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Abstract:

• Extrapolating cancer mortality trends can be very valuable as a tool to predict cancer
burden. National Health Agencies use different models to figure out future evolution
of cancer, but they mainly work at national level. However, developed countries are
divided into different regions with their own governments and health care systems,
and this should be taken into account. In this paper, an ANOVA-type P-spline model
is considered to predict the number of mortality cases in forthcoming years in regions
within a country. The model is very interesting as it allows to split the predictions into
components representing region-specific features and characteristics common to the
whole country. Prediction variability is also calculated to provide prediction intervals.
Real data on cancer mortality are used for illustration.
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1. INTRODUCTION

Prediction of future events has always been a challenge in modern societies,

and statistical methods are valuable tools to forecast outcomes in many fields

of daily life. For example, in economy, we are constantly receiving predictions

about employment, rate of growth, income, expenses and many other quantities.

In medicine, it is common to make predictions about the evolution of a disease,

the spread of an epidemic, the outbreak of influenza, or the number of new

HIV cases. The main reason why governments, institutions or private companies

demand predictions is that advance knowledge about the future allows to make

plans, to think about business strategies and management, or to allocate resources

efficiently.

Future information about cancer incidence or mortality is essential for Pub-

lic Health Agencies since this illness brings huge expenses in developed coun-

tries involving diagnosis, treatment, research, loss of productivity because of sick

leaves, or pensions due to premature deaths in a family. These figures are also im-

portant to efficiently organize cancer screening programs and to prioritize preven-

tion activities. A cancer situation assessment requires an appraisal of the problem

in terms of the number of incidence or mortality cases. This should be done based

on an updated collection of cancer figures provided by population-based cancer

registries or censuses. Regarding the official figures, these are available with a

delay of approximately three or four years due to the complexity of updating

cancer registries. Hence, Health Agencies substitute this lack of information with

projections of cancer cases based on statistical models. Most of these agencies

use models at country level, and hence, they are essentially temporal models.

To show some examples, Lee et al. (2011) provide a comparison of the different

methods using Canadian cancer mortality data for twelve cancer sites. The au-

thors compare a temporal Poisson log-linear model used by the Public Health

Agency of Canada; age-period-cohort models considered by the Association of

the Nordic Cancer Registries; autoregressive with time trends models used by

the American Cancer Society, or state-space models used by the National Cancer

Institute. Joint point regression models implemented in the Jointpoint Regres-

sion Programme by the National Cancer Institute are also studied. According to

these authors, no model can be used for all cancer sites, and the performance also

depends on the number of observed cases. Moreover, the same models can show

different behavior in different countries. For example, for testis, thyroid and ovary

cancers, different performance is observed with Canadian and American data.

There has been additional academic research on predicting cancer mortality

cases mainly based on time models. For example, Chen et al. (2012) and Zhu

et al. (2012) evaluate different models to provide 4-year-ahead cancer counts

projections in USA. Tiwari et al. (2004) consider state-space methods to improve
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current projection methods used by the American Cancer Society. Ghosh and

Tiwari (2007) proposed a local linear model for short term projections and a

quadratic local model for longer prediction periods. Ghosh et al. (2008) develop

a projection method based on state-space models combining the best features

of a local quadratic model and an autoregressive model with fixed trend. Some

more work on temporal models includes Dyba and Hakulinen (2000) or Malvezzi

et al. (2012, 2013) to cite some of them. These models consider the calendar

year as the relevant time axis. However, for some cancer sites, the relevant time

axis is not the calendar year but the cohort of birth, and consequently age-period-

cohort models could be used. Research about cancer projections using age-period-

cohort models without spatial correlation can be found in Knorr-Held and Rainer

(2001), Clements et al. (2005), Riebler and Held (2010) or Riebler et al. (2012).

On the other hand, Schmid and Held (2004) provide stomach cancer mortality

projections using age-period-cohort models including spatial correlation. Very

recently Ugarte et al. (2012a) consider a three-dimensional P-spline model to

project prostate cancer mortality counts in fifty Spanish provinces. The authors

conclude that the P-spline model, that takes into account spatial dependencies,

is preferable to individual P-spline temporal models fitted separately in each

province. Etxeberria et al. (2014) compare different conditional autoregressive

models (CAR), P-spline models, and a combination of both in terms of their

predictive performance using cancer mortality data. Results reveal that models

combining CAR random effects for space and P-splines for time perform slightly

worse than models based only on P-splines or CAR models. The key point of

these papers is that the authors provide a unified framework of smoothing and

predicting under the mixed model theory using the mixed model representation

of P-spline models. In a different context, Currie et al. (2004) use P-splines to

smooth and forecast mortality rates for the pension industry, but they do not

use the mixed model reformulation. In an economic setting, Ugarte et al. (2009)

forecast dwelling prices in different neighbourhoods of Vitoria, a Spanish city.

The goal of this paper is to provide guidelines on how to extend an ANOVA-

type P-spline model to predict cancer mortality counts. Recently, Ugarte et

al. (2012b) used this model to smooth prostate cancer mortality risks in Spain.

One interesting feature of this model is that it allows to split the relative risk

into a smooth trend common to all regions, a smooth spatial surface constant

along the time period, and a smooth interaction term representing the region-

specific temporal evolution of the risk. Projections can be then decomposed into

the same components. This is of great interest from an epidemiological point

of view, since the decomposition of the predicted risks into these components

allows to assess if the increase/decrease of those risks is mainly attributable to a

common temporal behavior of all the regions or is due to an area-specific behavior

during the oncoming years. This information could lead to a better organization

of cancer prevention programs, open up new research lines to investigate the

differences among the areas, or just help to speculate about new risk factors.
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The ANOVA-type P-spline model can also be reformulated as a generalized linear

mixed model where the strategy to avoid identifiability problems is very simple.

In this paper, predictions of future mortality counts derived from this model are

provided under the mixed model framework such that smoothing, predicting and

assessing variability are jointly accomplished. The methodology will be illustrated

using Spanish prostate cancer mortality data during the period 1975–2008. This

will allow us to make comparisons with alternative models previously used in the

literature.

The rest of the paper is laid out as follows. Section 2 describes the exten-

sion of the ANOVA-type P-spline model and how predictions are obtained. The

technique is illustrated in Section 3. A validation study is presented in Section

4. Finally, the paper ends with a discussion.

2. TIME EXTENDED ANOVA-TYPE P-SPLINE MODEL

ANOVA decompositions of smooth functions have been already considered

in the literature. See for example Gu (2002) and Belitz and Lang (2005). Re-

cently, Wood et al. (2013) propose new penalties that allow ANOVA models to

be fitted using existing mixed model software. In this section, a spatio-temporal

ANOVA-type P-spline model with B-spline bases is considered to estimate and

predict cancer mortality figures. This model was initially used by Lee and Dur-

bán (2011) to estimate ozone levels in Europe and by Ugarte et al. (2012b) to

smooth risk in space-time disease mapping. Different approaches using B-splines

have also been considered in the disease mapping literature (see for example Mac-

Nab and Dean, 2001; MacNab and Gustafson, 2007; Silva et al., 2008). In this

paper we focus on extending the ANOVA-type model to estimate and predict

risks jointly using a mixed model reformulation. Suppose we have a big area (e.g.

a country) divided into smaller regions (e.g. provinces), for which mortality (or

incidence) counts in different time points are available. Denoting the province by

the subindex s = 1, ..., S, the time period for observed data by t = 1, ..., T , and

conditional on the unknown relative risk rst, the number of deaths Cst is assumed

to be Poisson distributed with mean µst = estrst, where est is the expected num-

ber of deaths calculated on the basis that the s-th province in time t behaves as

the whole country in the studied period. Then

(2.1) Cst|rst ∼ Poisson(µst = estrst) , log µst = log est + log rst .

In this work, our interest lies in estimating and predicting risks and counts

for each province. An extension of an ANOVA-type P-spline model will be con-

sidered. The model includes additive terms for space (longitude and latitude),

time, and space-time interactions, and hence the log-risk (log rst) is modeled as
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the sum of an intercept, a smooth term for the spatial surface, a temporal smooth

trend, and a smooth term for the space-time interaction.

Let us define the extended time period encompassing observed and future

values. This is denoted by t∗ = 1, ..., T, T +1, T +2, ..., T + p, where p is the num-

ber of years to predict. Log-risks for observed and predicted values are modeled

as

(2.2) u∗

st = log r∗st = δ + fs(x1, x2) + ft(t
∗) + fst(x1, x2, t

∗) = B∗θ∗ .

The term δ is an intercept, fs(x1, x2) represents the smooth spatial effect

constant along the period, ft(t
∗) is an extended temporal trend common to all

areas, and fst(x1, x2, t
∗) is the extended interaction term that can be interpreted

as the specific temporal trend for each area. In these expressions x1 and x2

are the coordinates of the centroid of the ith small area (longitude and latitude

respectively), t∗ is the time (for observed and predicted values), and fi, i = s, t, st

are smooth functions to be estimated using P-splines with B-spline bases. B∗ is

the extended B-spline basis and θ∗ is a vector of coefficients. The matrix B∗ is

explicitly defined as

(2.3) B∗ = [1∗

st : 1∗

t ⊗ Bs : B∗

t ⊗ 1s : B∗

t ⊗ Bs] ,

where 1∗
st, 1∗

t , and 1s are column vectors of ones of length S × (T + p), T + p,

and S respectively. Bs = Bs2
2Bs1

is the spatial B-spline basis defined by the

row-wise (2) Kronecker product (Eilers et al., 2006) of the marginal basis for

longitude (Bs1
) and latitude (Bs2

). B∗
t represents the extended marginal basis

for time and it is a lower block-triangular partitioned matrix given by

(2.4) B∗

t =

(
Bt 0

Bt1 Bt2

)
.

In this expression, Bt is the time marginal basis corresponding to the observed

period (t = 1, ..., T ), and Bt1 and Bt2 are the rows corresponding to the extended

data.

To ensure that fi, i = s, t, st are smooth functions, the P-spline approach

places penalties on the coefficients θ∗. The extended penalty matrix P∗ is

given by a block-diagonal matrix whose components are penalties for the two-

dimensional spatial component, the one dimensional time component and the

three-dimensional component (space-time interactions). More precisely, P∗ =

diag (0,Ps,P
∗
t ,P

∗
st), where

(2.5)

Ps = λs1
Im2

⊗ Ps1
+ λs2

Ps2
⊗ Im1

,

P∗
t = λtPt∗ ,

P∗
st = τs1

I∗m3
⊗ Im2

⊗ Ps1
+ τs2

I∗m3
⊗ Ps2

⊗ Im1
+ τtPt∗ ⊗ Im2

⊗ Im1
.
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In these expressions, Imj
, j = 1, 2, 3 are identity matrices of dimension mj × mj ,

where mj is the number of columns of Bj , j = s1, s2, t, and I∗m3
=

(
Im3

0

0 0

)
.

Ps1
and Ps2

are penalty matrices for longitude and latitude respectively de-

fined by Psj
= D′

sj
Dsj

, j = 1, 2 where Dsj
are second order difference matrices

to achieve smoothness over adjacent marginal coefficients (see Eilers and Marx,

1996). Matrix Pt∗ is defined using the extended difference matrix D∗
t for the time

component given by the next expression

(2.6) D∗

t =

(
Dt 0

Et Lt

)
, Pt∗ = D∗

t
′
D∗

t =

(
Pt + E′

tEt E′
tLt

L′
tEt L′

tLt

)
.

Dt and Pt are the difference matrix and the penalty matrix for the observed

time period, Et and Lt are the rows used to obtain the penalty for the oncoming

years, and λs1
, λs2

, λt, τs1
, τs2

and τt are different smoothing parameters corre-

sponding to space, time, and interaction components respectively. The extended

B-spline basis for time in Equation (2.4) and the extended difference and penalty

matrices in Equation (2.6) are equal to those obtained in a three-dimensional

P-spline model by Ugarte et al. (2012a). However, the extended transformation

matrix is different. The next step is to reformulate the P-spline model (2.2) as

a generalized linear mixed model. To do this, a matrix T∗ is used to transform

B∗ into [X∗ : Z∗] and θ∗ into (β′, α∗′)′. In this paper we provide the definition

of this transformation matrix T∗ which is based on matrices of eigenvectors cor-

responding to non-zero and zero eigenvalues respectively obtained from the eigen

decomposition of the matrices Pi, i = s1, s2, t. The key point in this process is

to choose an extended transformation matrix preserving the original transforma-

tion matrix T used to fit the data. Based on the transformation matrix T, the

following extended transformation matrix is considered

T∗ =




1
Ts

T∗
t

T∗
st


 ,

where T∗
t and T∗

st are defined by

T∗

t =

(
Tt 0

0 L−1
t

)
, T∗

st =

(
Tst 0

0 L−1
t ⊗ Im2

⊗ Im1

)
,

and

Ts = [1 ⊗ [u2n ⊗ 11 : 12 ⊗ u1n : u2n ⊗ u1n] : Rs] ,

Tt = [u3n ⊗ 1 : Rt] ,

Tst = [u3n ⊗ [u2n ⊗ 11 : 12 ⊗ u1n : u2n ⊗ u1n] : Rst] .
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The matrices Rs, Rt, and Rst are given by

Rs = [1 ⊗ [U2s ⊗ U1n : U2n ⊗ U1s : U2s ⊗ U1s]] ,

Rt = [U3s ⊗ 1] ,

Rst = [u3n ⊗ [U2s ⊗ U1n : U2n ⊗ U1s : U2s ⊗ U1s] :

U3s ⊗ [12 ⊗ u1n : u2n ⊗ 11 : u2n ⊗ u1n : U2s ⊗ U1n : U2n ⊗ U1s : U2s ⊗ U1s]] .

Note that Ts, Tt and Tst represent the components of the original transformation

matrix corresponding to the observed data. Uin = [1i : uin] and Uis, i = 1, 2, 3,

are matrices of eigenvectors corresponding to zero and non-zero eigenvalues ob-

tained from the eigen-decomposition of the penalty matrix Pj , j = s1, s2, t. Using

this transformation, the generalized mixed model reformulation of the extended

ANOVA-type P-spline model (2.2) can be obtained. More precisely, the fixed and

random effect matrices of the extended generalized linear mixed model are given

by

B∗T∗ = [1∗

st : (1∗

t ⊗ Bs)Ts : (B∗

t ⊗ 1s)T
∗

t : (B∗

t ⊗ Bs)T
∗

st] ,

and the extended model is expressed as

(2.7)

(
uo

up

)
= δ +

[
Xs Zs

](
βs

αs

)
+

[
Xo

t Zo
t 0

X
p
t Z

p
t1

Z
p
t2

] 


βt

αt

α
p
t




+

[
Xo

st Zo
st 0

X
p
st Z

p
st1

Z
p
st2

] 


βst

αst

α
p
st


 ,

where detailed expressions for each of the components are given in Appendix A.

Super-indexes o and p refer to matrices for observed and predicted values respec-

tively. Note that repeated columns have been removed to avoid identifiability

problems. Here up are the log-risks to be predicted; βs, βt, βst are the fixed

effects; αs, αt and αst are the random effects for space, time and space-time in-

teraction respectively, corresponding to the observed data, and α
p
t and α

p
st denote

random effects corresponding to predicted values.

To predict these random effects, some results on forecasting using mixed

models are required, but first the covariance matrix of the random effects corre-

sponding to the observed and predicted random effects are needed. The covari-

ance matrix is given by C = diag (C1,C2,C3) where

C1 = Cov(αs) = R′

sPsRs =




F−1
1

F−1
2

F−1
3


 ,
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C2 = Cov(αt, α
p
t ) = R′∗

t P∗

tR
∗

t =




F−1
4 −F−1

4 R′
tE

′
t

−EtRtF
−1
4 Ir + IrEtRtF

−1
4 R′

tE
′
tIr


 ,

C3 = Cov(αst, α
p
st) = R′∗

stP
∗

stR
∗

st

=




F−1 −F−1R′
st(E

′
t ⊗ Is)

−(Et ⊗ Is)RstF
−1 I∗ + I∗(Et ⊗ Is)RstF

−1R′
st(E

′
t ⊗ Is)I

∗


 ,

Here, R∗
t and R∗

st are part of the transformation matrix T∗ and they are given

by

R∗

t =

(
Rt 0

0 L−1
t

)
, R∗

st =

(
Rst 0

0 L−1
t ⊗ Im2

⊗ Im1

)
.

Expressions for F1, F2, F3 and F4, and F are left out in Appendix B. Then,

using these covariance matrices and the results provided by Gilmour et al. (2004)

about prediction in mixed models, estimators for α
p
t and α

p
st are given by

α̂
p
t = −EtRtF

−1
4 F4α̂t = −EtRtα̂t ,

(2.8)
α̂

p
st = −(Et ⊗ Is)RstF

−1Fα̂st = −(Et ⊗ Is)Rstα̂st .

To estimate model parameters, penalized quasi-likelihood (Breslow and

Clayton, 1993) is used. The smoothing parameters become variance components,

and here, the vector of variance components is λ = (λs1
, λs2

, λt, τs1
, τs2

, τt)
′.

Finally, using Equation (2.8), the estimated (corresponding to observed values)

and the predicted (corresponding to future values) log-relative risks are given by

(2.9)

(
ûo

ûp

)
= δ̂ +

[
Xs Zs

] (
β̂s

α̂s

)
+

[
Xo

t Zo
t

X
p

t Z
p

t1
− Z

p

t2
EtRt

](
β̂t

α̂t

)

+

[
Xo

st Zo
st

X
p

st Z
p

st1
− Z

p

st2
(Et ⊗ Is)Rst

] (
β̂st

α̂st

)
.

3. ILLUSTRATION

To illustrate results, Spanish prostate cancer mortality data from 1975 to

2008 are considered. This data set has been described elsewhere (see Ugarte

et al., 2012a, 2012b; Etxeberria et al., 2014) to study different disease mapping

models in terms of smoothing and prediction. We use this data set here to make

comparisons with the ANOVA-type P-spline model presented in this paper. In

brief, a total of 150,616 prostate cancer deaths were registered in Spain during

the study period. The number of observed cases ranges from 6 to 651 depending

on the province, while the number of expected cases varies from 13.76 to 794.14.
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Figure 1 shows the different components of the ANOVA-type P-spline model

for some Spanish provinces. Risk projections for 2009–2011 are also provided

after fitting the model for the observed data using penalized quasi-likelihood.

The smooth thick solid line is used for the total risk estimates and predictions,

the dashed line corresponds to the temporal trend common to all areas, and the

dashed-dotted line represents the area specific temporal trend. Finally, the non

smooth line corresponds to the SMR’s and the thin solid horizontal line is the

spatial effect constant along the period. The common temporal trend is below

one, and hence it contributes to decrease the mortality risk. The specific temporal

trend (dashed-dotted line) can be above or below one increasing or decreasing the

risk. For example, in Lugo, it is above one producing an increase in risk, even

though it starts to decrease at the end of the period. It is interesting to look at

Malaga or Valladolid, where the specific trend contributes to increase the risk in

future years, but this is compensated for the global trend which makes the risk

decrease.
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Figure 1: Risks temporal evolution of the different terms of the ANOVA-
type P-spline model and predictions for the years 2009, 2010,
and 2011. The smooth thick solid line corresponds to the total
risk estimates and predictions, the dashed line represents the
temporal trend common to all areas, and the dashed-dotted
line is used for the area specific temporal trend. The non
smooth line represents the SMR’s, and finally the thin solid
horizontal line is the spatial effect constant along the period.
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Table 1: Observed counts in 2008; risks predictions for 2011 and their cor-
responding 95% prediction intervals; expected counts in 2011;
counts predictions for 2011 and their corresponding 95% predic-
tion intervals.

Province Counts Risks 95% C.I. Expected Counts 95% C.I.

2008 2011 Risks 2011 2011 2011 Counts 2011

Coruña 161.00 0.76 [0.62, 0.93] 224.63 170.39 [123.85, 216.94]
Lleida 71.00 0.72 [0.59, 0.87] 86.24 61.73 [41.04, 82.41]
Ourense 91.00 0.76 [0.63, 0.92] 96.26 72.98 [49.72, 96.24]
Pontevedra 130.00 0.83 [0.68, 1.01] 163.42 135.11 [98.10, 172.12]
Oviedo 196.00 0.82 [0.68, 0.99] 226.20 185.59 [138.76, 232.43]
Santander 69.00 0.83 [0.69, 1.00] 107.40 89.58 [63.54, 115.62]
Lugo 53.00 0.71 [0.60, 0.86] 101.68 72.69 [49.80, 95.58]

Álava 39.00 0.73 [0.61, 0.87] 52.96 38.62 [23.97, 53.27]
Guipúzcoa 112.00 0.70 [0.58, 0.84] 125.16 87.48 [60.92, 114.05]
Vizcaya 162.00 0.78 [0.65, 0.94] 215.64 168.24 [124.91, 211.57]
Navarra 83.00 0.71 [0.60, 0.86] 112.94 80.64 [55.98, 105.29]
Huesca 54.00 0.73 [0.61, 0.88] 55.59 40.82 [25.50, 56.14]
Zaragoza 147.00 0.75 [0.62, 0.90] 183.76 137.45 [100.39, 174.51]
Teruel 31.00 0.65 [0.54, 0.78] 40.76 26.52 [14.72, 38.32]
Burgos 69.00 0.74 [0.62, 0.89] 84.56 62.84 [42.49, 83.18]
Palencia 32.00 0.79 [0.66, 0.95] 41.38 32.81 [19.68, 45.94]
León 95.00 0.76 [0.64, 0.91] 127.74 97.28 [69.36, 125.21]
Zamora 45.00 0.80 [0.66, 0.97] 60.62 48.72 [31.60, 65.84]
Valladolid 57.00 0.83 [0.69, 1.00] 98.57 81.50 [57.12, 105.88]
Soria 21.00 0.67 [0.55, 0.81] 26.60 17.72 [8.50, 26.95]
Salamanca 56.00 0.73 [0.61, 0.89] 88.01 64.57 [43.22, 85.93]

Ávila 29.00 0.70 [0.58, 0.84] 47.07 33.03 [19.59, 46.46]
Segovia 28.00 0.70 [0.59, 0.84] 38.86 27.34 [15.61, 39.06]
Logroño 62.00 0.66 [0.55, 0.79] 61.95 40.85 [25.23, 56.46]
Girona 88.00 0.72 [0.59, 0.87] 117.73 84.59 [58.33, 110.84]
Barcelona 524.00 0.64 [0.54, 0.76] 863.63 553.89 [426.37, 681.41]
Tarragona 70.00 0.66 [0.55, 0.80] 129.64 86.18 [59.70, 112.66]
Castellón 74.00 0.74 [0.62, 0.89] 94.70 69.97 [47.80, 92.14]
Valencia 253.00 0.73 [0.61, 0.87] 382.96 279.33 [213.30, 345.36]
Alicante 181.00 0.74 [0.62, 0.89] 288.08 213.82 [159.92, 267.73]
Murcia 172.00 0.73 [0.61, 0.88] 193.45 141.63 [103.02, 180.25]
Baleares 115.00 0.68 [0.55, 0.84] 145.72 99.38 [67.62 , 131.13]
Madrid 544.00 0.61 [0.52, 0.73] 871.18 533.29 [408.12, 658.47]
Cáceres 63.00 0.73 [0.60, 0.88] 85.99 62.48 [41.43, 83.53]
Badajoz 92.00 0.82 [0.68, 1.00] 119.86 98.79 [69.84, 127.74]
Guadalajara 36.00 0.57 [0.48, 0.69] 43.32 24.84 [13.41, 36.28]
Toledo 106.00 0.65 [0.55, 0.78] 121.00 78.83 [54.31, 103.34]
Cuenca 45.00 0.61 [0.51, 0.73] 54.43 33.15 [19.49, 46.81]
Ciudad Real 71.00 0.71 [0.59, 0.86] 101.42 72.14 [48.95, 95.34]
Albacete 65.00 0.77 [0.64, 0.93] 73.63 56.88 [37.86, 75.91]
Huelva 63.00 0.91 [0.74, 1.13] 71.24 65.15 [43.75, 86.54]
Sevilla 201.00 0.84 [0.69, 1.01] 240.17 201.03 [151.42, 250.63]
Cádiz 114.00 0.85 [0.70, 1.04] 149.34 126.89 [91.66, 162.12]
Córdoba 89.00 0.66 [0.55, 0.80] 130.23 86.48 [59.36, 113.60]
Málaga 147.00 0.82 [0.68, 1.00] 210.21 172.95 [128.03, 217.88]
Jaén 95.00 0.66 [0.55, 0.79] 115.29 75.98 [51.57, 100.39]
Granada 75.00 0.66 [0.54, 0.80] 138.34 91.21 [62.45, 119.97]
Almeŕıa 52.00 0.69 [0.56, 0.84] 81.31 55.83 [35.71, 75.95]
Las Palmas 113.00 0.80 [0.64, 1.01] 119.57 96.25 [65.44, 127.05]
Tenerife 110.00 0.75 [0.60, 0.94] 134.76 101.48 [68.43, 134.53]
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For illustration purposes, Table 1 displays the observed counts in 2008 (the

last year of the study period), risk predictions for 2011 (three year ahead pre-

dictions) together with their 95% prediction intervals; the number of expected

cases for 2011 (obtained from projections of population provided by the Span-

ish Statistical Office), and count predictions for 2011 with their corresponding

95% prediction intervals. Confidence intervals for risks and counts are based on

an appropriate estimator of the mean squared error (MSE). Traditionally, the

variability associated to the estimation of the variance components have been

ignored in empirical Bayes disease mapping and hence, the MSE was underes-

timated. This can be particularly relevant for the ANOVA-type P-spline model

considered here as six smoothing parameters (variance components) are involved.

The MSE for the log-risks corresponding to observed data has been derived in a

spatial context by Ugarte et al. (2008), Escaramı́s et al. (2008) and Goicoa et al.

(2012), and in a spatio-temporal context by Ugarte et al. (2010) and Ugarte et

al. (2012b) when considering CAR, P-splines and ANOVA-type P-spline models.

The MSE for predicted log-risks has also been obtained for an interaction P-spline

model (Ugarte et al., 2012a), and for CAR and mixtures of CAR and P-spline

models (Etxeberria et al., 2014). Using similar tools, the MSE estimator for pro-

jections of log-risks derived from the ANOVA-type P-spline model is computed

here. The empirical coverage of confidence intervals based on this estimator re-

veals a good performance. To facilitate the reading of the paper technical details

are given in Appendix C.

4. VALIDATION

To assess the predicted ability of the model, a validation study is conducted.

We consider the period 1995–2008 to compare the observed with the predicted

counts. In brief, data from 1975–1992 are used to fit the model and to predict

counts for 1995. Using data till 1993, we forecast counts for 1996 and so on.

Three year ahead predictions are considered as this is normally the delay in the

registers. Hence, observed counts and three-year ahead predictions from 1995 till

2008 are compared. In this validation period, predictions for 2006 and 2007 were

excluded due to computational instabilities in the variance component estimates.

Additionally, the models described in Etxeberria et al. (2014) are taken into ac-

count for comparison purposes. Namely, an additive model with a CAR structure

for space and a random walk of order 2 (RW2) for time; two models with the

same structure for space and time and structured and unstructured interactions

(Knorr-Held, 2000); an additive model with a CAR structure for space and a P-

spline for time; the same additive models with space-time interactions; a model

with a common P-spline for time and specific P-splines to describe the temporal

evolution of each region, and finally a pure interaction P-spline model. To make

the comparison with the ANOVA-type P-spline model fair, predictions for 2006

and 2007 have been also excluded in the previous models.
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Table 2 displays empirical coverage rates for prediction intervals corre-

sponding to three, two and one year ahead predictions at nominal values 95%,

and 99%. The ANOVA-type P-spline model achieves the nominal values for three

year-ahead predictions, the most interesting case from a practical point of view

as it is the usual delay in mortality registers. For two and one year ahead predic-

tions, the last three models in the table (all based on P-splines) seem to attain

empirical coverage rates closer to the nominal ones. The ANOVA-type P-spline

model offers great flexibility and it allows to explicitly split the predictions into

components representing region-specific features and characteristics common to

the whole country.

Table 2: A comparison of empirical coverage probabilities in the period
1995–2008 (excluding 2006–2007).

Three year-ahead Two year-ahead One year-ahead
predictions predictions predictions

95% 99% 95% 99% 95% 99%

Additive CAR RW2 87.67 95.00 85.00 95.00 86.50 95.50
Interaction CAR RW2 (struc.) 94.33 98.83 93.00 97.50 91.17 96.83
Interaction CAR RW2(unstruc.) 93.83 99.17 92.83 97.50 90.67 97.00
CAR(s)+Pspline(t) 85.83 94.67 87.50 94.00 88.33 95.00
CAR(s)+Pspline(t) + Int 85.50 93.67 89.33 95.50 91.33 97.50
Pspline(t) + Pspline Int 94.83 98.17 93.17 97.67 93.33 98.17
Pure interaction Pspline 93.33 99.17 93.00 98.17 91.00 97.00
ANOVA-type Pspline 95.33 99.00 92.33 97.66 91.83 97.33

5. DISCUSSION

Statistical methods represent a valid scientific tool to make predictions

about future events taking into account past information. These statistical meth-

ods gain importance in an epidemiological context since official cancer death fig-

ures are available after approximately three years from current date due to the

delay in administrative procedures of data collection and registration.

Some models including CAR, P-splines and combinations of both have been

studied in the literature (see for example Etxeberria et al., 2014) to provide pre-

dictions of mortality or incidence counts. In this paper, an ANOVA-type P-spline

model is studied to complete the P-spline alternatives within a generalized linear

mixed model framework. An extended transformation matrix, including the spa-

tial and temporal additive terms, and the spatio-temporal interaction is derived

in order to express risks related to observed and future time periods in a single

mixed model. The MSE of the predicted log-risks is also provided accounting
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for all sources of variability, including the one coming from the estimation of the

smoothing parameters, and is used in turn to calculate the count prediction er-

ror. The model has good empirical coverage rates for three year ahead predictions

and in addition, it is very attractive as it explicitly considers one smooth term

for space, another one for time, and a final interaction term, each one with its

own smoothing parameters. This allows to split the predicted risk into a spatial

component constant along the time period, a smooth temporal term common to

all regions and an area specific term representing the specificity of a region. This

is of practical interest as the area specific term indicates whether the region con-

tributes to increase or decrease its own risk, and hence it helps to plan prevention

or intervention measures and epidemiological policies in general.
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A. APPENDIX

To understand how the extended mixed model (2.7) is obtained, detailed

expressions for the different matrices are provided in this section. Using the

transformation matrix T∗, the fixed and random effect matrices of the extended

generalized linear mixed model are given by

B∗T∗ = [1∗

st : (1∗

t ⊗ Bs)Ts : (B∗

t ⊗ 1s)T
∗

t : (B∗

t ⊗ Bs)T
∗

st] ,

where

(1∗

t ⊗ Bs)Ts = 1∗

t ⊗ [xs : [Z22X1 : X22Z1 : Z22Z1]] = 1∗

t ⊗ [xs : Za]

= [(1∗

t ⊗ xs) : (1∗

t ⊗ Za)] = [Xs : Zs],

(B∗

t ⊗ 1s)T∗

t =

�
Btu3n BtU3s 0

Bt1u3n Bt1U3s Bt2L
−1

t

�
⊗ 1s =

�
xo

t ⊗ 1s Zo
t 0

x
p
t ⊗ 1s Z

p
t1

Z
p
t2

�
=

�
Xo

t Zo
t 0

X
p
t Z

p1

t Z
p2

t

�
,

(B∗

t ⊗ Bs)T∗

st =

�
xo

t ⊗ xs : [xo
t ⊗ Za : BtU3s ⊗ xs : BtU3s ⊗ Za ] : 0

x
p
t ⊗ xs : [xp

t ⊗ Za : Bt1U3s ⊗ xs : Bt1U3s ⊗ Za ] : (Bt2L
−1

t ) ⊗ Bs

�
=

�
Xo

st Zo
st 0

X
p
st Z

p
st1

Z
p
st2

�
.

Here, Zs = (1∗
t ⊗ Za), Za = [Z22X1 : X22Z1 : Z22Z1], Xs = (1∗

t ⊗ xs),

xs = [1n2x1 : x221n : x22x1], X1 = [1 : x1], X2 = [1 : x2], Z1 = Bs1
U1s, Z2 =

Bs2
U2s and Z3 = BtU3s. Finally, x1 and x2 are column vectors of longitude and

latitude respectively, and xo
t and x

p
t are column vector of time corresponding to

observed and prediction period respectively. Using these results, the extended

model is (2.7) is attained.
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B. APPENDIX

In this section, and to make the reading easier, expressions for matrices

F1, F2, F3, F4, and F = blockdiag(F5,F6,F7,F8,F9,F10,F11) are given. These

matrices are different blocks of the covariance matrix of the random effects coming

from the mixed model representation of the ANOVA-type P-spline model. Note

that Fi, i = 1, ..., 8 are exactly the same as those in Ugarte et al. (2012b). F9,

F10, F11 are not the same because in this paper we have considered B∗
t ⊗Bs, the

last term in the extended basis (2.3), instead of the other way around Bs ⊗ B∗
t .

This has been done because it is more natural and convenient when extending

the time basis to make predictions. Expressions for these matrices are given by

F1 = λ2Σ̃2 ⊗ I2, F2 = λ1I2 ⊗ Σ̃1, F3 = λ1Im2−2 ⊗ Σ̃1 + λ2Σ̃2 ⊗ Im1−2,

F4 = λtΣ̃3, F5 = τ2Σ̃2 ⊗ I2, F6 = τ1I2 ⊗ Σ̃1,

F7 = τ1Im2−2 ⊗ Σ̃1 + τ2Σ̃2 ⊗ Im1−2, F8 = τtI3 ⊗ Σ̃3,

F9 = τ2Im3−2 ⊗ Σ̃2 ⊗ I2 + τtΣ̃3 ⊗ Im2−2 ⊗ I2,

F10 = τ1Im3−2 ⊗ I2 ⊗ Σ̃1 + τtΣ̃3 ⊗ I2 ⊗ Im1−2,

F11 = τ1Im3−2 ⊗ Im2−2 ⊗ Σ̃1 + τ2Im3−2 ⊗ Σ̃2 ⊗ Im1−2 + τtΣ̃3 ⊗ Im2−2 ⊗ Im1−2.

where Σ̃i, i = 1, 2, 3 are diagonal matrices of non zero eigenvalues coming from

the eigen-decomposition of the marginal penalties Ps1
, Ps2

and Pt respectively.

F−1 = blockdiag(F−1
5 ,F−1

6 ,F−1
7 ,F−1

8 ,F−1
9 ,F−1

10 ,F−1
11 ), Is = Im2

⊗ Im1
, I∗ = Ir ⊗

Is, and Ir is the identity matrix of dimension r × r where r is the number of

columns of Lt.



On Predicting Cancer Mortality using ANOVA-type P-spline Models 37

C. APPENDIX

The MSE for predicted log-risk has already been proposed for a three-

dimensional P-spline model (Ugarte et al., 2012a). Here we reproduce the expres-

sions and make explicit the specific formula for the M matrix in the ANOVA-type

P-spline model. An estimator for the MSE of the predicted log-risk is given by

M̂SE[ûp
st] = g∗1st(λ̂) + g∗2st(λ̂) + 2g∗3st(λ̂) .

where

g∗1st(λ) = z
p
st(C − MZo′V−1ZoM′)zp

st
′
,

g∗2st(λ) = (xp
st − z

p
stMZo′V−1Xo)(Xo′V−1Xo)−1(xp

st − z
p
stMZo′V−1Xo)′ ,

g∗3st(λ) = tr[S∗VS∗′I−1] .

Here V and I−1 are the covariance matrix of the working vector and the

asymptotic covariance matrix of the variance components estimators arising

from the PQL algorithm. Vectors z
p
st and x

p
st are the st row of the matrices

Zp = [Zs : Zp
t1

: Zp
t2

: Zp
st1

: Zp
st2

] and Xp = [Xs : Xp
t : Xp

st] respectively, and finally,

Zo = [Zs : Zt : Zst] and Xo = [Xs : Xo
t : Xo

st]. An explicit expression for M is

given by

M =




C1 


F−1
4

−EtRtF
−1
4







F−1

−(Et ⊗ Is)RstF
−1







.

If λj denotes the jth entry of the vector of variance components λ =

(λs1
, λs2

, λt, τs1
, τs2

, τt)
′, the matrix S∗ is given by

S∗

j = z∗st

(
∂M

∂λj

Z′V−1 + MZ′
∂V−1

∂λj

)
, j = 1, 2, 3, 4, 5, 6 .

Finally, the variance for predicted counts is calculated as

Var[Cp
st] = E[Var[Cp

st|r
p
st]] + Var[E[Cp

st|r
p
st]] = e

p
stE[rp

st] + e
p2
st Var[rp

st] ,

where e
p
st are projections of the number of expected cases for future years. Var[rp

st]

is easily estimated from M̂SE[ûp
st] using the delta method.
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