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1. INTRODUCTION

Let us suppose we want to estimate the weights of v objects by weighing

them b times using a spring balance, v ≤ b. Suppose, that the results of this

experiment can be written as

(1.1) y = Xw + e ,

where y is an b × 1 random vector of the observations, X ∈ Φb×v(0, 1), where

Φb×v(0, 1) denotes the class of b× v matrices X = (xij) of known elements xij = 1

or 0 according as in the ith weighing operation the jth object is placed on the

pan or not. Next, w is a v × 1 vector of unknown measurements of objects and e

is a b× 1 random vector of errors. We assume, that E(e) = 0b and Var(e) = σ2G,

where 0b denotes the b× 1 vector with zero elements everywhere, G is the known

b × b diagonal positive definite matrix of the form

(1.2) G = g
[

(1 − ρ) Iv + ρ1v 1
′

v

]

, g > 0,
−1

b − 1
< ρ < 1 .

It should be noticed that the conditions on the values of g and ρ are equivalent

to the matrix G being positive definite. From now on, we will consider G on

the form 1.2 only. Moreover, let note, G−1 = 1
g(1−ρ)

[

Ib −
ρ

1+ρ(b−1) 1b1
′

b

]

. For

the estimation of w we use the normal equations Mw = X
′

G−1y, where M =

X
′

G−1X is called the information matrix of ŵ. A spring balance weighing design

is singular or nonsingular, depending on whether the matrix M is singular or

nonsingular, respectively. From the assumption that G is positive definite it

follows that matrix M is nonsingular if and only if matrix X is full column rank.

If matrix M is nonsingular, then the generalized least squares estimator of w is

given by formula ŵ = M−1X
′

G−1y and Var(ŵ) = σ2M−1. Some considerations

apply to determining the optimal weighing designs are shown in many books 1.

Some problems related to optimality of the designs are presented in several papers2

for G = In, whereas in Katulska and Rychlińska ([9]) for the diagonal matrix G.

In this paper, we emphasize a special interest of the existence conditions

for E-optimal design, i.e. minimizing the maximum eigenvalue of the inverse of

the information matrix. The statistical interpretation of E-optimality is the fol-

lowing: the E-optimal design minimizes the maximum variance of the compo-

nent estimates of the parameters. It can be described in terms of the maximum

eigenvalue of the matrix M−1 as λmax(M
−1) or equivalently as λmin(M). Hence,

for the given variance matrix of errors σ2G, any design X ∈ Φb×v(0, 1) is

E-optimal if λmax(M
−1) is minimal. Moreover, if λmax(M

−1) attains the lowest

bound, then X ∈ Φb×v(0, 1) is called regular E-optimal. Notice that if the design

1See, Raghavarao ([13]), Banerjee ([1]), Shah and Sinha ([15]), Pukelsheim ([12]).
2Jacroux and Notz ([8]), Neubauer and Watkins ([11]).
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X ∈ Φb×v(0, 1) with the variance matrix of errors σ2G is regular E-optimal then

is also E-optimal. But the inverse implication may not be true. Moreover, the

E-optimal design in the set of all design matrices Φb×v(0, 1) exists but the regular

E-optimal design may not exist.

The problem presented in this paper is focused to determining such matrix

that λmax(M
−1) takes the minimal value over all possible matrices in Φb×v(0, 1)

for given matrix G.

2. REGULAR E-OPTIMAL SPRING BALANCE WEIGHING

DESIGN

In this section we give some new results concerning the lower bound for

λmax(M
−1) depending on ρ and number of objects v is even or odd. Additionally,

let Π be the set of all v × v permutation matrices. We shall denote by M̄ the

average of M over all elements of Π, i.e. M̄ = 1
v!

∑

P∈Π
P

′

MP. It is not difficult

to see that

M̄ =
v tr(M) − 1

′

vM1v

v(v − 1)
Iv +

1
′

vM1v − tr(M)

v(v − 1)
1v 1

′

v ,

moreover, tr(M) = tr(M̄) and 1
′

vM1v = 1
′

vM̄1v. The matrix M̄ has two eigen-

values µ1 = v tr(M)−1
′

vM1v

v(v−1) with the multiplicity v − 1 and µ2 = 1
′

vM1v

v
with the

multiplicity 1. Let

(2.1) M =
1

g(1 − ρ)

[

X
′

X −
ρ

1 + ρ(b − 1)
X

′

1b1
′

bX

]

.

For X ∈ Φb×v(0, 1) and G we have tr(M) = 1
g(1−ρ)

[

1
′

vr −
ρ

1+ρ(b−1) r
′

r
]

and

1
′

vM1v = 1
g(1−ρ)

[

k
′

k −
ρ

1+ρ(b−1)

(

1
′

bk
)2

]

, where X1v = k, X
′

1b = r, 1
′

vr = 1
′

bk.

From above, eigenvalues of M̄ are

µ1 =
1

v(v − 1) g(1 − ρ)

[

v1
′

bk − k
′

k +
ρ

1 + ρ(b − 1)

(

(1
′

bk)2 − v r
′

r
)

]

,

µ2 =
1

v g(1 − ρ)

[

k
′

k −
ρ

1 + ρ(b − 1)

(

1
′

bk
)2

]

.

Thus the matrix M̄−1 has also two eigenvalues λ1 = 1
µ1

and λ2 = 1
µ2

. Next,

comparing these two eigenvalues we become following lemma.

Lemma 2.1. For any nonsingular spring balance weighing design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G, the matrix M̄−1 has two

eigenvalues λ1 and λ2 and moreover
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(i) λ1 > λ2 if and only if ρ <
k
′

k−1
′

b
k

(b−1) (1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r

,

(ii) λ1 = λ2 if and only if ρ =
k
′

k−1
′

b
k

(b−1) (1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r

,

(iii) λ1 < λ2 if and only if ρ >
k
′

k−1
′

b
k

(b−1) (1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r

.

Proof: We have

µ1−µ2 = 1
gv(v−1)(1−ρ) ·

·

[

v1
′

bk−k
′

k+ ρ
1+ρ(b−1)

(

(1
′

bk)2− vr
′

r
)

−
1

gv(1−ρ)

(

k
′

k−
ρ

1+ρ(b−1) (1
′

bk)2
)

]

= 1
g(v−1)(1−ρ) (1+ρ(b−1))

[

(

1
′

bk − k
′

k
)(

1 + ρ(b − 1)
)

+ ρ
(

(1
′

bk)2 − r
′

r
)

]

.

Because g(v − 1)(1 − ρ)(1 + ρ(b − 1)) > 0 then µ1 − µ2 > 0 if and only if

ρ
[

(b− 1)(1
′

bk− k
′

k) + (1
′

bk)2 − r
′

r
]

> k
′

k− 1
′

bk and we obtain the Lemma.

Lemma 2.1 imply that in order to determine E-optimal design we have to

delimit the lowest bound of eigenvalues of M̄−1 according to the value of ρ.

Theorem 2.1. Let v be even. In any nonsingular spring balance weighing

design X ∈ Φb×v(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈

(

−1
b−1 , v−2

b+v−2

)

then λmax(M
−1) ≥ 4g(v−1)(1−ρ)

bv
and the equality

is fulfilled if and only if X1v = v
2 1b ,

(ii) if ρ ∈

(

v−2
b+v−2 , 1

)

then λmax(M
−1) >

g(1+ρ(b−1))
bv

.

Proof: In order to determine regular E-optimal spring balance weighing

design we have to give the lowest bound of the maximal eigenvalue of the matrix

M−1. Let M̄ denote the average of M over all elements of Π for the design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G. From the monotonicity theo-

rem given by Rao and Rao (2004) it follows λmax(M̄
−1) ≤ λmax(M

−1). The proof

falls naturally in two parts according to the value ρ in 1.2. If ρ ∈

(

−1
b−1 , v−2

b+v−2

)

then λmax(M̄
−1) = gv(v−1)(1−ρ)(1+ρ(b−1))

v(1+ρ(b−1))1
′

b
k−(1+ρ(b−1))k

′
k+ρ(1

′

b
k)2−ρvr

′
r
. As we want to min-

imize λmax(M̄
−1), we should find the maximum value for

A = v
(

1 + ρ(b − 1)
)

1
′

bk −
(

1 + ρ(b − 1)
)

k
′

k + ρ(1
′

bk)2 − ρ vr
′

r .
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If p is even

(2.2) A ≤ v
(

1 + ρ(b − 1)
)

1
′

bk −
(

1 + ρ(b − 1)
)

bk2 + ρ(1
′

bk)2 − ρ v2r2 =

(2.3) v
(

1+ρ(b−1)
)

bk−
(

1+ρ(b−1)
)

bk2 +ρbk2
−ρv2r2

≤
1

4
bv2

(

1+ρ(b−1)
)

.

Hence λmax(M
−1) ≥ 4g(v−1)(1−ρ)

bv
. The equality in inequality 2.2 holds if and

only if k1 = k2 = ··· = kb = k and r1 = r2 = ··· = rv = r, whereas the equality

in 2.3 is fulfilled if and only if k = v
2 . If ρ ∈

(

v−2
b+v−2 , 1

)

then λmax(M̄
−1) =

gv(1−ρ)(1+ρ(b−1))

k
′
k+ρ(b−1)k

′
k−ρ(1

′

b
k)2

. So, we obtain λmax(M
−1) >

g(1+ρ(b−1))
bv

. Thus the result.

Theorem 2.2. Let v be odd. In any nonsingular spring balance weighing

design X ∈ Φb×v(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈

(

−1
b−1 ,

v(v−3)
b(v+1)+v(v−3)

)

then λmax(M
−1) ≥ 4gv(1−ρ)

b(v+1) and the equal-

ity is satisfied if and only if X1v = v−1
2 1b or X1v = v+1

2 1b ,

(ii) if ρ ∈

(

v(v−3)
b(v+1)+v(v−3) ,

v
b+v

)

then λmax(M
−1) ≥ 4gv(1−ρ)

b(v+1) and the equal-

ity is satisfied if and only if X1v = v+1
2 1b ,

(iii) if ρ ∈

(

v
b+v

, 1
)

then λmax(M
−1) >

g(1+ρ(b−1)
bv

.

Proof: The proof is similar to given in Theorem 2.1 one.

Now, we can formulate the definition of the regular E-optimal spring bal-

ance weighing design. So, we have

Definition 2.1. Any nonsingular spring balance weighing design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G is regular E-optimal if the

eigenvalues of the information matrix attains the bounds of Theorems 2.1 and

2.2, i.e.

(i) v is even and ρ ∈

(

−1
b−1 , v−2

b+v−2)

)

if λmax(M
−1) = 4g(v−1)(1−ρ)

bv
,

(ii) v is odd and ρ ∈

(

−1
b−1 , v

b+v

)

if λmax(M
−1) = 4gv(1−ρ)

b(v+1) .

A direct consequence of above considerations is

Theorem 2.3. Any nonsingular spring balance weighing design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G is regular E-optimal design

if and only if

(1) v is even and ρ ∈

(

−1
b−1 , v−2

b+v−2)

)

X
′

G−1X = 1
g(1−ρ)

[

bv
4(v−1)Iv + b(v−2)

4(v−1)1v1
′

v −
ρb2

4(1+ρ(b−1))1v1
′

v

]

and

X1v = v
21b,
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(2) p is odd and

(2.1) ρ ∈

(

−1
b−1 ,

v(v−3)
b(v+1)+v(v−3)

)

(2.1.1) X
′

G−1X = 1
g(1−ρ)

[

b(v+1)
4v

Iv + b(v−3)
4v

1v1
′

v−
ρb2(v−1)2

4v2(1+ρ(b−1))
1v1

′

v

]

and X1v = v−1
2 1b , or

(2.1.2) X
′

G−1X = 1
g(1−ρ)

[

b(v+1)
4v

Iv + b(v+1)
4v

1v1
′

v −
ρb2(v+1)2

4v2(1+ρ(b−1))
1v1

′

v

]

and X1v = v+1
2 1b ,

(2.2) ρ ∈

(

v(v−3)
b(v+1)+v(v−3) ,

v
b+v

)

X
′

G−1X = 1
g(1−ρ)

[

b(v+1)
4v

Iv + b(v+1)
4v

1v1
′

v −
ρb2(v+1)2

4v2(1+ρ(b−1))
1v1

′

v

]

and X1v = v+1
2 1b.

Proof: Since the proofs for even and odd v are similar, we give the proof

only for the case of even v and ρ ∈

(

−1
b−1 , v−2

b+v−2

)

. Notice, that λmax(M
−1) at-

tains the lowest bound in Theorem 2.1(i) if equalities λmax(M
−1) = λmax(M̄

−1)

and v = k
2 hold. It follows easily that tr(M) = bv(2+ρ(b−2))

4g(1−ρ)(1+ρ(b−1)) and 1
′

vM1v =
bv2

4g(1+ρ(b−1)) . We apply formulas on µ1 and µ2 to give the form of M. Thus the

Theorem.

It can be noted that g = 1, ρ = 0 and G = Ib, we become the equalities

given by Jacroux and Notz ([8]).

Theorem 2.4. In any nonsingular spring balance weighing design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G, if

(i) v is even and ρ ∈

(

v−2
b+v−2 , 1

)

or

(ii) v is odd and ρ ∈

(

v
b+v

, 1
)

,

then regular E-optimal spring balance weighing design does not exist.

Proof: Since the proofs for even v and odd v are similar, we shall only

give the proof for the case odd v. If ρ ∈

(

v
b+v

, 1
)

then the lowest bound of the

maximal eigenvalue of the design matrix X is given in Theorem 2.2(iii). The

lowest bound is attained if and only if k = v. It means X = 1b1
′

v. Such matrix

is singular one. Thus the regular E-optimal design does not exist.

Theorem 2.5. Any nonsingular spring balance weighing design X ∈

Φb×v(0, 1) with the variance matrix of errors σ2G for ρ = p(k−1)
n(p−k)+p(k−1) , k =

1, 2, ..., v
2 for even v or k = 1, 2, ..., v+1

2 for odd v is regular E-optimal design if

and only if

X
′

X =

(

nk

p
−

nk(k − 1)

p(p − 1)

)

Iv +
nk(k − 1)

p(p − 1)
1

′

v1v .



126 Bronis law Ceranka and Ma lgorzata Graczyk

Proof: Let us take into consideration the case given in Lemma 2.1(ii).

λ1 = λ2 = λ = 1
µ

if and only if ρ =
k
′

k−1
′

b
k

(b−1)(1
′

b
k−k

′
k)+(1

′

b
k)2−r

′
r
. Now, we have to

consider two cases v is even and v is odd. For both v the proofs are similar, so we

give the case for even v, only. According to the proof of Theorem 2.1, the equal-

ity in 2.2 holds if and only if k1 = k2 = ··· = kb = k and r1 = r2 = ··· = rv = r,

for k = 1, 2, ..., v
2 . Hence ρ = p(k−1)

n(p−k)+p(k−1) . From the above results M̄ = µIv.

Thus µIv = 1
g(1−ρ)

(

X
′

X −
ρn2k2

v2(1+ρ(b−1))
1v1

′

v

)

and X
′

X = nk(p−k)
p(p−1) I+ nk(k−1)

p(p−1) 1v1
′

v.

Putting ρ and µ = nk(p−k)
g(1−ρ)p(p−1) we obtain the form of the matrix X

′

X. If k > v
2 ,

then from Theorem 2.4 regular E-optimal spring balance weighing design does

not exist.

3. CONSTRUCTION OF THE REGULAR E-OPTIMAL DESIGN

For the construction of the regular E-optimal spring balance weighing de-

sign, from all possible block designs, we choose the incidence matrices of the

balanced incomplete block designs and group divisible designs. The definitions

of these block designs are given in Raghavarao and Padgett ([14]).

Theorem 3.1. Let N be the incidence matrix of the balanced incomplete

block design with the parameters

(i) v = 2t, b = 2(2t − 1), r = 2t − 1, k = t, λ = t − 1 or

(ii) v = 2t, b =
(

2t
t

)

, r =
(

2t−1
t−1

)

, k = t, λ =
(

2(t−1)
t−2

)

,

t = 2, 3, ... . Then, any X = N
′

∈Φb×v(0, 1) with the variance matrix of errors σ2G

for ρ ∈

(

−1
b−1 , v−2

b+v−2

)

is the regular E-optimal spring balance weighing design.

Proof: An easy computation shows that the matrix X = N
′

satisfies (1)

of Theorem 2.3.

Now, let

(3.1) X =

[

N
′

1

N
′

2

]

,

where Nu is the incidence matrix of the group divisible design with the same as-

sociation scheme with the parameters v, bu, ru, k = v
2 , λ1u, λ2u, u = 1, 2. Fur-

thermore, let the condition

(3.2) λ11 + λ12 = λ21 + λ22 = λ
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be satisfied. For X in 3.1, b = b1 + b2. The limitation on the t and s given in next

Theorem 3.2 follow from the restrictions: r, k ≤ 10 given in Clatworthy ([5]).

Theorem 3.2. Let Nu, u = 1, 2, be the incidence matrix of the group

divisible block design with the same association scheme and with the parameters

(1) v = 4, k = 2 and

(1.1) b1 = 2(3t+1), r1 = 3t+1, λ11 = t+1, λ21 = t, t = 1, 2, 3, and

b2 = 2(3s + 2), r2 = 3s + 2, λ12 = s, λ22 = s + 1, s = 0, 1, 2,

(1.2) b1 = 2(3t + 2), r1 = 3t + 2, λ11 = t + 2, λ21 = t, t = 1, 2, and

b2 = 2(3s + 4), r2 = 3s + 4, λ12 = s, λ22 = s + 2, s = 0, 1, 2,

(1.3) b1 = 2(t + 3), r1 = t + 3, λ11 = t + 1, λ21 = 1 and b2 = 4t,

r2 = 2t, λ12 = 0, λ22 = t, t = 1, 2, ..., 5,

(1.4) b1 = 16, r1 = 8, λ11 = 0, λ21 = 4 and b2 = 2(3s+4), r2 = 3s+4,

λ12 = s + 4, λ22 = s, s = 1, 2,

(1.5) b1 = 18, r1 = 9, λ11 = 5, λ21 = 2 and b2 = 6(s+2), r2 = 3(s+2),

λ12 = s, λ22 = s + 3, s = 0, 1,

(2) v = 6, k = 3 and

(2.1) b1 = 4t, r1 = 2t, λ11 = 0, λ21 = t and b2 = 6t, r2 = 3t, λ12 = 2t,

λ22 = t, t = 1, 2, 3,

(2.2) b1 = 2(2t+5), r1 = 2t+5, λ11 = t+1, λ21 = t+2 and b2 = 6t,

r2 = 3t, λ12 = t + 1, λ22 = t, t = 1, 2,

(2.3) b1 = 12, r1 = 6, λ11 = 4, λ21 = 2 and b2 = 2(5s+4), r2 = 5s+4,

λ12 = 2s, λ22 = 2(s + 1), s = 0, 1,

(2.4) b1 = 16, r1 = 8, λ11 = 4, λ21 = 3 and b2 = 2(5s+2), r2 = 5s+2,

λ12 = 2s, λ22 = 2s + 1, s = 0, 1,

(3) v = 8, k = 4 and

(3.1) b1 = 4(t+1), r1 = 2(t+1), λ11 = 0, λ21 = t+1 and b2 = 4(6−t),

r2 = 2(6 − t), λ12 = 6, λ22 = 5 − t, t = 1, 2, 3,

(3.2) b1 = 2(3t + 2), r1 = 3t + 2, λ11 = t + 2, λ21 = t + 1 and b2 =

6(4 − t), r2 = 3(4 − t), λ12 = 4 − t, λ22 = 5 − t, t = 1, 2,

(4) v = 10, k = 5 and b1 = 8t, r1 = 4t, λ11 = 0, λ21 = 2t and b2 = 10t,

r2 = 5t, λ12 = 4t, λ22 = 2t, t = 1, 2,

(5) v = 2(2t + 1), k = 2t + 1 and b1 = 4t, r1 = 2t, λ11 = 0, λ21 = t and

b2 = 2(2t + 1), r2 = 2t + 1, λ12 = 2t, λ22 = t, t = 1, 2, 3, 4,

(6) v = 4(t + 1), k = 2(t + 1) and b1 = 2(2t + 1), r1 = 2t + 1, λ11 = 2t + 1,

λ21 = t and b2 = 4(t+1), r2 = 2(t+1), λ12 = 0, λ22 = t+1, t = 1,2,3,4.

Then any X ∈ Φb×v(0, 1) in the form 3.1 with the variance matrix of errors σ2G

for ρ ∈

(

−1
b−1 , v−2

b+v−2

)

is the regular E-optimal spring balance weighing design.
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Proof: This is proved by checking that the matrix X in 3.1 satisfies (1) of

Theorem 2.3.

Theorem 3.3. Let N be the incidence matrix of balanced incomplete

block design with the parameters

(i) v = 2t + 1, b = 2(2t + 1), r = 2(t + 1), k = t + 1, λ = t + 1,

(ii) v = b = 4t2 − 1, r = k = 2t2, λ = t2,

(iii) v = b = 8t + 7, r = k = 4(t + 1), λ = 2(t + 1),

(iv) v = b = 4t − 1, r = k = 2t, λ = t,

(v) v = 4t + 1, b = 2(4t + 1), r = 2(2t + 1), k = λ = 2t + 1,

(vi) v = 2t + 1, b =
(

2t+1
t+1

)

, r =
(

2t
t

)

, k = t + 1, λ =
(

2t−1
t−1

)

,

t = 1, 2, ... . Then any X = N
′

∈ Φb×v(0, 1) with the variance matrix of errors

σ2G for ρ ∈

(

−1
b−1 , v

b+v

)

is the regular E-optimal spring balance weighing design.

Proof: For X = N
′

∈ Φb×v(0, 1) the equalities (2.1.2) and (2.2) of Theo-

rem 2.3 are satisfied.

Theorem 3.4. Let N be the incidence matrix of balanced incomplete

block design with the parameters

(i) v = 2t + 1, b = 2(2t + 1), r = 2t, k = t, λ = t − 1, t = 2, 3, ...

(ii) v = b = 4t2 − 1, r = k = 2t2 − 1, λ = t2 − 1, t = 2, 3, ...

(iii) v = b = 8t + 7, r = k = 4t + 3, λ = 2t + 1, t = 1, 2, ...

(iv) v = b = 4t − 1, r = k = 2t − 1, λ = t − 1, t = 2, 3, ...

(v) v = 4t + 1, b = 2(4t + 1), r = 4t, k = 2t, λ = 2t − 1, t = 1, 2, ...

(vi) v = 2t + 1, b =
(

2t+1
t+1

)

, r =
(

2t
t−1

)

, k = t, λ =
(

2t−1
t−2

)

, t = 2, 3, ...

Then any X = N
′

∈ Φb×v(0, 1) with the variance matrix of errors σ2G for ρ ∈
(

−1
b−1 ,

v(v−3)
b(v+1)+v(v−3)

)

is the regular E-optimal spring balance weighing design.

Proof: It is obvious that for X = N
′

∈ Φb×v(0, 1) the equality (2.1.1)

given in Theorem 2.3 is fulfilled.
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[9] Katulska, K. and Rychlińska, E. (2010). On regular E-optimality of spring
balance weighing designs, Colloquium Biometricum, 40, 165–176.

[10] Masaro, J. and Wong, C.S. (2008). Robustness of A-optimal designs, Linear

Algebra and its Applications, 429, 1392–1408.

[11] Neubauer, G.N. and Watkins, W. (2002). E-optimal spring balance weighing
designs for n ≡ 3 (mod 4) objects, SIAM J. Anal. Appl., 24, 91–105.

[12] Pukelsheim, F. (1983). Optimal Design of Experiment, John Wiley and Sons,
New York.

[13] Raghavarao, D. (1971). Constructions and Combinatorial Problems in Designs

of Experiment, John Wiley Inc., New York.

[14] Raghavarao, D. and Padgett, L.V. (2005). Block Designs, Analysis, Com-

binatorics and Applications, Series of Applied Mathematics 17, Word Scientific
Publishing Co. Pte. Ltd.

[15] Shah, K.R. and Sinha, B.K. (1989). Theory of Optimal Designs, Springer-
Verlag, Berlin, Heidelberg.


