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José Caldas de Almeida

– Department of Mental Health, NOVA Medical School, Portugal
jcaldasalmeida@gmail.com

Miguel Xavier

– Department of Mental Health, NOVA Medical School, Portugal
migxavier@gmail.com

Received: October 2014 Revised: November 2014 Accepted: December 2014

Abstract:

• Disease mapping is linked to two other scientific areas: small area estimation and
ecological-spatial regression. This paper reviews similarities and differences among
them. Bayesian hierarchical models are typically used in this context, using a com-
bination of covariate data and a set of spatial random effects to represent the risk
surface. The random effects are typically modeled by a conditional autoregressive
prior distribution, and a number of alternative specifications have been proposed in
the literature. The four models assessed here are applied to a study on alcohol abuse
in Portugal, using data collected by the World Mental Health Survey Initiative.
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1. INTRODUCTION

The availability of disease data in sets of non-overlapping and contiguous

spatial areal units has increased over the last few decades. Concepts such as small

area estimation (SAE), disease mapping (DM) and ecological-spatial regression

(ESR) are linked and are used in the context of the analysis of this type of data.

The purpose of this work is two-fold; first we clarify those concepts, and

second, after focusing on DM, we apply several models to Portuguese alcohol

abuse disorder (AAD) data, collected by the World Mental Health Survey Initia-

tive (WMHSI), as specified in [39]. Harmful use of alcohol was considered by the

World Health Organization (WHO) as one of the world’s leading risk factors for

disease and disability ([38]).

The goal of DM is to estimate the spatial pattern in disease risk over a

geographical region, so that small areas with elevated risk can be identified. This

term was first used in [5]. It uses the spatial setting and assumes positive spatial

correlation between observations, essentially ‘borrowing’ more information from

neighboring areas than from areas far away, smoothing local rates toward local

neighboring values ([37]).

The remainder of this paper is organized as follows. Section 2 introduces

the Portuguese data, as well as some background information on AAD. Section

3 provides the DM definition highlighting the differences and common aspects

among DM, SAE and ESR. Section 4 deals with the most common and widely

used models for DM, providing some basic information on those, as well as some

challenges and recent methodological advances. Section 5 contains the results

of the models, reviewed in Section 4, applied to the data defined in Section 2.

Finally, Section 6 contains a concluding discussion and areas of future work.

2. DATA

The WMHSI was administered at the households of a nationally represen-

tative sample of respondents, between October 2008 and December 2009. The

target population for the survey was defined as the resident, non-institutionalized,

Portuguese-speaking population of the Portuguese mainland, aged 18 or above,

residing in permanent private dwellings. Details regarding the design, target

population, sampling, tools, measures, fieldwork organization, procedures, and

weighting are reported in detail elsewhere ([39]). This is a cross-sectional study,

meaning that both disease cases and possible risk factors are collected at the same

time. As reported in [36] that restricts the conclusions that can be drawn from
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the models. It is not possible to establish causal relationships between disease

cases and possible covariates.

Data collected by cross-sectional studies may have several types of biases.

In the present case the possibility of selection bias is particularly evident, as

only the non-institutionalized population and the population above 18 years of

age was selected, and accordingly to the WHO ([38]) the alcohol consumption

is rising between adolescents (13–18 years of age) and young adults. Therefore

inferences can only be made on the study population and not on the global Por-

tuguese population. Another possible common bias is the misclassification bias,

i.e., the incorrect assignment of a disease to the study participants. This type

of bias may occur in studies like this one, because there is no intervention of

a medical doctor during the questionnaire’s self-administration. This problem

seems to have been solved in France, Italy, Spain and United States of America,

as [14] and [10] provide evidence that the diagnoses of substance abuse disorders

identified by the questionnaire used in this initiative, the CIDI 3.0 (Composite

International Diagnoses Interview) have generally good concordance with diag-

noses based on blinded clinical reappraisal interviews. Unfortunately those tests

have not been conducted in Portugal. Although the alcohol consumption and

related disorders are very much connected with cultural aspects ([28]), we think

that the performance while identifying the actual presence of disease has not been

seriously affected.

According to the WHO ([38]) approximately 5.1% of the global burden of

disease, and 5.9% of all deaths worldwide are attributable to alcohol consumption.

Furthermore, harmful use of alcohol inflicts significant social and economic losses

on individuals and society at large.

In accordance with the DSM-IV ([8]) criteria there are two possible diag-

noses of alcohol disorders, the alcohol abuse disorder and the alcohol dependence

disorder. In the six European countries ([1]) covered by the ESEMeD project1,

5.2% of the respondents report a lifetime history of alcohol abuse and/or depen-

dence disorders. In the WMHSI, lifetime and 12-month alcohol disorder diagnoses

are provided. From the data collected in Portugal the prevalence rate of a life-

time history of alcohol abuse and/or dependence disorders is 10.0%, while the

last 12-month prevalence rate is 1.6%; the lifetime prevalence rate of alcohol

dependence disorder is 1.3%, while the last 12-month prevalence rate is 0.26%;

the lifetime prevalence rate of alcohol abuse disorder is 8.7%, whereas the last

12-month prevalence rate is 1.3%. The high prevalence of alcohol abuse disorder

found in Portugal reiterates the need to maintain alcohol abuse as a public health

priority in the country, and therefore more detailed studies are needed.

1The ESEMeD Project was created to fully study the results of the WMHSI on the following
countries: Belgium, France, Germany, Italy, the Netherlands and Spain. As Portugal joined the
WMHSI later than others, most of the publications, including the [1], do not include Portuguese
results.
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The study region is mainland Portugal partitioned into 28 units called

NUTS 32, corresponding to the 3rd level territorial units aggregation. There

are 30 NUTS 3 in Portugal, from which 28 are in mainland Portugal and 2 are

in the Islands. The response variable is the number of lifetime AAD cases per

NUTS 3. Differences in the size and demographic structure of the population

living in each NUTS 3 are accounted for by computing the expected number of

AAD cases using indirect internal standardization, based on age specific AAD

rates for the whole study region.

The age standardization process, as defined in [36], can be direct or indirect.

The choice between direct and indirect standardization is usually defined by the

type of data available. Age-specific rates for the disease at each NUTS 3 are not

available and therefore the indirect method is used, by applying the age-specific

disease rate for the global population to the NUTS 3 age-specific population,

provided by the Portuguese Statistics organization for the year of 2008. As this

standardization is done using the age-specific disease rate for the global popu-

lation, as it was collected by the survey itself, the standardization is internal

(external standardization only occurs when standard tables of age-specific rates

for the disease are available). As mentioned in [2] internal standardization is

‘cheating’ in some sense, since ‘a degree of freedom is lost’ by estimating the

age-specific disease rate from the current data.

Accordingly, the following notations and/or definitions are introduced:

a) Yk the random variable representing the number of observed cases (yk)

in each k age group;

b) nk representing the number of people at risk in each k age group;

c) rk = yk
nk

representing the observed prevalence proportion for each k age

group;

d) nik representing the number of people at risk in each k age group in

the ith NUTS 3;

e) Eik and yik representing the expected and observed number of cases

for the k age group in the ith NUTS 3, respectively, where Eik = rknik;

f) Ei =
∑

k rknik and y⋆i =
∑

k yik representing the total number of ex-

pected and observed cases in the ith NUTS 3, respectively;

g) SMRi =
Y ⋆i
Ei

, the standardized morbidity ratio, representing the risk of

each ith NUTS 3. A value of SMR greater (less) than one indicates

that the area i has a higher (lower) than average disease risk. If the

SMRi = 1.15, it can be said that area i has a 15% increased risk of

the disease.

2
Nomenclatura Comum das Unidades Territoriais Estat́ısticas, in Portuguese language as

defined by Eurostat, the European statistical organization.



84 H. Baptista, J.M. Mendes, J. Caldas de Almeida and M. Xavier

Figure 1 shows the raw SMR values for the 28 NUTS 3.

Figure 1: AAD Raw SMRs per NUTS 3. The four regions, which had
originally missing values, are shown already with the imputed
mean values resulting from the GLM (see Section 5).

Our illustrative example also considers two ecological covariates that are

widely known as being associated with the AAD ([13, 18, 27, 33]), which are (a)

proportion of population aged 18 to 34, (b) proportion of males. AAD is more

prevalent in younger men. These data are only available per NUTS 3, for the

year of 2011, as provided by the latest census conducted in Portugal, which we

find to be temporally misaligned with WMHSI data used in this work. However

as population age and gender structures do not significantly change in 3 years,

no corrective measures have been implemented.

3. SMALL AREA ESTIMATION, DISEASE MAPPING AND

ECOLOGICAL-SPATIAL REGRESSION

DM joins together three different disciplines: statistics/biostatistics, epi-

demiology and geography. DM focuses on the challenge of obtaining reliable

statistical estimates (statistics/biostatistics) of local disease risk based on counts

of observed cases (epidemiology) within small administrative districts or regions

(geography) coupled with potentially relevant background information. DM goals

are twofold: obtain statistically precise local estimates of disease risk for each re-

gion and maintain the regions ‘small’ in order to keep the geographic resolution.



Alcohol Abuse Disorder Prevalence. A Disease Mapping Approach 85

The areas are not only small in size (relative to the area of the full spatial do-

main of interest), but are also small in terms of local sample size, resulting in

deteriorated local statistical precision. To solve this problem the classical design-

based solutions are often infeasible since the local sample sizes within each region,

required for the desired level of statistical precision, are often unavailable or

unattainable. The model-based approaches can help overcome this problem by the

mechanism of ‘borrowing strength’ across small areas to improve local estimates.

3.1. DM as a special case of SAE

Nowadays sample survey data are extensively used to provide reliable di-

rect estimates of parameters of interest for the whole population. When it comes

to getting the same estimates for domains of that population, and due to the

small sample sizes in those domains, direct survey estimates are likely to yield

unacceptably large standard errors. This makes it necessary to combine survey

data collected from the small areas with auxiliary information from sources ex-

ternal to the survey. In this context, named as SAE, several indirect estimators

have been extensively used. Some of the most common are the traditional indi-

rect estimators based on implicit models, which include synthetic and composite

estimators, and the Empirical Best Linear Unbiased Prediction approach. Most

of these approaches also consider a contiguity matrix that describes the neigh-

borhood structure between small areas ‘borrowing strength’ from related areas

to find more accurate estimates for a given area. The works [29] and [6] provide

respectively an overview of the foundations of SAE and a comparison between

several traditional estimators and some proposed estimators using a Monte Carlo

simulation.

DM is a special case of SAE, since the goal is to find reliable statistical

estimates of local disease risk. As mentioned by [37] DM refers to a collection

of methods extending SAE to directly utilize the spatial setting and assumed

positive spatial correlation between observations. The data used are aggregated or

averaged values at the small area level, representing disease incidence, prevalence

or mortality rates, frequently not coming from surveys but coming from counts of

disease cases from hospital admissions ([21, 24]), counts of cancer cases or cancer

deaths ([3, 16, 34]), and mortality data ([7, 24, 25]). In the present work we use

counts of disease cases from a survey.

3.2. DM and ESR apply the same methodologies to reach different goals

By combining data from administrative registries and/or surveys with aux-

iliary data, DM goal is to predict area-level outcome summaries, to identify areas
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of elevated risk. ESR uses the same type of data and the same methodologies but

its objective is the estimation of associations between covariates and the disease

cases.

Therefore, two common problems found in ESR are not of a concern in DM:

(a) ecological bias and (b) the inclusion of spatially correlated errors changing

the association between disease cases and fixed effects.

Ecological bias is the difference between estimated associations on ecological-

and individual-level data ([35]). Data used in DM and ESR, both for the number

of cases and for the covariates are found rarely at individual-level, mainly due

to confidentiality reasons, and therefore the association found at the aggregated

level might not be the same if we would have used individual-level data. Aggre-

gated data is usually designated as areal data ([2]). The objective of DM is not

to estimate the associations between the cases and the covariates or to improve

predictions, and therefore ecological bias is not a concern (for more details on the

subject see [35]).

The inclusion of spatially correlated errors, changing the association be-

tween disease cases and fixed effects, has been studied by [34] and [12]. Often the

study of ESR has provided estimates of the fixed-effect coefficients substantially

different from those of ecological regressions. ESR is an ecological regression aug-

mented with the inclusion of random effects modeled by a globally smooth condi-

tional autoregressive model. If the covariates are also globally smooth, collinearity

problems might change dramatically the coefficients of the fixed-effects. As be-

fore, the coefficients of association are not of direct interest in DM, and therefore

this aspect is not a concern.

4. DISEASE MAPPING MODELS

DM methodologies are explained in [37] and [2]. DM methodologies for

areal data are usually divided in frequentist methods and hierarchical Bayesian

models [2]. To provide a wide comparison of methods, [15] presents some prelim-

inary results concerning the goodness-of-fit of a variety of DM models applied to

simulated disease incidence data. These simulated models cover simple risk gradi-

ents and more complex true risk structures, including spatial correlation. Authors

conclude that full Bayesian hierarchical models are the most robust across a range

of diverse models. A number of hierarchical Bayesian models have been proposed

in the literature, including the following two, which have been widely used: a)

the model developed by Besag, York and Mollié ([3]), from now on designated as

BYM model and b) the model developed by Leroux, Lei and Breslow ([22]), from

now on designated as LLB model. These two models will be used in Section 5.
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Authors of [4] review the main classes of Bayesian models, among which the

BYM model is included (but not the LLB model) and conclude that the BYM

model has good properties for modeling a single disease and ‘appears to be the

only fully Bayesian spatial model to have been used in published applications

of disease mapping outside of the statistical literature’ (page 57). Recently, [24]

and [16] published comparisons between hierarchical Bayesian models and both

conclude that the LLB model is the best overall, because it produces consistently

good results across a range of spatial correlation scenarios, is more parsimonious

on parameters, and has less undesirable features (this subject will be further

developed in Subsection 4.1).

One of the challenges posed at the DM level arises from its basic goal, the

smoothing of local rates toward local neighboring values. When real disconti-

nuities exist between neighboring areas, the models will lead to oversmoothing

blurring the edges, which may not be appropriate. If the goal is to identify bound-

aries or regions of rapid change, the methods of boundary analysis or wombling

need to be applied. For more detail see the recent works of [19] and [20].

A general formulation for the first level of the hierarchical Bayesian models

used in DM is given by

Yi|Ei, Ri ∼ Poisson(EiRi) for i = 1, ..., n ,

(4.1) ln(Ri) = µ+ xT

i
β + φi .

If Ei is not too large (as it is the case of rare diseases) or the regions i

are sufficiently small, the usual model for the Yi is a Poisson model ([2]). In the

model, Ri denotes the risk of disease in area i, which is modeled by an intercept

term µ, a set of p covariates xT

i
= (xi1, ..., xip) and a random effect φi. The ran-

dom effects are included to model any overdispersion and/or spatial correlation

that might remain in the data after have being accounted for by the included

covariate information. Most studies of this type show overdispersion, meaning

that V ar[Yi] > E[Yi], which has several possible causes: subject heterogeneity;

correlation between individual responses; omitted unobserved variables; and/or

excess zero counts. Inference for this type of model is based on Markov chain

Monte-Carlo (MCMC) simulation, using a combination of Gibbs sampling and

Metropolis-Hastings steps and more recently using Integrated nested Laplace ap-

proximations ([31]).

The random effects φ = (φ1, ..., φn) are usually modeled by the class ([2]) of

conditional autoregressive (CAR) prior distributions, which are a type of Markov

random field model ([11]). Instead of a specification of a single multivariate distri-

bution f(φ), the above models are specified by a set of univariate full conditional

distributions f(φi|φ−i), where φ
−i = (φ1, ..., φi−1, φi+1, ..., φn). To determine the

spatial correlation between the random effects, we use the neighborhood matrix
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W, which is a binary n× n matrix, with elements wji:

wji =

{

1, if j ∼ i ,

0, otherwise ,

where j ∼ i represents contiguous areas, and therefore j and i are considered

neighbors. Other adjacency-based weights are available but are much less widely

applied ([37]). If two areas are neighbors we believe their random effects are

correlated, while non-neighboring areas are modeled as being conditionally inde-

pendent given the remaining elements of φ.

4.1. BYM model

The BYM model combines the intrinsic CAR (ICAR) with an additional

set of independent random effects.

The full conditional distributions of ICAR, as proposed by [3] are given by

(4.2) ui|u−i, σ
2 ∼ N





1

ni

∑

j∼i

uj ,
σ2

ni



 .

The conditional expectation of ui is equal to the mean of the random effects

in neighborhood areas, while the conditional variance is inversely proportional to

the number of neighbors ni. The variance parameter σ2 controls the amount of

variation between the random effects. The ICAR model has three main draw-

backs:

1) Its simplicity turns it into a very restrictive prior. Its single parameter

does not determine the strength of the spatial correlation (for example

multiplying each ui by 10, will only increase σ2 leaving the spatial

correlation unchanged). If data are weakly correlated, the ICAR is not

the most appropriate model ([16]).

2) The joint distribution for f(u) corresponding to (4.2) is improper (it

does not determine a legitimate probability distribution, one that inte-

grates to 1). Nevertheless, this is easily solved by enforcing a constrain

such as,
∑n

j=1
uj = 0, which can be numerically imposed by recenter-

ing each sampled u vector around its own mean following each Gibbs

iteration ([2]).

3) According to [24] the ICAR has an undesirable global (i.e. large-scale)

property of tending to a negative pair-wise risk dependence as the ‘spa-

tial proximity’ of the two regions is further apart.



Alcohol Abuse Disorder Prevalence. A Disease Mapping Approach 89

The BYM model defines φ in (4.1) by

(4.3) φi = θi + ψi ,

θi|σ2

θ ∼ N(0, σ2
θ) ,

ψ = (ψ1, ..., ψn)|W , σ2
ψ ∼ ICAR(W, σ2

ψ) ,

where W is defined in Section 4). More details on the BYM model are provided

by [21] and [3].

The set of random effects θ = (θ1, ..., θn) is independent between areas.

Different strengths of spatial correlation can be represented by varying the relative

sizes of the two components (θ,ψ). In practice, it will often be the case that either

θ or ψ dominates the other depending upon the strength of the spatial structure

and the relative sizes of σ2
θ and the σ2

ψ. This flexibility is also a disadvantage, as

each data point is represented by two random effects while only their sum (θi+ψi)

is identifiable. In order to attain model identification and achieve convergence

when MCMC is used, at least one considerably informative hyper prior has to

be assumed either for σ2
θ or σ2

ψ. Several authors have studied this aspect ([37,

2]), and ([24]) implemented a model that can ‘attain model identifiability, allow

the data to inform risk decomposition, and facilitate principled attribution of

the relative risk variability to spatially varying clustering effects and randomly

varying heterogeneity effects based on the given data’ (page 66), hereafter called

Modified BYM (MBYM). This model replaces (4.3) by

(4.4) φ =
√
λψ +

√
1 − λθ , ψ ⊥ θ, λ ∈ (0, 1) .

One interpretation of the above is that it represents a re-parameterized BYM prior

with σ2
ψ = λσ2 and σ2

θ = (1−λ)σ2. The new prior interpolates between the ICAR

prior and the Gaussian prior for θ. λ serves as a spatial smoothing parameter

and determines the proportion of the spatially structured risk variability over the

total risk variability.

4.2. LLB model

The LLB model is based on a single set of random effects φ = (φ1, ..., φn),

represented by a multivariate Gaussian distribution

(4.5) φ|W, σ2, ρ,µ ∼ N(µ, σ2[ρW∗ + (1 − ρ)In]
−1) .

The prior above has a constant non-zero mean µ = (µ, ..., µ), avoiding the

use of the intercept term in (4.1). In the matrix, σ2[ρW∗ + (1− ρ)In]
−1, In is an
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n× n identity matrix and the elements of W∗ are equal to

w∗

ji =











ni, if j = i ,

−1, if j ∼ i ,

0, otherwise .

The precision matrix is a weighted average of the spatially dependent cor-

relation structures, represented by the matrix W∗, the independent correlation

structures, represented by the identity matrix, and the weight represented by

the parameter ρ. When ρ = 0 the model becomes a simple independent random

effects model and when ρ = 1 the model becomes the ICAR as in (4.1). When

0 6 ρ < 1 the joint distribution (4.5) is proper. The full conditional distributions

corresponding to (4.5) are given by

(4.6) φi|φ−i,W, σ2, ρ, µ ∼ N

(

ρ
∑

j∼i φj + (1 − ρ)µ

niρ+ 1 − ρ
,

σ2

niρ+ 1 − ρ

)

.

The conditional expectation is the weighted average of the random effects

in the neighboring areas and the overall mean µ. The conditional variance, in

the presence of strong spatial correlation is approximately σ2/ni, the same as the

ICAR, but if the random effects are independent then it is a constant (σ2).

4.3. Localized conditional autoregressive model

All three models defined above use CAR priors that are globally smooth.

The random effects are forced to exhibit a single global level of spatial smoothness

determined only by geographical adjacency. With real data such a uniform level

of smoothness for the entire region is unrealistic. It is more realistic to think

that sub-areas of spatial autocorrelation co-exist with areas of discontinuity. As

an example, areas of wealth and poverty, sharing boundaries, are very common

in the biggest cities of the world, showing different patterns in the disease risk.

A possible solution to this problem is presented by [21], and is called Bayesian

localized conditional autoregressive model, LCAR from now on. This model

was initially applied to a ESR, but as explained in Subsection 3.2 the same

methodology can be applied in the DM field.

The LCAR treats the elements in the neighborhood matrix, representing

contiguous areas, as a set of binary random quantities and not as fixed values.

The elements of this new neighborhood matrix, W̃ , continue to be set to zero

for non adjacent areas but adjacency is no longer the only reason for those ele-

ments to be set to one. When all adjacencies are kept, the model simplifies to the

ICAR, while if all adjacencies are removed the random effects are independent.
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The model defines φ in (4.2) as φ̃ = (φ, φ⊛) where φ⊛ is a global random effect

that is potentially common to all areas and prevents any unit from having no in-

formation to ‘borrow strength’ from. Based on the extended matrix, the proposal

is to model φ̃ as φ̃ ∼ N(0, σ2Q(W̃, ǫ)−1), with the precision matrix given by

(4.7) Q(W̃ , ǫ) = diag(W̃ I) − W̃ + ǫI ,

The component diag(W̃ I) − W̃ corresponds to the ICAR model applied

to the extended random effects vector φ̃ and the component ǫ ensures that the

matrix is diagonally invertible. This restriction is now needed because Q ˜(W ) is

no longer fixed. The parameter ǫ is recommended to be set as ǫ = 0.001. The full

conditional distributions corresponding to the LCAR model are given by

(4.8) φj |φ−j ∼ N

(∑n
i=1

wijφi + wi⊛φ⊛
∑n

i=1
wij + wi⊛ + ǫ

,
σ2

∑n
i=1

wij + wi⊛ + ǫ

)

, j = 1, ..., n ,

φ⊛|φ−⊛ ∼ N

( ∑n
i=1

wi⊛φ⊛
∑n

i=1
wi⊛ + ǫ

,
σ2

∑n
i=1

wi⊛ + ǫ

)

.

In (4.8) the conditional expectation is a weighted average of the global

random effect φ⊛ and the random effects in the neighboring areas, with the

binary weights depending on the current value of W̃. The conditional variance

is approximately (due to ǫ) inversely proportional to the number of neighbors

remaining in the model, including the global random effect φ⊛.

The matrix W̃ is treated by the LCAR model as a single random quantity,

which avoids several problems identified by other authors (for more details see

[21], Subsection 3.2). The authors propose eliciting the set of candidate values

of W̃ from data having a similar spatial structure as the response variable.

The increased flexibility provided by the LCAR model inevitably means

that it is more computationally demanding than the common BYM model.

5. ALCOHOL ABUSE DISORDER DISTRIBUTION ACROSS

PORTUGAL

The number of lifetime AAD cases vary between 2679 (16A – Cova da

Beira) and 136789 (171 – Grande Lisboa). There are four NUTS 3 (164 – Pinhal

Interior Norte, 166 – Pinhal Interior Sul, 169 – Beira Interior Sul and 181 –

Alentejo Litoral) where no cases were identified. The national nature of the

survey sampling design creates situations where very small or even zero samples

at the NUTS 3 level occur. In this situation it might happen that no cases are

estimated, which does not mean that no disease diagnoses exist. Therefore, these
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areas are treated as having missing values and not as having a null number of

cases. The first level of the Bayesian hierarchical model, as seen in (4.1), involves

complex calculations, very difficult to run on such numbers, therefore numbers of

cases per 100 inhabitants, as well as expected number of cases per 100 inhabitants

are used (this change does not eliminate the need of using the expected number of

cases because only the size of the population is accounted for, not the structure).

The R software (version 3.1.1), with the package CARBayes ([17]) is used

to fit the hierarchical models. The main advantages of this package are: (1) the

spatial adjacency information is easy to specify as a binary neighborhood matrix;

(2) given the neighborhood matrix the models can be implemented by a single

function call in R; (3) maps with the disease risk estimates can easily be produced.

The package has predefined the following models that will be used: BYM, LLB

and LCAR. By running the same model on R and on the BUGS software ([23]) the

package’s author shows that there is good agreement between the two sets of point

estimates, as we confirm in the present work. One disadvantage of the package is

that it cannot handle missing values at the response variable level. To overcome

this, a Generalized Linear model (GLM), Poisson (quasi-likelihood) model ([26]),

is fitted using as response variable the number of lifetime observed cases per NUTS

3 and as covariates the ecological variables defined before, namely the proportion

of men and the proportion of population aged 18 to 34. The mean estimated

number of lifetime observed cases achieved for the four areas with missing data are

incorporated in the response variable vector Y. This methodology is debatable

and more work needs to be done, in order to evaluate all possible consequences

of this approach.

The MBYM model is fitted using the OpenBUGS software ([23]). Even

though the Bayesian methodology could handle the missing values, for comparison

purposes the missing values are also replaced by the mean estimated values.

As mentioned in Subsection 4.3, the authors of LCAR propose that, for the

elicitation of W̃ , data having a similar spatial structure as the response variable

should be used. In their case, the prior elicitation was based on response vari-

able data from previous years. Our decision was to use the number of cases of

four other related mental disorders, chosen as follows. Disorders considered in

the Portuguese version of the WMHSI include a comprehensive range of mental

disorders, and a GLM is fitted (Binomial model) to understand which mental dis-

orders are most commonly present with AAD. The response variable is two-level

categorical, taking value one if the individual suffers from AAD and taking value

zero otherwise, and the covariates are of the same type, for all other disorders.

At a lower than 5% significance level, the following disorders have an Odds Ratio

larger than one: Alcohol Dependence, Oppositional Defiant Disorder, Hypoma-

nia, and Intermittent Explosive Disorder. In the cases where values are missing

the procedure followed is the one defined before, using as covariates the remaining

disorders. For example, for alcohol dependence disorder as response variable, the
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covariates are: alcohol abuse disorder, oppositional defiant disorder, hypomania

and intermittent explosive disorder. The mean estimated number of cases are

imputed in the response variable vectors. There are two reasons to use a different

approach in the present case. First, in Portugal, data on ADD from previous

surveys is not available. Second, this work is on DM and not on ESR, therefore

the decision is to use data from related mental disorders.

5.1. Hyperpriors

Table 1 shows the prior distributions implemented in the four models. In

the LCAR model, on top of the already mentioned information for the W̃ matrix,

the parameter ǫ is set to 0.001.

Table 1: Prior distributions for the models.

Model Parameter Prior Distribution Mean/Shape Variance/Scale

BYM β = (β1, β2) Gaussian 0 1000
µ Gaussian 0 1000

σ2

θ and σ2

ψ Inverse-Gamma 0.001 0.001

MBYM β = (β1, β2) Gaussian 0 100000
µ Flat - -
σ2 Inverse-Gamma 0.001 0.001
λ Uniform [0,1) 0.5 0.5

LLB β = (β1, β2) Gaussian 0 1000
σ2 Inverse-Gamma 0.001 0.001
ρ Uniform [0,1) 0.5 0.5

LCAR β = (β1, β2) Gaussian 0 1000
σ2 Uniform [0,1000) 500 500

5.2. Inference

Posterior inference for all models is based on Markov Chain Monte-Carlo

simulation, using a combination of Gibbs sampling and Metropolis-Hastings algo-

rithms. Posterior inference is based on 8000 MCMC samples, which are obtained

by running one chain for 100000 samples, by which convergence is assumed to

have occurred. We ignore the first 20000 samples as burn-in, and use the re-

maining 80000 subsequent samples to obtain the posterior distributions of the

parameters of interest (a thin of 10 is used to reduce the autocorrelation).
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Pilot runs are carried out to establish appropriate burn-in using the Geweke’s

diagnostic ([9]). Convergence is assessed by visually monitoring the trace and the

posterior density plot for each of the parameters.

5.3. Results

Each model is assessed by the resulting Deviance Information Criterion

(DIC) ([32]), where a smaller value represents a better fitting model. Table 2

shows the results of the four models.

Table 2: DIC results, which include the effective number of parameters
in the model (p.D.).

BYM MBYM LLB LCAR

DIC 155.3 145.0 159.2 158.0
p.D. 14.3 5.8 18.5 19.5

Table 2 shows that, according to DIC, the MBYM model exhibits the best

fit. BYM model is the second best. Following [24], λ = 1 represents spatial/local

smoothing and λ = 0 represents non-spatial/local smoothing, based on the disease

mapping data at hand. In the MBYM the posterior mean value of λ = 0.58,

shows that the data has an higher spatially structured variance than unstructured

variance. As already proved by [16], the BYM model shows more robust results

in the presence of strong spatial correlation structures, as it seems to be the case

here.

Figure 2 shows the posterior median SMR values for the 28 NUTS 3, pro-

duced by the MBYM model. Table 3 shows summary measures of the marginal

posterior of the parameters of interest obtained by the MBYM model.

Figure 3 displays histograms of the (a) raw SMR and the (b to d) smooth

posterior median SMR values for the 28 NUTS 3, produced by the models. The

concentration around the interval [0.5, 1.5] on the latter can clearly be seen. Map-

ping the raw SMRs gives a misleading picture of the risk pattern, whereas any of

the four models (plus LLB, which is not presented, but shows the same overall

results) give posterior median relative risks less dispersed. This ability of the

Bayesian models to “clean” adequately the SMRs from the false patterns created

by the Poisson noise had been already referred by [30].
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Figure 2: MBYM AAD posterior median SMRs per NUTS 3.

Table 3: MBYM model parameters summary.

Para- Prior Prior Prior MCMC 2.5% Me- 97.5%
meter distribution mean std Posterior dian

mean (std)

β0 Flat 0 −0.11 (0.10) −0.32 −0.11 0.08
β1 N(0, 100000) 0 100000 −0.23 (0.14) −0.52 −0.22 0.06
β2 N(0, 100000) 0 100000 −0.8 (0.13) −0.34 −0.07 0.18
λ U[0,1) 0.5 0.5 0.58 (0.25) 0.07 0.61 0.97
σ2 IG(0.001, 0.001) 1 10 0.61 (0.17) 0.35 0.59 1

The LCAR model is the only one that does not have a single global level of

smoothness and therefore any existing discontinuities in the risk pattern can only

be concluded from this model. There are 122 neighborhoods (or connections)

between the 28 NUTS 3. When applying the LCAR model, the 95% credibility

interval of the number of removed connections is [2, 54]. This fact provides evi-

dence that there is information in the data to estimate the number of connections

to be removed. Results confirm the known deep cultural roots in the country on

the differences between the coast- and the country-side NUTS 3. This is the

case of Peńınsula de Setúbal and Algarve, two coast-side NUTS 3 sharing physi-
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Figure 3: Histograms of the (a) raw SMRs and posterior medians of the
(b,c,d) SMRs, for all areas derived by each of the three models,
(b) BYM, (c) MBYM and (d) LCAR.

cal borders with the country-side NUTS 3 Alentejo, which are no longer present

when data is used to estimate connections.

As mentioned in Subsection 3.2 the goal of DM is not the estimation of as-

sociations between covariates and the disease cases, but is to estimate the pattern

of disease risk over a geographical region. Nevertheless, due to the fact that the

two coefficients (β1 and β2) did not show to be significantly different from zero

(contrary to expectations mentioned in Section 2), one must remember that this

is an ecological study design, and the results must not be interpreted in terms of

individual level cause and effect. One possible explanation is ecological bias as

the prevalence rate of AAD is higher in younger men. Another possible explana-

tion is that both the random and the covariate effects are confounded, because

both are globally smooth in the MBYM model.

6. DISCUSSION

In the past years hierarchical Bayesian models have been developed and

refined to achieve statistically precise local estimates of disease risk for each small

region. In this study four of those models are assessed and used to estimate the

disease risk of AAD at the NUTS 3 level, in Portugal.
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In terms of DIC, the MBYM model achieves the best results. The MBYM

model derives from the BYM model in an attempt to overcome the known de-

ficiency of the latter, the lack of identifiability. The MBYM is identifiable and

facilitates hierarchical modeling of the additive effects of unobserved covariates

that might be spatially and randomly varying ([24]). In the present case its su-

perior performance is likely to result from the BYM (and MBYM) model ability

of achieving the best results in cases when the spatial correlation structure is

strong, as seems to be this case.

The LLB model has consistently shown good results across a variety of cases

but in this study, in terms of DIC, it proves to be the most poorly performing.

While other authors show that the LLB model is the one achieving the best

results ([16, 24]), our study shows otherwise. The performance of each model

will depend on the type of data at hand, and none can be defined as the ‘gold

standard’ over others.

The LCAR model is the only model that does not take the neighborhoods

as fixed but those emerge from real data, as a random quantity. By doing that,

in this example, the known cultural differences (between country- and coast-side)

in the country are confirmed.

This study has some particularities when compared with the majority of

the published applications:

a) The data use emerged from a survey, which was not plan to have local

(at NUTS 3 level) samples with the proper size to allow designed-based

estimation, and therefore presents some missing values. To overcome

this a frequentist model is used.

b) The complex computations of the first level of the hierarchical Bayesian

models do not allow the direct use of the survey estimates. To overcome

this the number of lifetime cases of AAD per 100 inhabitants is used.

c) The LCAR model is used as a DM and not as a ESR, and therefore the

type of data used for the elicitation of the W̃ matrix is not previous

periods data for the same disease but data from correlated disorders.

The epidemiological study presented in this paper shows substantial evi-

dence of some ‘hot spots’ in the Center and South of the country allowing the

authorities to focus interventions on these ‘excess risk’ areas.

There are still many opportunities for future work in this area. First the

global ICAR’s property of tending to negative pair-wise risk dependence as the

‘spatial proximity’ between two regions is further apart and its potential impact

on posterior inference has not been yet sufficiently explored and understood.
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Second [7] showed that region effects can be greater (smaller) for specific age

groups. We know that AAD is more prevalent in young adult men ([13, 27]).

Further research on the region effects on this age-gender group is needed. Third

the four models used in this work were GLMM (Generalized linear mixed models),

but the linear assumption on the covariate effects might be too restrictive, the

usage of a GAMM (generalized additive mixed model) should be explored as it

can eventually reveal non-linear relationships.
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