the

subsets of size j of I2} and Sj,k = {The k-th element of Sj} for j ∈ {1, ..., d2}

and k ∈
{
1, ...,

(
d2

j

)}
. We define S0 = ∅ and S0,1 = ∅; for each Sj,k define Wj,k =

(Wj,k.1, ...,Wj,k,d) with

Wj,k,i =





ui if i ∈ I1

1 − ui if i ∈ Sj,k

1 if i /∈ I1 ∪ Sj,k

,

for i ∈ {1, ...d}, j ∈ {0, ..., d2} and k ∈
{

1, ...,
(
d2

j

)}
.

Then the associated D∗-copula CD∗ is expressed in terms of the D+-copula

CD+ according to the following equation

(2.8) CD∗(u1, ..., ud) =

d2∑

j=0

(−1)j

(d2
j )∑

k=1

CD+(Wj,k) .

Note that in the cases when at least a 1 appears in Wj,k, CD+(Wj,k) becomes a

marginal copula of CD+ .
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Proof: Throughout this proof, it must be borne in mind that CD∗ is

the distribution function of the random vector VD∗ and CD+ of VD+ , defined

according to Definition 2.3. Note that, for i ∈ I2, VD∗

i ,i
= 1 − VD+

i i and they are

equal otherwise.

In the case d2 = 0, we have D∗= D+, j ∈ {0} and k ∈ {1} (2), hence (2.8)

holds. We prove (2.8) by induction on d, the dimension; it can also be proven

by induction on d2, the number of elements in which D∗i 6= D+
i . Note that in

dimension d = 1, a copula becomes the identity function. If D∗1 6= D+
1 , the ex-

pression becomes u1 = 1− (1− u1); the case D∗1 = D+
1 has already been covered

in d2 = 0, and expression (2.8) holds.

Now, in dimension d, we prove the formula works if it works in dimension

d− 1. We obtain an expression for CD∗(u1, ..., ud) using the induction hypothesis.

Consider the dependencies, on the (d− 1)-dimension, F∗ = (D∗1, ..., D
∗
d−1) and

F+ = (D+
1 , ..., D

+
d−1). We use an apostrophe on the sets and notations of F∗ and

F+ to differentiate them from those of D∗ and D+. It follows that d′ = d− 1 and

I ′ = I − {d}. By the induction hypothesis, equation (2.8) holds to express CF∗

in terms of CF+ . In terms of probabilities this is equivalent to

(2.9)

P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1

)
=

=

d2−1∑

j=0

(−1)j

(d2−1

j )∑

k=1

P
(
VD+

1
,1 ≤W ′j,k,1, ..., VD+

d−1
,d−1 ≤W ′j,k,d−1

)
.

There are two cases to consider depending on whether D∗d is equal to D+
d or not.

Case 1. D∗d = D+
d .

In this case, it follows that, I ′1 = I1−{d}, I ′2 = I2, d
′
2 = d2 and VD∗

d
,d = VD+

d
,d.

If we intersect the events in equation (2.9) with the event {VD∗

d
d ≤ ud} we get

(2.10)

P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
d ≤ ud

)
=

=

d2∑

j=0

(−1)j

(d2
j )∑

k=1

P
(
VD+

1
,1≤W ′j,k,1, ..., VD+

d−1
,d−1≤W ′j,k,d−1, VD+

d
,d ≤ ud

)
.

Because I ′2 = I2, in this case, for j ∈ {1, ..., d2} and k ∈
{
1, ...,

(
d2

j

)}
, the events

S′j,k are equal to Sj,k. Considering this, and I ′1 = I1 − {d}, we have
(
W′

j,k, ud

)
i

= Wj,k,i

for i ∈ {1, ..., d}, so (W′
j,k, ud) = Wj,k for j ∈ {1, ..., d2} and k ∈

{
1, ...,

(
d2

j

)}
.

Equation (2.10) then implies:

CD∗(u1, ..., ud) =

d2∑

j=0

(−1)j

(d2
j )∑

k=1

CD+(Wj,k) .

2Note that we are using the convention 0! = 1
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Case 2. D∗d 6= D+
d .

In this case, it holds that, I ′1 = I1, I
′
2 = I2 −{d}, d ′2 = d2 − 1. To obtain an

expression for CD∗(u1, ..., ud) = P (VD∗

i ,1 ≤ u1, ..., VD∗

d
,d ≤ ud), we use the induc-

tion hypothesis. Considering P (A) = P (A ∩B) + P (A ∩Bc), we have

P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1

)
=

= P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
,d ≤ ud

)

+ P
(
VD∗

i ,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
,d ≥ ud

)
,

which implies

CD∗(u1, ..., ud) = P
(
VD∗

1
,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1

)

(2.11)
−P

(
VD∗

1
,1 ≤ u1, ..., V

∗
d−1 ≤ ud−1, VD∗

d
,d ≥ ud

)
.

Note that, in this case VD∗

d
,d = 1−VD+

d
,d. This implies that the event {VD∗

d
,d ≥ ud}

is equivalent to {VD+

d
,d ≤ 1 − ud}. If we intersect the events involved in equation

(2.9) with the event {VD∗

d
,d ≥ ud} we get

(2.12)

P
(
VD∗

1
,1 ≤ u1, ..., VD∗

d−1
,d−1 ≤ ud−1, VD∗

d
,d ≥ ud

)
=

=

d2−1∑

j=0

(−1)j

(d2−1

j )∑

k=1

P
(
VD+

1
,1≤W ′j,k,1, ..., VD+

d−1
,d−1≤W ′j,k,d−1, VD+

d
,d ≤ 1−ud

)
.

Combining equations (2.9), (2.11) and (2.12), we obtain

(2.13)

CD∗(u1, ..., ud) =

d2−1∑

j=0

(−1)j

(d2−1

j )∑

k=1

CD+(W′
j,k,1) −

d2−1∑

j=0

(−1)j

(d2−1

j )∑

k=1

CD+(W′
j,k,1−ud) .

Note that, in this case, the sets I2 and I ′2 satisfy I2 = I ′2 ∪ {d}.

The rest of the proof is based on the fact that for j ∈ {1, ..., d−1} the

elements of size j of I2 are the elements of size j of I ′2 plus the elements of size

j −1 of I ′2 attaching them {d}. Considering our notation, this means

(2.14) Sj = S′j ∪ S
′′
j−1 ,

with S′′j−1 =
{
S′′j−1,k = S′j−1,k ∪ {d}

∣∣ k ∈
{
1, ...,

(
d2

j

)}}
for j ∈ {1, ..., d−1}.

Further to this, by definition of Wj,k we have the following three equalities:

(
W′

j,k, 1
)
i

=





ui if i ∈ I1
1 − ui if i ∈ S′j,k
1 if i /∈ I1∪S

′
j,k

, Wj,k,i =





ui if i ∈ I1
1 − ui if i ∈ Sj−1,k

1 if i /∈ I1 ∪ Sj,k
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and
(
W′

j−1,k, 1 − ud

)
i

=





ui if i ∈ I1
1 − ui if i ∈ S′′j−1,k

1 if i /∈ I1 ∪ S
′′
j−1,k

,

for i ∈ {1, ...d}, j ∈ {1, ..., d− 1} and k ∈
{
1, ...,

(
d2

j

)}
. These three equalities and

equation (2.14) imply that, for a fixed j, if we sum CD+ evaluated in all of the

(W′
j,k, 1) and (W′

j,k, 1 − ud) for different k, we get the sum of CD+ evaluated on

Wj,k for different k, that is:

(2.15)

(d2−1

j )∑

k=1

CD+(W′
j,k, 1) +

(d2−1

j−1 )∑

k=1

CD+(W′
j−1,k, 1− ud) =

(d2
j )∑

k=1

CD+(Wj,k) ,

for j ∈ {1, ..., d− 1}. Also, the equalities

(
W′

0,1, 1
)
i

= W0,1,i and
(
W′

d−1,1, 1 − ud

)
i
= Wd,1,i

hold for i ∈ {1, ...d}; the result is implied by these two equalities and equations

(2.13) and (2.15).

Note that this expression is reflexible, meaning that it yields the same for-

mula to express CD+ in terms of CD∗ . As a particular case, equation (2.8) can

be used to express any associated copula in terms of the distributional copula C,

which is the expression found in literature for copula models. A copula is said

to be exchangeable if for every permutation P : i→ pi of I = {1, ..., d}, we have

C(u1, ..., ud) = C(up1
, ..., upd

). In order to analyse the symmetry and exchange-

ability of copula models, we use the following definition.

Definition 2.5. Let D = (D1, ..., Dd) be a type of dependence, the com-

plement dependence is defined as D∁ = (D∁
1, ..., D

∁
d), with

D∁
i =

{
U if Di = L

L if Di = U
,

for i ∈ {1, ..., d}. We say that the random vector X, with associated copulas AX,

is complement (reflection or radial) symmetric, if there exists D∗ ∈ ∆, such that

CD∗ = C
D∗∁ .

Note that X is symmetric if there exists one dependence which satisfies

CD∗ = C
D∗∁ . Along with other important properties, in the following proposition

we prove that, if it holds for one dependence, it holds for them all.

Proposition 2.2. Let X be a vector with corresponding associated cop-

ulas AX, and let D∗, D+, D◦ and D× be types of dependencies. Denote as

I1(D
1,D2) and I2(D

1,D2) the elements where the corresponding dependencies

are equal or different respectively. Then the following equivalences hold:
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(i) If CD∗ ≡ CD+ and I2(D
∗,D+) = I2(D

×,D◦) then CD× ≡ CD◦ . In par-

ticular, CD∗ ≡ C
D∗∁ , for some D∗, implies CD ≡ C

D∁ for all D ∈ ∆.

(ii) If CD◦ is exchangeable, then CD∗ is exchangeable over the elements

of I1(D
∗,D◦) and over the elements of I2(D

∗,D◦). In particular, if

CD◦ is exchangeable, then C
D◦∁ is exchangeable.

Proof: (i) This follows from the fact I2(D
∗,D+) = I2(D

×,D◦) =⇒

I2(D
×,D∗) = I2(D

◦,D+), which is easily verified considering the different cases.

From Proposition 2.1, we have that the vectors Wj,k are the same in both cases,

which implies

CD×(u1, ..., ud) =

d2∑

j=0

(−1)j

(d2
j )∑

k=1

CD∗(Wj,k)

=

d2∑

j=0

(−1)j

(d2
j )∑

k=1

CD+(Wj,k)

= CD◦(u1, ..., ud) .

In particular, note that I2(D
∗,D∗∁) = I2(D,D

∁) = {1, ..., d} for every D ∈ ∆.

Then, CD∗ ≡C
D∗∁ implies CD ≡C

D∁ for every D∈∆.

(ii) From Proposition 2.1 we have

(2.16) CD∗(u1, ..., ud) =

d2∑

j=0

(−1)j

(d2
j )∑

k=1

CD◦(Wj,k) .

Consider j ∈ {0, ..., d2} and k ∈
{
1, ...,

(
d2

j

)}
, from the way it is defined, Wj,k,i = ui

for every i ∈ I1(D
∗,D◦). The exchangeability of CD◦ implies that CD◦(Wj,k)

is exchangeable over I1(D
∗,D◦). Hence, equation (2.16) implies that CD∗ is

exchangeable over I1(D
∗,D◦). Now, let j ∈ {0, ..., d2} be fixed, note that each

Wj,k, k ∈
{
1, ...,

(
d2

j

)}
, is based on a different subset of size j of I2(D

∗,D◦).

Consider the sum
∑(d2

j )
k=1 CD◦(Wj,k) as a function, given that CD◦ is exchangeable

and that the sum considers all the subsets of size j of I2(D
∗,D◦), it follows that

this function is exchangeable over I2(D
∗,D◦). Equation (2.16) then implies that

CD∗ is exchangeable over I2(D
∗,D◦). In particular C

D◦∁ is exchangeable over

I2(D
◦,D◦∁) = {1, ..., d}.

It is well known that elliptical copulas satisfy C = Ĉ. Hence, it follows

that in the bivariate case, CLU = CUL and in three dimensions, for instance,

CULU = CLUL. Also, from (ii), it follows that the survival copulas of Archimedean

families are exchangeable in all dimensions. These examples illustrate some of

the applications of this proposition.

In the following proposition we prove that, same as the distributional cop-

ula, all associated copulas are invariant under strictly increasing transformations.
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Proposition 2.3. Let T1,..., Td be strictly increasing functions and X =

(X1, ..., Xd) a random vector with corresponding distribution function and

marginals, D a type of dependence and D-copula CD. Then, in the continuous

case,
X̃ =

(
T1(X1), ..., Td(Xd)

)

also has the same corresponding D-copula CD.

Proof: This result follows straightforwardly from the fact that the dis-

tributional copula is invariant under strictly increasing transformations (see [20,

Proposition 5.6]) as all associated copulas are implied by this copula using

Proposition 2.1.

In the bivariate case, [22, Theorem 2.4.4] and [5, Theorem 2.7], charac-

terised the copula after the use of strictly monotone functions on random vari-

ables. In the multivariate case, this can be done using the associated copulas as

we show in the following proposition.

Proposition 2.4. Let T1,..., Td be strictly monotone functions and X =

(X1, ..., Xd) a random vector with corresponding distributional copula C. Then

the distributional copula of X̃ = (T1(X1), ..., Td(Xd)) is the associated D-copula

CD of X, with

Di =

{
L if Ti is strictly increasing

U if Ti is strictly decreasing
,

for i ∈ {1, .., d}, whose expression is given by Proposition 2.1.

Proof: By using the inverse functions of Ti and Fi, i ∈ {1, ..., d} we have:

Ti(Xi) ≤
(
F̃←i (ui)

) P
∼ Bi

(
F←Di,i

(ui)
)

,

for i ∈ {1, ..., d}, with Bi as in Definition 2.4, which implies that the distributional

copula of X̃ is CD.

2.2. Associated tail dependence functions and tail dependence coeffi-

cients

Considering the results obtained so far, it is possible to introduce a general

definition of tail dependence function and tail dependence coefficients considering

the dependence D. For the analysis of the conditions of the existence of the tail

dependence function see [21]. The general expression of the tail dependence

function is the following (for the positive case, see [23])
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Definition 2.6. Let I = {1, ..., d}, X = (X1, ..., Xd) be a random vector

with copula C, D a type of dependence and CD the corresponding associated

copula. For any ∅ 6= S ⊆ I, let CD(S) denote the corresponding marginal copula.

Define the associated D(S)-tail dependence functions bD(S) of CD, ∅ 6= S ⊆ I as

bD(S)(wi, i∈ S) = lim
u↓0

CD(S)(uwi, i∈ S)

u
, ∀w = (w1, ..., wd) ∈ R

d
+ .

Given that these functions come from the associated copulas, we call the set of

all D-tail dependence functions the associated tail dependence functions. When

S = {1, ..., d} we omit such subindex.

In particular, the corresponding TDCs are presented in the following defi-

nition (for the positive TDCs, see [23, 12]).

Definition 2.7. Consider the same conditions of Definition 2.6. Define

the associated D(S)-tail dependence coefficients λD(S) of CD, ∅ 6= S ⊆ I as

λD(S) = lim
u↓0

CD(S)(u, ..., u)

u
.

We say that D(S)-tail dependence exists whenever λD(S) > 0.

Note that

CD(S)(u, ..., u) = CD(u1, ..., ud) ≥ CD(u, ..., u) ,

with ui =

{
u if i ∈ S
1 if i /∈ S

, i ∈ {1, ..., d}. Because of this, λD(S) ≥ λD, so D-tail

dependence implies D(S)-tail dependence for all ∅ 6= S ⊆ I.

3. MODELLING GENERAL DEPENDENCE

In this section we analyse general dependence and tail dependence in three

examples of copula models. To this end we use the definitions and results ob-

tained on the previous section. We first analyse the perfect dependence cases and

obtain their corresponding copulas, this includes perfect non-positive dependence.

We then study the elliptical copulas for which we characterise the associated cop-

ulas. Using this characterisation, we obtain an expression for the associated tail

dependence functions of the Student’s t copula, which accounts for all types of

tail dependence simultaneously. After that we study the Archimedean copulas,

we prove that they can only account for non-positive tail dependence when their

generator is non-strict and present three examples when they do. At the end

of the section we discuss a method for modelling general tail dependence us-

ing copula models. The analysis of general dependence presented in this section

complements the analysis of positive tail dependence for these models.
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3.1. Perfect dependence cases

We now analyse the most basic examples of copula models. They corre-

spond to all the variables being either independent or perfectly dependent.

For the independence case, let U = (U1, ..., Ud) be a random vector with

{Ui}
d
i=1 independent uniform random variables. The distribution function of U

is the copula C(u1, ..., ud) =
d∏

i=1

ui, which is known as the independence copula.

It follows that the associated copula are also equal to the independence copula.

This is the copula of any random vector formed by independent variables.

Our analysis of perfect dependence corresponds to the distribution of vec-

tors of the form (W,−W,−W, ...,W,−W ) with W a uniform random variable.

From Definition 2.3 and Proposition 2.4 it follows that the distribution of

a vector of this form is an associated copula of the vector W = (W, ...,W ).

The distributional copula of W is

(3.1) C(u1, ..., ud) = min{ui}
d
i=1 .

Given that 1−W is also uniform it follows that this is also the survival copula, so

the vector is symmetric. This copula is the comonotonic copula. Now, let D be

a type of dependence and I = {1, ..., d}. Define IL = {i ∈ I | Di = L} and IU =

{i ∈ I | Di = L}. Let us assume that neither IL nor IU are empty. That is, we

assume perfect non-positive dependence (the case of perfect positive dependence

is covered in equation (3.1)). Then the associated D-copula is

CD(u1, ..., ud) = P
((
W ≤ min{ui}i∈IL

)
∩
(
W ≥ max{1− ui}i∈IU

)
)
.

It follows that, for min{ui}i∈IL
>max{1−ui}i∈IU

, this probability is equal to zero;

therefore, a general expression is

(3.2) CD(u1, ..., ud) = max
{

0, min{ui}i∈IL
+ min{ui}i∈IU

−1
}
.

In the bivariate case the associated (L,U)-copula CLU is equal to the Fréchet

lower bound for copulas, also known as the countermonotonic copula. Copulas

of this form appear in perfect non-positive dependence, see [20, Example 5.22].

In the following proposition we prove that, in d dimensions, the copulas of (3.1)

and (3.2) correspond not only to vectors of the form (W,−W,W, ...,W,−W ), but

to the use of strictly monotone transformations on a random variable. Because

of this, we call these copulas the monotonic copulas.

Proposition 3.1. Let Z be a random variable, and let {Ti}
d
i=1 be strictly

monotone functions, then the distributional copula of the vector X =
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(T1(Z), ..., Td(Z)) is one of the monotonic copulas of equations (3.1) or (3.2)

with D = (D1, ..., Dd),

Di =

{
L if Ti is strictly increasing

U if Ti is strictly decreasing
.

Conversely, consider a random vector X = (X1, ..., Xd) whose distributional

copula is a monotonic copula of equation (3.1) or (3.2) for certain D. Then there

exist monotone functions {Ti}
d
i=1 and a random variable Z such that

(3.3) (X1, ..., Xd)
d
=
(
T1(Z), ..., Td(Z)

)
,

the {Ti}
d
i=1 satisfy that Ti is strictly increasing if Di =L and strictly decreasing

if Di =U for i ∈ {1, ..., d}. In both cases the vector X is complement symmetric.

Proof: Let F be the distribution function of Z. Considering the uniform

random variable F (Z) it is clear that the copula of the d-dimensional vector

(Z, ..., Z) is the Fréchet upper bound copula min{ui}
d
i=1 of equation (3.1). The

result is then implied by Proposition 2.4.

The converse statement is a generalisation of [5, Theorem 3.1]. We have

that the distributional copula of X is a monotonic copula for certain D. Note that

the associated D-copula of X is the Fréchet upper bound copula. Let {αi}
d
i=1 be

any invertible monotone functions that satisfy αi is strictly increasing if Di =L

and strictly decreasing if Di =U for i∈ {1, ..., d}. Proposition 2.4 implies that the

copula of A = (α1(X1), ..., αd(Xd)) is the Fréchet upper bound copula.

According to [9, 6], there exists a random variable Z and strictly increasing

{βi}
d
i=1 such that

(
α1(X1), ..., αd(Xd)

) d
=
(
β1(Z), ..., βd(Z)

)
.

By defining Ti = α−1
i ◦βi for i ∈ {1, ..., d} we get the result.

In both cases the associated copulas of X are the monotonic copulas im-

plying that the vector is complement symmetric.

Regarding tail dependence, suppose the vector X has distributional copula

C∗ equal to a monotonic copula CD of equations (3.1) or (3.2) for certain D.

Considering Definition 2.3 of the associated copulas, this implies that C∗
D

is the

comonotonic copula. It follows that the D and D∁ tail dependence functions of

the vector X are

b∗D(w1, ..., wd) = b∗
D∁ (w1, ..., wd) = min{w1, ..., wd} .

The other associated copulas satisfy equation (3.2) for some D0. It follows that

the corresponding tail dependence functions are equal to zero.



General Multivariate Dependence Using Associated Copulas 19

3.2. Elliptically contoured copulas

We now analyse the dependence structure of elliptically contoured copulas.

We present the definition of this model, a result for its corresponding associated

copulas and the associated tail dependence functions of the Student’s t copula.

Elliptical distributions, were introduced by [17] and have been analysed by

several authors (see e.g. [8, 11]). They have the following form.

Definition 3.1. The random vector X = (X1, ..., Xd) has a multivariate

elliptical distribution, denoted as X ∼ Eld(µ,Σ, ψ), if for x = (x1, ..., xd)
′ its char-

acteristic function has the form

ϕ(x;µ,Σ) = exp(ix′µ) ψd

(
1

2
x′Σx

)
,

with µ a vector, Σ = (σij)1≤i,j≤d a symmetric positive-definite matrix and ψd(t)

a function called the characteristic generator.

Elliptical contoured distributions include a large number of distributions

(see [31, Appendix]). In the case when the joint density exists, several results

have been obtained (see [11, 2, 19]). The corresponding copula is referred to as

elliptical copula. This copula has also been subject to numerous analysis (see

[7, 1, 5, 3]). Note that the process of standardising the marginal distributions of

a vector uses strictly increasing transformations. From Proposition 2.3, we have

that the copulas associated to X ∼ Eld(µ,Σ, ψ) are the same as the copulas asso-

ciated to X∗∼Eld(0, R, ψ). Here R =
(
ρij =

σij√
σiIσjJ

)
1≤i,j≤d

is the corresponding

“correlation” matrix implied by Σ = (σij)1≤i,j≤d (see [5, Theorem 5.2] or [7, 3]).

Hence, we always assume X ∼ Eld(R,ψ) with R = (ρij)1≤i,j≤d.

In general, there is no closed-form expression for elliptical copulas but they

can be expressed as multivariate integrals of the joint density. In the following

proposition we prove an identity for the associated copulas of the elliptical copula.

Proposition 3.2. Let X∼Eld(R,ψ) as in Definition 3.1, with correlation

matrix R = (ρij)1≤i,j≤d, and let D be a type of dependence. Then the associated

D-copula of X is the same as the distributional copula of X+ ∼Eld(℘DR℘
′
D
, ψ),

with ℘D a diagonal matrix (all values in it are zero except for the values in its

diagonal) ℘D ∈Md×d, whose diagonal is p = (p1, ..., pd) with

pi =

{
1 if Di = L

−1 if Di = U
,

for i ∈ {1, ..., d}.
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Proof: The vector ℘DX is equal to (T1(X1), ..., Td(Xd)) with Ti(x) = pix,

i ∈ {1, ..., d}. Using Proposition 2.4, the distributional copula of ℘DX is the

associated D-copula of X. From the stochastic representation of X (see [8]), it

follows that ℘DX ∼ Eld(℘DR℘
′
D
, ψ) (see [5, Theorem 5.2]).

Given that C = Ĉ in elliptical copulas, we have that these copulas are

symmetric. This can be easily verified considering that ℘
D∁ = −℘D, for every

dependence D. This implies ℘
D∁ ·R · ℘′

D∁
= ℘D ·R · ℘′

D
. Hence, both CD and

C
D∁ are equal to the distributional copula of X+ ∼Eld(℘DR℘

′
D
, ψ).

Proposition 3.2 makes it possible to use the results of elliptical copulas in

associated copulas. This includes the analysis of tail dependence. In the bivariate

case [18, 26] studied positive tail dependence in elliptical copulas under regular

variation conditions. The Gaussian copula does not account for positive tail

dependence, Proposition 3.2 implies that it does not account for tail dependence

for any D. In contrast the Student’s t copula does account for tail dependence

(see e.g. [14, 23, 3, 20]). The Student’s t copula with ν degrees of freedom and

correlation matrix R is expressed in terms of integrals and density tν,R as

C(u) =

t−1
ν (u1)∫

−∞

···

t−1
ν (ud)∫

−∞

Γ
(

ν+d
2

)

Γ
(

ν
2

)√
(πν)d |R|

(
1 +

x′R−1x

ν

)− ν+d
2

dx ,

with u = (u1, ..., ud) and x = (x1, ..., xd)
′. [23] analysed in detail the extreme value

properties of this copula and obtained an expression for the lower and upper tail

dependence functions among other results. More recently, in the bivariate case,

[14] obtained an expression for the D = (L,U) and the D = (U,L) tail depen-

dence coefficients proving that this copula accounts for negative tail dependence.

We now present the expression for the associated D-tail dependence function of

the multivariate Student’s t copula. This result follows from [23, Theorem 2.3]

and Proposition 3.2.

Proposition 3.3. Let X = (X1, ..., Xd) have multivariate t distribution

with ν degrees of freedom, and correlation matrix R = (ρij)1≤i,j≤d, that is X ∼

Td,ν,R. Let D = (D1, ..., Dd) be a type of dependence. Then the associated D-tail

dependence function bD is given by

bD(w) =

d∑

j=1

wj Td−1,ν+1,R∗

j

(√
ν + 1

1 − ρ2
ij

[
−

(
wi

wj

)− 1

ν

+ pipj ρij

]
, i∈ Ij

)
,

with

R∗j =




1 ··· ρ∗1,j−1;j ρ∗1,j+1;j ··· ρ∗1,d;j
...

. . .
...

...
...

...
ρ∗j−1,1;j ··· 1 ρ∗j−1,j+1;j ··· ρ∗j−1,d;j

ρ∗j+1,1;j ··· ρ∗j+1,j−1;j 1 ··· ρ∗j+1,j−1;j
...

...
...

...
. . .

...
ρ∗d,1;j ··· ρ∗d,j−1;j ρ∗d,j+1;j ··· 1




;
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ρ∗i,k;j = pipk
ρik−ρij ρkjq
1−ρ2

ij

q
1−ρ2

kj

, the modified partial correlations; Ij = I − {j} and

pj =

{
1 if Dj = L

−1 if Dj = U
,

for j ∈ {1, ..., d}.

Proof: Proposition 3.2 implies that the associated D-tail dependence

function of the random vector X ∼ Td,ν,R is the lower tail dependence function of

the vector X+ ∼ Td,ν,℘DR℘′

D
. The modified correlation matrix is ℘DR℘

′
D

= R∗ =

(ρ∗ij)1≤i,j≤d, it follows that

(ρ∗ij)1≤i,j≤d = (pipj ρij)1≤i,j≤d .

Hence (ρ∗ij)
2 = p2

i p
2
jρ

2
ij = 1 · 1 · ρ2

ij = ρ2
ij . Under this change, the partial correla-

tions are modified as follows:

ρ∗i,k;j = pipk

ρik − ρij ρkj√
1 − ρ2

ij

√
1 − ρ2

kj

.

The result is then implied by [23, Theorem 2.3].

This proposition implies that the Student’s t copula accounts for all 2d

dependencies simultaneously. It can happen that we have negative dependence

and positive tail dependence. In that case, the variables might generally exhibit

negative dependence but, when it comes to extreme values, they can also be

positively dependent.

3.3. Archimedean copulas

Now we analyse the dependence structure of Archimedean copulas. We

present the bivariate and multivariate definition of these copulas. We then prove

that, when the generator is strict, they can only account for positive tail depen-

dence. Finally, we present three examples with non-strict generators that account

for negative tail dependence. For the analysis of positive tail dependence in these

copulas we refer to [15, Propositions 2.5 and 3.3], [13, Theorems 4.12 and 4.15]

and [22, Corollary 5.4.3]

Much has been written on Archimedean copulas and their applications to

different areas of statistics. [28] provide an excellent monography of their history.

For further references on their analysis we refer to the seminal works of [13, 22].

[13] analyses several examples with strict generators and [22] extends the analysis
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to non-strict generators. In order to consider both cases, we follow the notation

used in [22].

A bivariate Archimedean copula is defined in terms of a generator, which

we denote ϕ, in the following way:

(3.4) C(u1, u2) = ϕ[−1]
(
ϕ(u1) + ϕ(u2)

)
,

where ϕ[−1](u) =

{
ϕ−1(u) if 0 ≤ u ≤ ϕ(0)
0 if ϕ(0) ≤ u ≤ ∞

, is the pseudo-inverse of ϕ. In or-

der for this function to be a copula, the generator must satisfy the following

properties:

i) ϕ : [0, 1] → R+ ∪∞,

ii) ϕ is continuous, strictly decreasing and convex,

iii) ϕ(1) = 0.

ϕ is called a strict generator when ϕ(0) = ∞. Note that, when ϕ is strict,

ϕ[−1] = ϕ−1. (3)

[16] proved that a strict generator gives a copula in any dimension d if

and only if the generator inverse ϕ−1 is completely monotonic. In that case, the

multivariate Archimedean copula is defined as

(3.5) C(u1, ..., ud) = ϕ−1

(
d∑

i=1

ϕ(ui)

)
,

In the next proposition we prove that, by construction, Archimedean copulas

with strict generators, do not account for any non-positive tail dependence.

Proposition 3.4. Let C be an Archimedean copula with differentiable

strict generator ϕ and let D be a non-positive type of dependence. Then, if the

corresponding tail dependence function bD exists, it is equal to zero.

Proof: Let C be a bivariate Archimedean copula with strict generator ϕ.

As we pointed out before, given that ϕ is strict, ϕ[−1] = ϕ−1. We begin this proof

with the bivariate case and prove that λLU = 0.

Let G(h) =
ϕ−1

(
ϕ(h) + ϕ(1− h)

)

h
, by definition

λLU = lim
h→0

CLU (h, h)

h

= lim
h→0

h− C(h, 1− h)

h
(3.6)

= 1 − lim
h→0

G(h) .

3In [13], the construction of Archimedean copulas covers the strict generator case when ϕ−1

is a Laplace transform, they denote such Laplace transform as φ.
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Along with the three properties of the generator ϕ mentioned above, in this

case it is strict and differentiable. This implies the following for ϕ−1:

i) ϕ−1 is differentiable,

ii) ϕ−1 is strictly decreasing and convex,

iii) lim
s→∞

ϕ−1(s) = 0.

Note that property iii) is only satisfied when the generator is strict, the

behaviour of ϕ−1 around ∞ is fundamental in this proof. If we visualise the

graphic of a function with such three features, it is intuitively straightforward

that the slope of its tangent will tend to zero as s→ ∞, that is lim
s→∞

(ϕ−1)′(s) = 0.

To prove this, note that, from ii), (ϕ−1)′ is always negative and increasing. This

implies (ϕ−1)′(s) converges, as s→ ∞, to c ≤ 0. Suppose c < 0, this would imply

that ϕ−1 crosses the x-axis. So it follows that lim
s→∞

(ϕ−1)′(s) = 0. Hence, we have

lim
s→∞

(ϕ−1)′(s) = lim
x→∞

lim
y→0

ϕ−1(x+ y) − ϕ−1(x)

y
(3.7)

= 0 .

Also, ϕ is differentiable, strictly decreasing and ϕ(1) = 0, hence we have

(3.8) −∞ < ϕ′(1) < 0 .

If we take x(h) = ϕ(h) and y(h) = ϕ(1 − h) in equation (3.7), we get:

0 = lim
h→0

ϕ−1
(
ϕ(h) + ϕ(1− h)

)
− ϕ−1

(
ϕ(h)

)

ϕ(1− h)

= lim
h→0

hG(h) − h

ϕ(1− h) − ϕ(1)

=
lim
h→0

1 −G(h)

ϕ′(1)
.

From equation (3.6) and inequality (3.8), this this implies λLU = 0. Analo-

gously, we get λUL = 0. The multivariate extension is straightforward: let C be a

multivariate Archimedean copula and D a non-positive dependence. Then, there

exist i1< i2 such thatDi1 6=Di2 . Let C(i1,i2) be the bivariate marginal copula of C.

Hence λ(i1,i2),(Di1
,Di2

) ≥ λD and, given that C(i1,i2) is also Archimedean, it satis-

fies λ(i1,i2),(L,U) = λ(i1,i2),(U,L) = 0. Then λD = 0 follows.

The same holds for other multivariate constructions based on nesting of

Archimedean copulas, such as the ones described in [13, Section 4.2].

When the generator is non-strict, Archimedean copulas can account for

non-positive tail dependence. This is the case in the three bivariate examples
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presented in Table 2. These examples can be found in [22, Section 4.2]. The first

two examples are the one-parameter copulas 4.2.7 and 4.2.8 in [22]. The third

example is a two-parameter family of copulas known as the rational Archimedean

copulas. The construction of these copulas can be found in [22, Subsection 4.5.2].

The expression is equation (4.5.9) and the generator is studied in p. 149 therein.

Table 2: Examples of Archimedean copulas with non-strict generators
that account for negative tail dependence.

Generator ϕ(s) Copula bLU and bUL

− ln(θs + 1 − θ) ,
0 < θ ≤ 1

max
n

θu1u2 + (1 − θ) (u1 + u2 − 1), 0
o min

�
w1, (1 − θ)w2

	
,

min
�
(1 − θ) w1, w2

	
1 − s

1 + (θ−1)s
,

θ ≥ 1
max

�
θ2u1u2 − (1 − u1) (1 − u2)

θ2 − (θ − 1)2 (1 − u1) (1 − u2)
, 0

�
min

�
w1,

w2

θ2

	
,

min
�

w1

θ2 , w2

	
see [22, p. 149],

0 ≤ β ≤ 1− |α|
max

�
u1u2 − β(1 − u1) (1 − u2)

1 − α(1 − u1) (1 − u2)
, 0

�
min

�
w1, βw2

	
,

min
�
βw1, w2

	
3.4. Use of rotations to model general tail dependence

We now discuss a method to model an arbitrary type of tail dependence

using a copula model. The condition on the copula model is to account for, at

least, one type of tail dependence. Similar procedures have been suggested in

[25, Section 2.4] and [14, Example 8.1]. To illustrate how this procedure works,

consider the bivariate Generalised Clayton copula, CGC (4). This Archimedean

copula accounts for upper tail dependence. Suppose that we are trying to model

data that exhibits lower-upper tail dependence with a model C∗ and want to use

CGC and the fact that it accounts for upper tail dependence. The use of this

procedure implies defining C∗
LU

= ĈGC. And it holds that C∗ accounts for lower-

upper tail dependence. Using Proposition 2.1, C∗(u1, u2) = u1 −C
GC(1−u1, u2).

Note that the fact that CGC also accounts for lower tail dependence implies that

C∗ accounts for upper-lower tail dependence. So, before using this technique, the

whole dependence structure of the model and the data must be analysed.

We generalise this idea to model arbitrary D◦-tail dependence using a cop-

ula model C that accounts for D+-tail dependence. Let AX = {CD | D ∈ ∆} be

the associated copulas of model C, we know that lim
h→0

C
D+ (h,...,h)

h
> 0. Now, define

a D◦-associated copula as C∗
D◦ = CD+ . By construction, as in the example, this

4 CGC
θ,δ (u, v) =

n�
(u−θ −1)δ + (v−θ −1)δ

� 1

δ + 1
o
−

1

θ

.
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copula model accounts for D◦-tail dependence. The associated copulas, A∗
X

=

{C∗
D
| D∈∆}, of this model can be obtained from C∗

D◦ , using Proposition 2.1.

Note that the set A∗
X

is the same as AX, but with rotated dependencies. The

whole dependence structure of model C∗ is implied by C.

4. CONCLUSIONS AND FUTURE WORK

In this section we discuss the main findings of this work and some future

lines of research. In Section 2 we introduce the concepts to analyse, in the mul-

tivariate case, the whole dependence structure among random variables. We

consider the 2d different orthants of dimension d. We first introduce general

dependence, the D-probability functions and the associated copulas. We then

present a version of Sklar’s theorem that proves that the associated copulas link

the D-probability functions with their marginals. It is through this result that we

are able to generalise the use of the distributional and survival copulas for positive

dependence. In this generalisation we use the associated copulas to cover general

dependence. We introduce an expression for the relationship among all associated

copulas and present a proposition regarding symmetry and exchangeability. After

that, we prove that they are invariant under strictly increasing transformations

and characterise the copula of a vector after using monotone transformations.

At the end of this section, we introduce the associated tail dependence functions

and associated tail dependence coefficients of a random vector. With them we

can analyse tail dependence in the different orthants.

In Section 3 we use the concepts and results obtained in Section 2 to anal-

yse three examples of copula models. The first example corresponds to the per-

fect dependence models. We begin this analysis with the independence case

and then consider perfect dependence, including perfect non-positive dependence.

We find and expression for their copulas, which are a generalisation of the Fréchet

copula bounds of the bivariate case. Given that they correspond to the use of

strictly monotone transformations on a random variable, we call them the mono-

tonic copulas. The second example corresponds to the elliptical copulas. In this

case, we characterise the corresponding associated copulas. We then present an

expression for the associated tail dependence function of the Student’s t copula.

This result proves that this copula model accounts for tail dependence in all

orthants. The third example corresponds to Archimedean copulas. In this case,

we prove that, if their generator is strict, they can only account for positive tail

dependence. We then present three examples of Archimedean copulas with non-

strict generators that account for negative tail dependence. After that we discuss

a method for modelling arbitrary tail dependence using copula models.

There are several areas where future research regarding general dependence

is worth being pursued. For instance, the use of D-probability functions is not
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restricted to copula theory. The analysis of probabilities in the multivariate case

has sometimes been centered in distribution functions, but, just like survival

functions, D-probability functions can serve different purposes in dependence

analysis. Another possibility is the use of nonparametric estimators to measure

non-positive tail dependence, as the use of these estimators has been restricted

to the lower and upper cases. The results obtained in this work are useful in the

understanding of the dependence structure implied by different copula models.

As we have seen, without analysing general dependence, the analysis of these

models is incomplete. Therefore, it is relevant to extend this analysis to models

such as the hierarchical Archimedean copulas and vine copulas. The use of vine

copulas has proven to provide a flexible approach to tail dependence and account

for asymmetric positive tail dependence (see e.g. [24, 15]).
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Publications de l’Institut de Statistique de L’Université de Paris, 8(1), 229–231.
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