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Abstract:

• Allied to an epidemiological study of population of the Senology Unit of Braga’s
Hospital that have been diagnosed with malignant breast cancer, we describe the
progression in time of repeated measurements of tumor marker Carcinoembryonic
antigen (CEA). Our main purpose is to describe the progression of this tumor marker
as a function of possible risk factors and, hence, to understand how these risk factors
influences that progression. The response variable, values of CEA, was analyzed
making use of longitudinal models, testing for different correlation structures. The
same covariates used in a previous survival analysis were considered in the longitudinal
model. The reference time used was time from diagnose until death from breast cancer.
For diagnostic of the models fitted we have used empirical and theoretical variograms.
To evaluate the fixed term of the longitudinal model we have tested for a changing
point on the effect of time on the tumor marker progression. A longitudinal model
was also fitted only to the subset of patients that died from breast cancer, using the
reference time as time from date of death until blood test.
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1. INTRODUCTION

Oncological diseases are the second highest cause of death in Portugal,

and they have a big social impact in patients and their families [12]. In Europe

breast cancer is the tumor with highest incidence in women [1]. In Portugal there

are not many published studies on breast cancer. However, Pinheiro et al. (2003)

([12]) refer that, since 1995, mortality due to breast cancer has been decreasing in

Portugal. They argue that this improvement is a consequence of earlier diagnostic

and better quality of treatment.

According to results presented by the European Cancer Observatory [5], the

estimated incidence for Breast Cancer in Portuguese women in 2012 is 85.6% and

the estimated mortality rate due to this type of cancer is 18.4%, both values are

quite lower than the European average (94.2% and 23.1% respectively). At the

moment, the existing recommendations and guidelines from the National Health

Service are mainly based on European studies. However, it is not clear that the

behavior of the disease is similar among European countries. Therefore, it is of

great importance the continuous investment on statistical and epidemiological

studies in oncological diseases for understanding the progression of the disease in

Portugal.

This study aims to answer at least some of the questions on a specific Por-

tuguese population, particularly the population of the Senology Unit of Braga’s

Hospital, located in the north of Portugal, that were diagnosed with malignant

breast cancer.

The tumor marker Carcinoembryonic antigen (CEA) is usually used for

therapy monitoring in advanced disease ([6]), although recent reports, e.g. Fiorella

et al. (2001) ([6]), discourage its routine use because of low sensitivity. The

authors conclude that its use should be considered as an inefficient method of

follow-up evaluation for breast cancer patients, and it provides no additional

value when used in combination with another tumor marker Carcinoma Antigen

15-3 (CA 15-3). Nevertheless, as Sturgeon et al. ([16]) point out, on occasion, it

can be informative when levels of CA 15-3 remain below the cutoff point.

Since it is a usual medical procedure to be alert for possible tumor re-

currence in the case of detecting a rise in levels of this marker above a certain

reference value, our main purpose is to describe the progression of this tumor

marker, on patients who were followed and treated in this Unit, as a function of

possible risk factors. We intend to estimate on average the time to the increase

of this tumor marker, and to characterize the degree of heterogeneity between

patients.
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2. METHODOLOGY

2.1. Motivation and data set

Data were collected directly from the medical records of each patient, listed

in the computer system of Braga’s Hospital — Glintt HS. We therefore have

access to baseline and clinical history of each patient (a roll of information such

as diagnosis; pre-surgery, post-surgery, group meetings; follow-up and medical

exams). The authorization to collect and use of senology data was approved by

the Ethical Committee of Hospital de Braga.

From the information gathered in the medical reports we were able to collect

more than 50 variables that can be grouped into two categories: (i) explanatory

variables at individual level, which are a group of demographic characteristics

that include a set of prognostic factors reported by Rodrigues (2011) ([14]), for

example: age, menopause, age at first full term pregnancy; (ii) explanatory vari-

ables at tumor level, that include characteristics of the tumor, some of them

important prognostic factors which were already reported in the literature and

resumed by Fitzgibbons et al. (2000) ([7]) and Cianfrocca and Goldstein (2004)

([3]), such as TNM stage, histological type of tumor, hormonal receptors or vas-

cular or lymphatic invasion, among others.

We collected data from 577 female patients diagnosed with a malignant

tumor in the period of 2008 until 2012 (or before, but alive at 2008 and all

patients at follow up on group meetings at 2008). Patients at follow up on group

meetings were diagnosed as late as 1998. Patients’ age at the time of diagnosis

varies between 20 and 89 years. However patients with no information regarding

tumor markers CEA were excluded for the present analysis, as well patients with

no follow up information. We handled all missing values as missing completely

at random ([10]).

For the longitudinal analysis of the tumor marker CEA, we considered

data of 532 patients. Since 19 patients had bilateral breast cancer, and bilateral

breast cancer is treated as independent case in this study, it translates into a total

number of 551 cases analyzed. The total number of deaths from breast cancer

is 54. There were 4166 measurements of tumor marker CEA, with a number of

observations per patient varying between 1 and 23 measurements, as shown in

Figure 1. The median number of measurements per person is 7.

It is an unbalanced study for the tumor marker, since patients measure-

ments were not made at the same moment.
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Figure 1: Histogram for the number of measurements per patients
for tumor marker CEA.

2.2. Statistical methodology

The response variable, value of CEA, was analyzed making use of longitu-

dinal models as defined in Diggle et al (2002) ([4]), where different correlation

structures were tested.

The same covariates used in the survival model, previous adjusted in an

earlier study ([2]), were tested in the longitudinal model fitted. The reference

time used was time, in years, since diagnose of breast cancer. We have used the

reference value of 5,0 ng/mL ([14]) for the response variable. According to the

usual medical procedures, physicians stay alert to a possible recurrence of breast

cancer for patients that present values of CEA above this reference value.

In general, we denote each patient in this analysis by the subscript i =

1, ..., n. Repeated tumor marker measurements for each patient i, at correspond-

ing time tij , are denoted by Yij , where j = 1, ..., mi. Note that for this particular

study, measurement times are not common to all subjects (unbalanced study).

Let N =
∑n

i mi, be the total number of measurements in the data set.

For the analysis, we began with an exploratory analysis and point estima-
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tion by modeling a saturated ordinary least square (OLS) ([4]) model with the

variables that had shown significant effect on patients’ survival, given by:

(2.1) Yij = µij + εij ,

where E[Yij ] = µij and εij are N independent and identically distributed (i.i.d.)

realizations of N(0, ξ2).

Since the OLS model assumes independence between any two measure-

ments, from the same or different subject, it is important to consider different

models in the context of longitudinal analysis, that take into account the corre-

lation that usually exists in the measurements of the same subject.

A longitudinal model was also fitted only to the subset of patients that

died, using the reference time, in years, from blood tests until date of death.

To model the correlation structure for each model we analyzed the empirical

variogram of OLS residuals from the saturated model for the mean response

([4]). These patterns suggested the existence of variability between subjects (as

random effects), and a possible variability within subjects (serial correlation).

Hence, maintaining the same mean structure we compared two nested models

with different covariance structures with three components, such as: (i) random

effects, exponential serial correlation and measurement error; (ii) random effects,

Gaussian serial correlation and measurement error.

In many medical studies it is important to consider not only random effects

but also a possible variability within subjects as it may have important medical

implications. In fact, Liang and Zeger (1986) ([9]) alert that treating the correla-

tion as a nuisance may be less appropriate when the time course of the outcome

for each subject is of primary interest or when the correlation itself has scientific

relevance.

Both longitudinal models are given by:

(2.2) Yij = µij + Ui + Wi(tij) + Zij ,

where Ui are n i.i.d. realizations of N(0, ν2), representing the random effects at

individual level, Wi(tij) is a continuous time Gaussian Process with E[Wi(tij)] = 0

and Var(Wi(tij)) = σ2 and, Zij are N i.i.d. realizations of N(0, τ2), representing

the measurement error (variability non specified).

To model the fixed term of the longitudinal model, µij , we have tested for

a changing point δ on the effect of time on the tumor markers. In practice, the

changing point is the moment where there is an alteration on the slope of the

linear marker’s progression, on average. Considering δ the changing point, we
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have E[Yij ] = µij with:

(2.3) µij =







Xijβ + α1tij , if tij < δ ,

Xijβ + α2(tij − δ) , if tij ≥ δ ,

where Xij represents the vector of covariates, β the vector of unknown regression

coefficients, α1 and α2 the coefficients representing the slope before and after the

changing point, respectively.

For parameter estimation we use the maximum likelihood method, whose

associated likelihood function is given by:

(2.4) L(θ; Y ) =
n

∏

i=1

mi
∏

j=1

1

2π|Vij |
exp

{

−

(

1

2

)

(yij − µij)V
−1

ij (yij − µij)
T

}

,

where Vij is the variance/covariance positions on the variance/covariance matrix

of all data.

We then conducted a backward elimination to delete variables not signifi-

cant, until the mean structure was well defined with only significant covariates.

What distinguishes these two longitudinal models is how two different real-

izations of Wi are correlated in time. That is, if we consider the correlation among

Wi(tij), let say between W (t) and W (t − u), determined by the autocorrelation

function ρ(u), we will have for the REE model ρ(u) = exp(− 1

φ
.|u|), and for the

REG model ρ(u) = exp(− 1

φ
.u2), where ρ is the range parameter that specifies the

rate at which the correlation stables.

The validation of the correlation structure was made by graphical com-

parison between the empirical variogram and the theoretical fitted ones, and

comparing their maximized log likelihood values.

The variogram ([4]) of a stochastic process Y (t) is given by:

(2.5) V (u) =
1

2
Var

{

Y (t) − Y (t − u)
}

, u ≥ 0 .

For a stationary process, the autocorrelation function, ρ(u), and the vari-

ance of Y (t), σ2, are related by:

(2.6) γ(u) = σ2{1 − ρ(u)} .

The estimation of the empirical variogram is based on the calculation of

the observed half-squared-differences between pair of residuals, νij = 1

2
(rij −rik)

2,

and the corresponding time-differences, uijk = tij − tik, where rij = Yij −µij , and

j < k = 1, ..., mi.
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The autocorrelation function at any lag u is estimated from the sample

variogram by:

(2.7) ρ̂(u) = 1 −
γ̂(u)

σ̂2
,

where γ̂(u) is the average of all the νij corresponding to that particular value of

u, and σ̂2 is the estimated process variance.

The entire analysis was performed using R software ([15]), in particular

making use of both nlme ([11]) and JoineR ([13]) packages.

3. RESULTS

Since the normality assumption of the response variable failed, we used

a log-transformation of the tumor marker CEA values. It is, in fact, a usual

transformation in biological markers. The spaghetti plot (Figure 2) presents the

progression of the CEA values for each patient, against the reference, and the non

parametric smooth spline line, indicating the average trend of progression. The

smooth spline suggests that, on average, the marker progression stays below the

reference value with a non accentuated slope in its increase. However, it is possible

to see that there are individuals with values above the reference value of log (5.0)

ng/mL. Nevertheless a linear modeling approach appears to be reasonable. Also,

it does not point out to the existence of a changing point in its progression in

time.
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Figure 2: Spaghetti plot for tumor marker CEA values.
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In fact, after fitting several saturated parametric models considering various

changing points’ values, its existence was not significant in the mean time trend

of the tumor progression.

Table 1 presents the estimated parameters of the fitted longitudinal model

that best represent the tumor marker progression in time, and compares the

estimates to those obtained by fitting the simple OLS model and the respective

log Likelihood values.

Table 1: Estimated parameters values for General Linear Model
and Longitudinal Model.

OLS Model REE Model

Estimate p-value Estimate p-value

Intercept 0.0689 0.7170 0.7355 0.0405

Time −0.1304 <0.0001 −0.1049 0.0038

Tumor stage (III or IV) 0.2132 <0.0001 0.2655 0.0038

Primary tumor size

(Tx orT1 orT2 orT3 orTis) −0.2063 0.2660 −1.0383 0.0023

Age at diagnosis 0.0095 <0.0001 0.0117 <0.0001

Venous vascular

invasion (Yes) *Time 0.1355 <0.0001 0.0967 0.0175

Tumor degree (G3) *Time 0.1281 <0.0001 0.1179 <0.0001

Estrogen receptor

expression (positive) *Time 0.1548 <0.0001 0.1455 <0.0001

ν̂2 0.2849

σ̂2 0.3295

φ̂ 2.1912

τ̂2 0.0239

ξ̂2 0.6770

Log Likelihood −3792.429 −1853.366

The fixed part of the longitudinal model, which describes the mean pro-

gression of the marker, is composed by the following significant covariates on the

intercept component of the model: tumor stage (0/I/II versus III/IV), primary

tumor size (Tx/T1/T2/T3/Tis versus T4), and age at diagnosis. The intercept

component of the model, in this particular case, means that a patient with a tu-

mor stage of 0, I or II, a T4 primary tumor size at an earlier age of diagnosis will

start the progression of the tumor marker with a value of 0.7355, on a logarithmic

scale.

A patient with a tumor on stage III or IV implicates an increasing of the

log value of the tumor marker by an increment of 0.2655, comparing to those
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with a tumor on stage 0, I or II. Also, a tumor that presented a primary tumor

size different from the classification T4 has a decrease in the starting point of the

marker value by an increment of −1.0383. The age at diagnosis affects the log

value of the marker at a rate of 0.0117 per year of age at diagnosis.

The covariates that affect the slope (−0.1049) of the linear progression of

the tumor are: images of vascular invasion (Yes versus No), Bloom-Richardson

degree of differentiation (Gx/G1/G2 versus G3) and estrogen receptors expression

(Positive versus Negative).

According to the estimated values, cases that present a venous vascular

invasion of the tumor, a tumor degree G3 and a positive estrogen receptor ex-

pression increase the progression slope at a rate of, respectively, 0.0967, 0.1179

and 0.1455.
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Figure 3: Superposition of empirial variogram and theoretical variogram.

The correlation structure that best represents the variability of the data

is, in fact, the one that incorporates random effects at individual level with ν̂2 ≈

0.2849, an exponential correlation structure to describe the variability within

patients with ρ(u) = exp( −1

2.1912
.|u|) and σ̂2 ≈ 0.3295, and a measurement error

with variance τ̂2 ≈ 0.0239. That fact can be easily accessed by the superposition

of the theoretical fitted variogram of both exponential and Gaussian correlation

structures with the empirical variogram (Figure 3).
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When fitting the saturated general linear model for the subset of patients

who died from breast cancer, we detected a changing point at 2 years before

death. The smooth spline of the spaghetti plot (Figure 4) is consistent with

that result and informs a transposition of the reference value nearly after that

changing point.
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Figure 4: Spaghetti plot for tumor marker CEA values of patients
who died from breast cancer.

Note that, as we are analyzing the marker values from date of blood tests

until death, we are dealing with duration at a negative scale.

Table 2 summarizes and compares the estimated parameters for the longi-

tudinal model which best fitted the data with those of the general linear model

(OLS Model). As expected, the presence of venous vascular invasion has an in-

creasing effect on the average CEA linear progression in time, as it is related to

a worst prognostic case in the previous survival analysis ([2]).

Contradictory results are the decreasing effect of a bilateral type of tumor

and the presence of lymphatic invasion and the increasing effect of a positive

estrogen and HER-2neu expression. The mentioned covariates have a statistical

significant effect on the intercept component of the model (1.4622). Bilateral

cancer cases have a decrease of 0.5981 on the intercept component, and a case

with lymphatic invasion a decrease of 0.7322 compared to those with no lymphatic

invasion. A case that presents images of vascular invasion increases of the start

value of the tumor marker by an increment of 0.7322, comparing to those that do
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not present any image. A positive estrogen receptor expression has an increasing

effect on the intercept component by 1.2177, compared to those with a negative

expression. A positive expression of HER-2neu has an increment of 0.4882.

Table 2: Estimated parameters values for General Linear Model
and Longitudinal Model, for the patients who died from
breast cancer.

OLS Model REG Model

Estimate p-value Estimate p-value

Intercept 2.0376 <0.0001 1.8507 <0.0001

Time before changing point

(2 years before death) 0.2540 <0.0001 0.2128 <0.0001

Time after changing point

(2 years before death) 0.9453 <0.0001 0.8815 <0.0001

Bilateral (Yes) −0.9290 <0.0001 −0.5981 0.0471

Lymphatic invasion (Yes) −0.8821 <0.0001 0.7769 <0.0001

Venous vascular

invasion (Yes) 1.0350 <0.0001 0.7769 0.0266

Estrogen receptor

expression (positive) 1.5675 <0.0001 1.2177 <0.0001

ν̂2 0.2404

σ̂2 0.8239

φ̂ 0.3762

τ̂2 0.0415

ξ̂2 1.2499

Log Likelihood −1089.503 −621.695

For this subset, the correlation structure that best represent the variability

of the data is the structure that incorporates random effects at individual level

with ν̂2 ≈ 0.2404, a Gaussian correlation structure to describe the variability

within patients with ρ(u) = exp( −1

0.3762.
u2) and σ̂2 ≈ 0.8239, and a measurement

error with variance τ̂2 ≈ 0.0415. The superposition of the theoretical variogram

of both exponential and Gaussian correlation structures with the empirical vari-

ogram (Figure 5) validates the choice of an exponential correlation structure.

Both REE and REG models were compared with a longitudinal model

only with an intercept random effect component Ui, and the serial correlation

component Wi(tij) shown to be significant in the models. This result reinforces

the need to take into account correlation within subject measurements.
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Figure 5: Superposition of empirial variogram and theoretical variogram,
for patients who died from breast cancer.

4. DISCUSSION

An abrupt rise in values of CEA tumor marker, over a reference value, is

an alert sign to a possible recurrence of breast cancer.

When analyzing all patients that were diagnosed with breast cancer, in our

study, the only variables that have a statistically significant effect on the linear

progression of the tumor marker are: tumor stage (III/IV versus 0/I/II), primary

tumor size (Tx/T1/T2/T3/Tis versus T4), age at diagnosis, venous vascular

invasion (Yes versus No), tumor degree (Gx/G1/G2 versus G3) and estrogen

receptor expression (positive versus negative). As expected, a III or IV tumor

stage, a T4 type of tumor, a G3 type of tumor, the presence of venous vascular

invasion and age at diagnosis have an increasing effect on the average tumor

marker progression in time, as they are related to a worst prognostic case ([2]).

One unexpected result was the fact that a positive expression of the estrogen

receptor has an increasing effect on that progression, contradicting the results

from a previous survival analysis ([2]), where the same patients’ cases of positive

estrogen receptor shown a lower probability of dying from breast cancer than

those who presented a negative expression.



76 A. Borges, I. Sousa and L. Castro

It was detected a changing point on the linear progression of the tumor

marker for the subset of patients that died from breast cancer two years before

the death. This means that, at that point, there is an abrupt rise on the rate of

its progression.

The risk factors for the progression of the marker, for that subset of pa-

tients are: bilateral (Yes versus No), lymphatic invasion (Yes versus No), venous

vascular invasion (Yes versus No), estrogen receptor expression (positive versus

negative) and HER-2neu expression (positive versus negative). As expected, the

presence of venous vascular invasion has an increasing effect on the average CEA

linear progression in time, as it is related to a worst prognostic case in the previous

survival analysis ([2]). A bilateral type of tumor and the presence of lymphatic

invasion have a decreasing effect. A positive estrogen and HER-2neu expres-

sion has an increasing effect. These two last results contradict the results from

the previous survival analyses ([2]) since bilateral cases and lymphatic invasion

are related to lower survival probability and, a positive estrogen and Her-2neu

expression are both related to a higher probability of survival.

For both models fitted, the fact that the estimated variance of the measure-

ment error is quite lower that the estimated variance of the OLS model, means

that the fitted REE longitudinal model explains the variability of the data mainly

by means of variability between patients and within patients assigning a very low

value for measurement error (or white noise as usually mentioned in literature).

The fact that, when comparing the REE and the REG models to a lon-

gitudinal model with only an intercept random effect, the component the serial

correlation was significant, stresses the importance incorporating a variability

component that translates within subject measurements correlation, in this type

of biological data.

The presented longitudinal analysis of this tumor marker, in combination

with the previous survival analysis is going to be proceeded, in future work, with

a joint modeling of the longitudinal and survival process of the present data.
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