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Abstract:

• The aim of this paper is to discuss the presence of the Taylor property in the class
of simple bilinear models. Considering strictly and weakly stationary models, we
deduce autocorrelations of the process and of its square and analyze the presence of
the Taylor property in non-negative bilinear models considering several error process
distributions, which are chosen according to the kurtosis value. For each one of
these error process distributions, the class of parameterizations for the corresponding
bilinear model satisfying Taylor property is obtained. The analysis of the relationship
between the Taylor property and leptokurtosis in these bilinear processes allows to
conclude that this property is a consequence of heavy tailed model distributions.

With the goal of extending this research to real valued bilinear models, a simulation
study is developed in a class of such models with symmetrical innovations.
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1. INTRODUCTION

The search for non-trivial empirical regularities in time series, usually called

stylized facts, has been the subject of several studies in order to identify classes

of time series models that conveniently capture such empirical properties.

A stylized fact detected by Taylor ([9]) when he analyzed 40 returns series is

known as the Taylor effect. He observed that, for most of the returns series,

denoted by Xt for instant t, the sample autocorrelations of the absolute re-

turns, ρ̂|X|(n) = ĉorr(|Xt|, |Xt−n|), were larger than those of the squared returns,

ρ̂X2(n) = ĉorr(X2
t , X2

t−n), for n ∈ {1, ..., 30}. More recently, Gonçalves et al. ([2])

also recorded Taylor effect in the physical time series of plage region areas de-

scribing solar activity.

We point out that there is still little research on the theoretical counterpart

on this empirical property due to the difficulty of handling the true autocorrela-

tions of time series models. For example, this theoretical counterpart was studied

by He and Teräsvirta ([5]) on conditionally Gaussian absolute value generalized

ARCH (AVGARCH) models, assuring its presence for some of these models.

More precisely, they called the theoretical relation ρ|X|(n) > ρX2(n), n ≥ 1, the

Taylor property and concentrated their study on the autocorrelation of lag 1.

Analogously, Gonçalves, Leite and Mendes-Lopes ([1]) studied the presence of

the Taylor property in TARCH models, concluding that this property is satisfied

when n = 1, for some first-order models. Generalizing these papers, Haas ([4])

proposed a methodology for identifying the Taylor property in AVGARCH(1, 1)

models at all lags.

The research of this property within heteroskedastic models is mainly re-

lated to the empirical facts observed and the good fit of those models to financial

time series. The established results have shown a strong connection between the

Taylor property and the kurtosis of the process; in fact, its presence seems to be

more related to the leptokurtic character of those models than to its conditional

heteroskedascity. This interpretation is consistent with the leptokurtic nature of

the real series presenting such stylized fact. Thus, we believe that it is important

to assess the presence of the Taylor property in other classes of processes with

relevance in time series analysis as it is the case of bilinear ones, which have also

been proven to be suitable in financial and physical time series modeling ([3],

p. 181).

In this paper we consider the simple bilinear diagonal model

(1.1) Xt = βXt−k εt−k + εt , k > 0 ,

where β is a real parameter and (εt, t ∈ Z) a sequence of i.i.d. random variables,

designated here by error process.
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We state sufficient conditions for the strict and weak stationarity of the

processes X = (Xt, t ∈ Z) and X2 = (X2
t , t ∈ Z), and we derive expressions for

the moments of X up to the 4th order. We also consider the study of the Taylor

property assuming that β > 0 and that the error process is non-negative. In

fact, there has been considerable interest in non-negative bilinear models. For

instance, Pereira and Scotto ([7]) studied some properties of the simple first-order

bilinear diagonal model (k = 1) driven by exponentially distributed innovations.

Also Zhang and Tong ([10]) have examined some distributional properties of a

simple first-order non-negative bilinear model considering for the error process

the uniform distribution in (0, 1).

The remainder of the paper is organized as follows. In Section 2 we establish

sufficient conditions under which X and X2 are strictly and weakly stationary.

Moreover, the moments of X up to 4th order are evaluated and a working example

on this matter is presented in appendix. In Section 3, the Taylor property in first-

order bilinear diagonal models with non-negative error process is analyzed. This

study is developed considering several distributions for the error process with

significantly different kurtosis values. A simulation study evaluating the Taylor

property in other real-valued simple bilinear models is presented in Section 4.

Some concluding remarks and future developments are given in Section 5.

2. STATIONARITY AND MOMENTS OF X AND X2

In this section we consider the simple bilinear model defined by (1.1) and

we denote µi = E(εi
t), i ∈ N.

Proposition 2.1. Suppose that µ4 and E(ln |εt|) exist. If β2 µ2 < 1 then

the process X is strictly and weakly stationary.

Proof: The strict stationarity of the process X is achieved by proving that

Xt = Yt, a.s., with

Yt = εt +
+∞∑

n=1

Tn ,

where, for each n ∈ N, Tn = Tn(t) is given by

Tn = βnεt−nk

n∏

j=1

εt−jk .

The proof of this result is similar to that of Theorem 1 in Quinn ([8]), as the

condition β2µ2 < 1 implies Quinn’s condition ln |β| + E(ln |εt|) < 0 by applying

Jensen’s inequality to the random variable ε2
t .
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To prove the weak stationarity, we now verify that E(Y 2
t ) < +∞. We have

E(Y 2
t ) = E



(

εt +
+∞∑

i=1

Ti

)2



(2.1)

≤ E(ε2
t ) + 2

∞∑

i=1

E(|εt| |Ti|) +
∞∑

i=1

∞∑

j=1

E(|TiTj |) .

Under the given conditions, each series in (2.1) is convergent. In fact, let us

consider, for example, the series
∞∑

i=1

∞∑

j=1

E(|TiTj |).

For each i, j ∈ N, we have

E(|TiTj |) ≤ |β|i+j

[
E
(
ε4
t−ik ε2

t−k ε2
t−2k ... ε2

t−(i−1)k

)]1/2

[
E
(
ε4
t−jk ε2

t−k ε2
t−2k ... ε2

t−(j−1)k

)]1/2

= µ4µ−1
2

[(
β2µ2

)1/2
]i+j

,

by Schwarz’s inequality and the independence of the r.v.’s εt, t∈Z. As
(
β2µ2

)1/2
<1,

the series is convergent.

Taking into account the equality Xt = Yt, a.s., and the strict stationarity of

the process X, we conclude that E(X2
t ) exists and that X is weakly stationary.

Proposition 2.2. Suppose that E(ln |εt|) and µ8 exist. If β4µ4 < 1 then

the process X2 is strictly and weakly stationary.

Proof: The condition β4µ4 < 1 implies β2µ2 < 1, by Schwarz’s inequality,

which implies in turn the strict stationarity of X and, consequently, of X2. The

proof of the weak stationarity of X2 is analogous to the previous one. We have

E(Y 4
t ) ≤ E(ε4

t ) +
∞∑

i=1

∞∑

j=1

∞∑

p=1

∞∑

q=1

E(|TiTjTpTq|) + 4
∞∑

i=1

E(|ε3
t | |Ti|)

+ 4
∞∑

i=1

∞∑

j=1

∞∑

p=1

E(|εt| |TiTjTp|) + 6
∞∑

i=1

∞∑

j=1

E(ε2
t |TiTj |) .

Let us consider, for example, the series
∞∑

i=1

∞∑

j=1

∞∑

p=1

∞∑

q=1

E(|TiTjTpTq|), which

is a sum of series of the types
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(i)
∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

E(|TiTjTpTq|) ,

(ii)
∞∑

i=1

∞∑

p=1

E(T 2
i T 2

p ) ,

(iii)
∞∑

i=1

∞∑

j=i+1

∞∑

p=1

E(|TiTj |T 2
p ) .

Concerning (i), as j > i and q > p, we have

E(|TiTjTpTq|) = E
[
(|TiTj |)(|TpTq|)

]

≤
[
E
(
ε4
t−ikε

4
t−lε

4
t−l−k...ε

4
t−l−(i−1)kε

2
t−jkε

2
t−l−ik...ε

2
t−l−(j−1)k

)]1/2

[
E
(
ε4
t−pkε

4
t−lε

4
t−l−k...ε

4
t−l−(p−1)kε

2
t−qkε

2
t−l−pk...ε

2
t−l−(q−1)k

)]1/2
,

by Schwarz’s inequality.

Taking into account the independence of the random variables εt, we have,

for i, j ∈ N, j > i,

E
(
ε4
t−ik ε4

t−l ε
4
t−l−k ... ε4

t−l−(i−1)k ε2
t−jk ε2

t−l−ik ... ε2
t−l−(j−1)k

)
= µi+1

4 µj−i+1
2 .

Then

∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

E(|TiTjTpTq|)

≤
∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

|β|i+j+p+q (µi+p+2
4 µj−i+q−p+2

2

)1/2

=
∞∑

i=1

∞∑

j=i+1

∞∑

p=1

∞∑

q=p+1

µ2µ4

[(
β4µ4

)1/2
]i+p[(

β2µ2

)1/2
][(j+q)−(i+p)]

.

As (β4µ4)
1/2 < 1 and (β2µ2)

1/2 < 1, the series in (i) is convergent. The conver-

gence of the series (ii) and (iii) is proved in a similar way. Then we conclude that

E(X4
t ) < +∞, t ∈ Z. As the process X2 is strictly stationary and E(X4

t ) exists,

then it is weakly stationary.

Let us now evaluate the moments up to the 4th order of the process X

given by (1.1).
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Proposition 2.3. If β4µ4 < 1 and µ8 exists then the nth moment of Xt,

n ≤ 4, can be expressed as

(2.2) E(Xn
t ) =

n∑

i=0

(
n

i

)
βn−i µi E(Xn−i

t εn−i
t ) ,

where

(2.3) E(Xn
t εn

t ) =
1

1 − βnµn

n∑

i=1

(
n

i

)
βn−i µn+i E(Xn−i

t εn−i
t ) , n ≤ 4 .

Proof: For n ≤ 4, we have

E(Xn
t ) =

n∑

i=0

(
n

i

)
βn−i E

[
εi
t (Xt−kεt−k)

n−i
]

=
n∑

i=0

(
n

i

)
βn−i µi E(Xn−i

t εn−i
t ) ,

since the process (Xtεt, t ∈ Z) is strictly stationary due to the fact that Xtεt is

a measurable function of εt, εt−1, ... . Now we need to evaluate E(Xn
t εn

t ), n ≤ 4.

E(Xn
t εn

t ) =
n∑

i=0

(
n

i

)
βn−i E

[
εi
t (Xt−k εt−k)

n−i εn
t

]

=
n∑

i=0

(
n

i

)
βn−i E(εn+i

t )E(Xn−i
t εn−i

t )

= βnµnE(Xn
t εn

t ) +
n∑

i=1

(
n

i

)
βn−i µn+i E(Xn−i

t εn−i
t )

and the result follows.

It is easy to verify that E(Xtεt) = µ2/(1 − βµ1). The values E(Xn
t εn

t ),

n = 1, 2, 3, are obtained recursively by using the previous equation; and finally,

we achieve E(Xn
t ), n ≤ 4. A working example to illustrate these evaluations is de-

veloped in appendix for a first order bilinear model with exponentially-distributed

error process.

We note that β4µ4 < 1 implies |βnµn| < 1, n = 1, 2, 3, by Schwarz’s inequal-

ity.
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3. THE TAYLOR PROPERTY IN FIRST-ORDER

NON-NEGATIVE BILINEAR MODELS

3.1. Preliminary results

In this section we consider the first-order non-negative bilinear model

(3.1) Xt = βXt−1εt−1 + εt , t ∈ Z ,

where β > 0 and (εt, t ∈ Z) is a sequence of non-negative i.i.d. random variables.

We assume that E(ln εt) and µ8 exist and that β4µ4 < 1 in order to guar-

antee that both processes, X and X2, are strictly and weakly stationary.

In this context, the Taylor property for n = 1 establishes that ρX(1) >

ρX2(1), where ρX(1) and ρX2(1) denote, respectively, the autocorrelations of lag 1

of the processes X and X2. It is enough to evaluate E(XtXt−1) and E(X2
t X2

t−1)

in order to obtain these autocorrelations since we derived E(Xi
t), i = 1, 2, 3, 4, in

the previous section. Using (3.1) and the stationarity of the involved processes,

we have

E(XtXt−1) = βE(X2
t εt) + E(Xt−1εt)

= βE
(
β2X2

t−1ε
2
t−1εt + 2βXt−1εt−1ε

2
t + ε3

t

)
+ E(Xt−1εt) .

Taking into account the independence of the random variables εt, t ∈ Z, and the

strict stationarity of the related processes, we have E(X2
t−1ε

2
t−1εt) = µ1E(X2

t ε2
t )

and E(Xt−1εt−1ε
2
t ) = µ2E(Xtεt). Then

E(XtXt−1) = β3µ1E(X2
t ε2

t ) + 2β2µ2E(Xtεt) + µ1E(Xt) + βµ3 .

Using an analogous procedure, we obtain

E(X2
t X2

t−1) = β4E1 + 2β3E2 + 2β3µ1E3 + 4β2µ1E4 + β2E5 + 2βµ1E6

+ β2µ2E(X2
t ε2

t ) + 2βµ1µ2E(Xtεt) + µ2
2 ,

where

E1 = E(X2
t X2

t−1ε
2
t ε

2
t−1) = β2µ2E(X4

t ε4
t ) + 2βµ3E(X3

t ε3
t ) + µ4E(X2

t ε2
t ) ,

E2 = E(X2
t Xt−1ε

3
t εt−1) = β2µ3E(X3

t ε3
t ) + 2βµ4E(X2

t ε2
t ) + µ5E(Xtεt) ,

E3 = E(XtX
2
t−1εtε

2
t−1) = βµ1E(X3

t ε3
t ) + µ2E(X2

t ε2
t ) ,

E4 = E(XtXt−1ε
2
t εt−1) = βµ2E(X2

t ε2
t ) + µ3E(Xtεt) ,

E5 = E(X2
t ε4

t ) = β2µ4E(X2
t ε2

t ) + 2βµ5E(Xtεt) + µ6 ,

E6 = E(Xtε
3
t ) = βµ3E(Xtεt) + µ4 .

Finally, the results of the previous section allow us to obtain the values of

E(XtXt−1) and E(X2
t X2

t−1) in terms of the moments of εt.
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3.2. The Taylor property and the error process

In the following, we investigate the presence of the Taylor property in Model

(3.1), considering some non-negative distributions for the error process, namely,

the uniform distribution in ]0, α[, the exponential distribution in ]0, +∞[ with

mean α, and the Pareto distribution with density f(x) =
ναν

xν+1
I]α,+∞[(x), for

ν = 12 and ν = 9. In all cases, α is a non-negative parameter and the condition

E(| ln εt|) < +∞ is satisfied.

The choice of these distributions takes into account the fact that the Taylor

property seems to be related with the kurtosis value of the process. In this paper,

we consider that the kurtosis of a random variable Z is given by KZ = M4/M
2
2 −3,

where Mn is the nth central moment of Z, n = 2, 4, providing that M4 exists

(KZ is also called “excess kurtosis”). The uniform distribution is platykurtic with

a constant kurtosis value equal to −1.2, while the exponential distribution is

leptokurtic with a constant kurtosis value equal to 6. On the other hand, the

kurtosis of the Pareto distribution depends on the parameter ν and it is given by
6(ν3+ν2−6ν−2)

ν(ν−3)(ν−4) , ν > 4. This is a decreasing function of ν that goes to 6 when ν

tends to infinity, and to infinity when ν tends to 4. So, the Pareto distribution is

leptokurtic, no matter what is the value of ν.

We also point out that, in all cases, the condition β4µ4 < 1 and the values

of ρX(1) and ρX2(1) can be written in terms of r = αβ.

In each case, we also present the value of the kurtosis of the process X given

by (3.1), which also depends on r = αβ, as well as the corresponding graphic

representation as a function of r. We point out that, in all these models, the

leptokurtosis of the error process implies the same property for the process X.

In what concerns the Taylor property and kurtosis of X, comparisons are made

separately between the first two distributions, uniform and exponential, and also

between the two referred Pareto distributions.

3.2.1. Error process with uniform distribution in ]0, α[

In this case, the condition β4µ4 < 1 is equivalent to 0 < r < 4
√

5 ≃ 1.495

and we obtain

ρX(1) =
r
(
−180 + 120r − 51r2 − 4r3 + r4

)

−180 + 180r − 177r2 + 12r3 + 7r4
,

ρX2(1) = − r

12

NU (r)

DU (r)
,
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with

NU (r) = −604800 − 480600 r − 155700 r2 − 257400 r3 − 2490 r4 + 48525 r5

− 6270 r6 + 6810 r7 + 10620 r8 + 11384 r9 + 4012 r10 − 586 r11

+ 94 r12 − 53 r13 + 6 r14 ,

DU (r) = 50400 + 12600 r + 35700 r2 + 40200 r3 + 13490 r4 + 14015 r5 + 8360 r6

− 5210 r7 − 5999 r8 − 2407 r9 − 720 r10 + 114 r11 + 177 r12 − 8 r13 .

From Figure 1(a), we can see that the Taylor property is present for values

of r in the interval1
]
1.1868987, 4

√
5
[
. So, for a fixed α, the Taylor property is

achieved for parameterizations of Model (3.1) such that

β ∈
]

1.1868987

α
,

4
√

5

α

[
.

Figure 1: Graphs from ρX(1) − ρX2(1) (a) and KU (r) (b), 0 < r < 4
√

5.

For Model (3.1) with such an error process, the kurtosis is given by

KU (r) =
−3 (−3 + r2)

7 (−4 + r3) (−5 + r4)

N∗
U (r)

D∗
U (r)

− 3 ,

where

N∗
U (r) = 907200 − 1814400 r + 4284000 r2 − 4510800 r3 + 3254460 r4

− 2030520 r5 + 1973540 r6 − 617175 r7 − 185700 r8 + 371005 r9

− 236308 r10 + 78747 r11 − 11496 r12 + 511 r13 ,

D∗
U (r) =

(
−180 + 180 r − 177 r2 + 12 r3 + 7 r4

)2
.

From Figure 1(b), we observe that the kurtosis of this model is an increasing

function of r and that the model is leptokurtic for r > 0.8 (approx.). We also

observe that the Taylor property occurs for large values of the kurtosis, namely

for KU (r) > 4.403 (≃ KU (1.1868987)).

1The value 1.1868987 was obtained with an approximation error inferior to 5×10−9.
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3.2.2. Error process with exponential distribution with mean α (in ]0, +∞[)

The condition β4µ4 < 1 is now equivalent to 0 < r < 1
4
√

24
≃ 0.4518. In this

case,

ρX(1) =
2r (2 − 3r + 7r2 − 6r3 + 2r4)

1 − 2r + 19r2 − 20r3 + 6r4
,

ρX2(1) = 2r
NE(r)

DE(r)
.

with

NE(r) = −5 − 80 r + 65 r2 − 112 r3 − 1184 r4 − 5774 r5 + 10848 r6 + 12720 r7

− 9408 r8 − 17880 r9 − 16272 r10 + 52992 r11 + 9216 r12

− 46656 r13 + 17280 r14 ,

DE(r) = −5 + 2 r − 21 r2 − 602 r3 − 9060 r4 + 11126 r5 + 13252 r6 − 26448 r7

+ 16368 r8 + 13896 r9 − 12192 r10 + 13824 r11 − 12672 r12 + 4032 r13 .

So, when the errors are exponentially distributed with mean α, Model (3.1)

presents the Taylor property for parameterizations such that2

β ∈
]
0,

0.0695566

α

[
∪
]
0.1437879

α
,

1
4
√

24 α

[
.

This conclusion is illustrated in Figure 2(a). In Figure 2(b), we have the graphic

representation of the kurtosis of Model (3.1) with exponential errors, which is

given by

KE(r) =
−3 (−1 + 2r2)

(−1 + 6r3) (−1 + 24r4)

N∗
E(r)

D∗
E(r)

− 3 ,

where

N∗
E(r) = 3 − 12 r + 52 r2 − 134 r3 + 11815 r4 − 36752 r5 + 44802 r6 + 1062 r7

− 42648 r8 + 17028 r9 + 12240 r10 + 5616 r11 − 17280 r12 + 6048 r13 ,

D∗
E(r) =

(
1 − 2 r + 19 r2 − 20 r3 + 6 r4

)2
.

As in the previous case, the kurtosis of Model (3.1) is an increasing function

of r but the process X is always leptokurtic in this case. Again, we observe that

large kurtosis values correspond to large values of the difference ρX(1) − ρX2(1).

In fact, the Taylor property is clearly present in this model for kurtosis values

greater than 13 (≃ KE(0.16)).

2The values 0.0695566 and 0.1437879 were obtained with an approximation error inferior to
5×10−8.
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Figure 2: Graphs from ρX(1)− ρX2(1) (a) and KE(r) (b), 0 < r < 1
4
√

24
.

We also observe that the kurtosis of the process X is larger when the errors

are exponentially distributed than when they are uniformly distributed, corre-

sponding to an analogous relation between the kurtosis of those error processes.

The Taylor property seems to emerge in a relatively stronger way when the kur-

tosis of X increases.

3.2.3. Error process with Pareto density f(x) =
12 α12

x13
I]α,+∞[(x)

The region of existence of the autocorrelations in terms of r = αβ is now

defined by 0 < r < 4

√
2
3 ≃ 0.9036. We have

ρX(1) =
44 r (6050 − 10230 r + 13035 r2 − 7524 r3 + 1296 r4)

3 (36300 − 79200 r + 219255 r2 − 171160 r3 + 29472 r4)
,

ρX2(1) =
r

55

NP12(r)

DP12(r)
,

with

NP12(r) = −7043652000 − 5638479000 r − 1900483200 r2 − 6228372150 r3

− 3064649280 r4 + 2622844140 r5 + 24533447400 r6

+ 19854650865 r7 + 11360213480 r8 − 16340416020 r9

− 30235824828 r10 + 23037530976 r11 + 7650162960 r12

− 11215587456 r13 + 2802615552 r14 ,

DP12(r) = −58697100 + 14229600 r − 142425360 r2 − 468153840 r3

− 218936564 r4 + 536116224 r5 + 616017864 r6

+ 374454192 r7 + 130906149 r8 − 805701976 r9

− 15605040 r10 + 401099652 r11

− 245871648 r12 + 48736320 r13 .
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Concerning the kurtosis of this model, it is given by

KP12(r) =
−2(−5 + 6r2)

49(−3 + 4r3) (−2 + 3r4)

N∗
P12(r)

D∗
P12(r)

− 3 ,

where

N∗
P12(r) = 599933276250 − 2617890660000 r + 4970166270300 r2

− 5546727078200 r3 + 59041720498845 r4 − 161234870633760 r5

+ 126074334149694 r6 + 2238307939140 r7 + 25296348317400 r8

− 57875913071352 r9 − 89078826937116 r10 + 180941306693040 r11

− 102607682886720 r12 + 19713391884288 r13

D∗
P12(r) =

(
36300 − 79200 r + 219255 r2 − 171160 r3 + 29472 r4

)2
.

As can be seen in Figure 3(a), the Taylor property is now achieved for all consid-

ered parameterizations of Model (3.1). From Figure 3(b), we conclude that the

process X is always leptokurtic.

Figure 3: Graphs from ρX(1)−ρX2(1) (a) and KP12(r) (b), 0 < r < 4

√
2

3
.

3.2.4. Error process with Pareto density f(x) =
9α9

x10
I]α,+∞[(x)

We have

β4µ4 < 1 ⇐⇒ 0 < r < 4

√
5
9 ≃ 0.863 and

ρX(1) =
8r (15680 − 27720 r + 39564 r2 − 27864 r3 + 6561 r4)

47040 − 105840 r + 343119 r2 − 315504 r3 + 73791 r4

ρX2(1) =
r

48

NP9(r)

DP9(r)
,
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with

NP9(r) = −67737600 − 83339200 r + 19038600 r2 − 88401600 r3

− 148138920 r4 − 511287075 r5 + 1466330040 r6 + 1499354145 r7

− 1537629480 r8 − 1966005837 r9 − 602608896 r10

+ 3869347563 r11 − 61620912 r12 − 2818841796 r13 + 1179090432 r14

DP9(r) = −627200 + 235200 r − 1650600 r2 − 8601600 r3 − 13809280 r4

+ 31729095 r5 + 27010080 r6 − 23002305 r7 − 21773448 r8

− 24182469 r9 + 58517640 r10 + 9248823 r11

− 50143536 r12 + 19665504 r13 .

The Taylor property is also present for all considered parameterizations

of Model (3.1), as it is illustrated in Figure 4(a), and we point out that the

magnitude of the difference ρX(1)− ρX2(1) is greater in this case than in the case

ν = 12.

Figure 4: Graphs from ρX(1)− ρX2(1) (a) and KP9(r) (b), 0 < r < 4

√
5

9
.

The kurtosis of Model (3.1) is now given by

KP9(r) =
7 − 9r2

9(−2 + 3r3) (−5 + 9r4)

N∗
P9(r)

D∗
P9(r)

− 3 ,

where

N∗
P9(r) = 62449049600 − 281020723200 r + 532657440000 r2 − 582241598400 r3

+ 25718506014670 r4 − 92872063045440 r5 + 100396353649230 r6

− 6337711636725 r7 − 8536591340550 r8 − 41782534519365 r9

− 62336742758694 r10 + 195729014255481 r11

− 145385404543008 r12 + 35664808109193 r13

D∗
P9(r) =

(
15680 − 35280 r + 114373 r2 − 105168 r3 + 24597 r4

)2
.
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The process X is also leptokurtic for all considered values of r. We observe

that the kurtosis of the process X is greater when ν = 9 than when ν = 12,

corresponding to an analogous relation between the kurtosis of the respective

error processes. In these two examples, it is seen again how the Taylor property

emerges when the process X is leptokurtic.

As regards the Pareto distribution, graphic representations for several val-

ues of ν also suggest that the presence of the Taylor property is stronger for

higher values of the kurtosis of the process X. In fact, as functions of ν, the

difference ρX(1)− ρX2(1) seems to increase when KPν(r) increases, for all values

of r that satisfy the condition β4µ4 < 1. This situation is illustrated in Figure 5

and strongly contributes to conjecture that the Taylor property and leptokurtosis

are highly related in time series.

Figure 5: Graphs from ρX(1) − ρX2(1) (a) and KPν(r) (b),

ν = 100, 50, 20, 10, 9 (from bottom to top), 0 < r < 4

√
5

9
.

4. THE TAYLOR PROPERTY IN THE CASE OF SYMMETRI-

CALLY DISTRIBUTED ERRORS: SIMULATION STUDY

When the errors are symmetrically distributed, the autocorrelation function

of X2 for Model (1.1) verifies ρX2(1) = 0, if k > 1 (Martins, [6]). So, in this

case, the property ρ|X|(1) > ρX2(1) is equivalent to ρ|X|(1) > 0. However, the

autocorrelation function of the process (|Xt|, t ∈ Z) is not available when the

error process is allowed to assume negative values. To investigate the presence

of the Taylor property in Model (3.1) with symmetrically distributed errors, we

perform a simulation study considering the simple first-order bilinear diagonal

model with an i.i.d. error process (εt, t ∈ Z) with four symmetrical distributions

with unit variance, namely, the uniform distribution in ]−
√

3,
√

3[, the standard

normal distribution, and the distribution of a variable ε =
√

ν−2
ν Y , where Y has a

Student distribution with ν degrees of freedom (ν = 30 and ν = 9). In each case,
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the condition E(| ln |εt||) < +∞ is satisfied and parameterizations that satisfy

β4µ4 < 1 are considered in the simulations. For each value of the parameter

β and each one of the considered distributions, we generate 500 observations

according to the corresponding model and obtain the 95% confidence intervals

for the probability that such a model satisfies the Taylor property. The results

appear in Table 1 (where NA means “Not Applicable”, due to the fact that the

corresponding value of β does not satisfy the condition β4µ4 < 1). The special

values 0.69, 0.74, 0.75 and 0.863 are the greatest values of β such that β4µ4 < 1

for each one of the considered distributions.

Table 1: 95% confidence intervals for the probability that the model
with symmetrical innovations presents the Taylor property.

β U
��

−
√

3,
√

3
��

N(0, 1)
q

14

15
Y, Y ∼T (30)

q
7

9
Y, Y ∼T (9)

0.01 [0.373, 0.627] [0.459, 0.708] [0.459, 0.708] [0.476, 0.724]

0.05 [0.357, 0.610] [0.373, 0.627] [0.373, 0.627] [0.407, 0.660]

0.1 [0.140, 0.360] [0.292, 0.541] [0.214, 0.453] [0.260, 0.506]

0.2 [0, 0] [0, 0.105] [0, 0.049] [0, 0.049]

0.3 [0, 0] [0, 0] [0, 0] [0, 0.079]

0.4 [0, 0] [0, 0] [0, 0.079] [0.260, 0.506]

0.5 [0, 0] [0.155, 0.379] [0.292, 0.541] [0.699, 0.901]

0.6 [0, 0] [0.566, 0.801] [0.603, 0.831] [0.781, 0.953]

0.69 [0, 0] [0.802, 0.965] [0.802, 0.965] [0.951, 1]

0.74 [0, 0.079] [0.847, 0.987] [0.870, 0.996] NA

0.75 [0.004, 0.130] [0.847, 0.987] NA NA

0.863 [0.566, 0.801] NA NA NA

We can observe that the Taylor property seems to be present for high values

of β and that this presence increases with the kurtosis of the error process, as we

have established and observed in non-negative bilinear models.

The confidence intervals corresponding to small values of β do not allow us

to infer about the presence of the Taylor property, as they certainly correspond

to values of β for which the difference ρX(1) − ρX2(1) is close to zero.

5. CONCLUSIONS

In this paper, we analyze the presence of the Taylor property in first-order

bilinear time series models. For this analysis we evaluate the autocorrelations of

the process X and of X2. Considering X non-negative, we discuss the presence

of the Taylor property taking several distributions for the error process, chosen

according to the kurtosis value as this property is strongly related with the value
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of this parameter. More precisely, the Taylor property seems to emerge when the

process X is leptokurtic.

Based on a simulation study, we also analyze the presence of the Taylor

property in the class of real valued first-order bilinear diagonal models with sym-

metrical innovations.

The studies presented here show that bilinear models are able to reproduce

the Taylor effect. They also reinforce the connection of the Taylor property to lep-

tokurtic models which has been observed in the few theoretical studies developed

until now. In fact, He and Teräsvirta ([5]), Gonçalves, Leite and Mendes-Lopes

([1]) and Haas ([4]) show the presence of this property in some conditional het-

eroskedastic models, which are leptokurtic processes. Moreover, all the cases

considered in this paper also show that, when the Taylor property occurs, the

model is leptokurtic.

We still observe that leptokurtosis is not enough to induce the Taylor prop-

erty. Examples of bilinear models that are leptokurtic but do not have the Taylor

property are Xt = Xt−1εt−1 + εt, where εt is uniformly distributed in [0, 1], and

Xt = 0.5Xt−1εt−1 + εt, where εt is exponentially distributed with mean 0.2. This

is in line with the simulation results of He and Teräsvirta ([5]) suggesting that

the Taylor property is not present for the standard GARCH(1, 1) process with

normal errors.

In conclusion, our study allows to conjecture that a general assessment of

the Taylor property in the bilinear process is strongly dependent on the magnitude

of its tails weight.

6. APPENDIX

A working example to illustrate the results of Section 2, namely evaluation

of E(Xn
t εn

t ) and E(Xn
t ), n ≤ 4, for a first-order bilinear process is now presented.

Let us suppose that εt, t ∈ Z, is exponentially distributed with density

f(x) = 1
α e−x/α

I]0,+∞[(x). Then µn = n! αn, n ∈ N. In this case, the condition

β4µ4 < 1 is equivalent to 0 < r < 1
4
√

24
, where r = αβ. Under this hypothesis,

and taking into account that εt is independent of Xn
t−1ε

n
t−1, t ∈ Z, and that the

process (Xtεt, t ∈ Z) is strictly stationary, we have

E(Xtεt) = E(βXt−1εt−1εt) + E(ε2
t ) = βE(Xtεt)µ1 + µ2

which is equivalent to

(6.1) E(Xtεt) =
2α2

1 − r
.
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Then, by (2.3), we have

E(X2
t ε2

t ) =
1

1 − β2µ2

(
2βµ3E(Xtεt) + µ4

)

(6.2)

= 24α4 1

(1 − r) (1 − 2r2)
.

Taking into account (2.3), (6.1) and (6.2), we now obtain

E(X3
t ε3

t ) =
1

1 − β3µ3

(
3β2µ4E(X2

t ε2
t ) + 3βµ5E(Xtεt) + µ6

)

=
1

1 − 6r3

(
1728 α6r2

(1 − r) (1 − r2)
+

720 α6r

1 − r
+ 720α6

)
(6.3)

= 144α6 2r2 + 5

(1 − r) (1 − 2r2) (1 − 6r3)
.

Finally, we evaluate E(X4
t ε4

t ) using (2.3), (6.1), (6.2) and (6.3).

E(X4
t ε4

t ) =
1

1 − β4µ4

(
4β3µ5E(X3

t ε3
t ) + 6β2µ6E(X2

t ε2
t ) + 4βµ7E(Xtεt) + µ8

)

=
1

1 − 24 r4

(
69120 α8 r3 (2r2 + 5)

(1 − r) (1 − r2) (1 − r3)
(6.4)

+
103680 α8r2

(1 − r) (1 − r2)
+

40320 α8r

1 − r
+ 40320α8

)

= 5760α8 18r3 + 4r2 + 7

(1 − r) (1 − 2r2) (1 − 6r3) (1 − 24r4)
.

The values of E(Xn
t ), n ≤ 4, are then given by (2.2). More precisely,

E(Xt) = βE(Xtεt) + µ1 = α
1 + r

1 − r
,(6.5)

E(X2
t ) = β2E(X2

t ε2
t ) + 2µ1E(Xtεt) + µ2

=
24 α4β2

(1 − r) (1 − 2r2)
+

4α3β

1 − r
+ 2α2(6.6)

= 2α2 1 + r + 10r2 − 2r3

(1 − r) (1 − 2r2)
,

E(X3
t ) = β3E(X3

t ε3
t ) + 3β2µ1E(X2

t ε2
t ) + 3βµ2E(Xtεt) + µ3

=
144 α6β3(2r2 + 5)

(1 − r) (1 − 2r2) (1 − 6r3)
+

72 α5β2

(1 − r) (1 − 2r2)
+

12 α4β

1 − r
+ 6α3(6.7)

= 6α3 1 + r + 10r2 + 112r3 − 6r4 − 12r5 + 12r6

(1 − r) (1 − 2r2) (1 − 6r3)
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and

E(X4
t ) = β4E(X4

t ε4
t ) + 4β3µ1E(X3

t ε3
t ) + 6β2µ2E(X2

t ε2
t ) + 4βµ3E(Xtεt) + µ4

=
15760 α8β4(8r3 + 4r2 + 7)

(1 − r) (1 − 2r2) (1 − 6r3) (1 − 24r4)
+

576 α7β3(2r2 + 5)

(1 − r) (1 − 2r2) (1 − 6r3)
(6.8)

+
288 α6β2

(1 − r) (1 − 2r2)
+

48 α5β

1 − r
+ 24α4

=
24 α4D(r)

(1 − r) (1 − 2r2) (1 − 6r3) (1 − 24r4)
,

with

D(r) = 1 + r + 10 r2 + 112 r3 + 1650 r4 − 36 r5 + 732 r6 + 1632 r7

+ 144 r8 + 288 r9 − 288 r10 .
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